metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium(II) bis­­[4-(3-pyrid­yl)pyrimidine-2-sulfonate] tetra­hydrate

aDepartment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China
*Correspondence e-mail: dapdong@163.com

(Received 15 October 2009; accepted 21 October 2009; online 28 October 2009)

The asymmetric unit of the title compound, [Mg(H2O)6](C9H6N3O3S)2·4H2O, contains half of a centrosymmetric cation, one 4-(3-pyrid­yl)pyrimidin-2-sulfonate anion and two solvent water mol­ecules. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the cations, anions and water mol­ecules into a three-dimensional supra­molecular structure. The crystal packing also exhibits inter­molecular ππ inter­actions between the aromatic rings of the anions with a centroid–centroid distance of 3.604 (2) Å.

Related literature

For coordination complexes with pyridin-2-sulfonate ligands, see: Kimura et al. (1999[Kimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497-498.]); Lobana et al. (2004[Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356-367.]). For coordination complexes with 4-(pyridin-yl)pyrimidin-2-sulfonate, see: Zhu et al. (2007[Zhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct. 831, 55-60.]); Fang et al. (2009[Fang, X. B., Dong, H. Z. & Tian, D. B. (2009). Chin. J. Inorg. Chem. 25, 47-53.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C9H6N3O3S)2·4H2O

  • Mr = 676.95

  • Monoclinic, P 21 /n

  • a = 6.9835 (2) Å

  • b = 13.3600 (3) Å

  • c = 16.2565 (4) Å

  • β = 98.7240 (10)°

  • V = 1499.18 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 291 K

  • 0.30 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.966

  • 14712 measured reflections

  • 3438 independent reflections

  • 2848 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.04

  • 3438 reflections

  • 236 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.83 (2) 1.94 (2) 2.7650 (19) 180 (3)
O4—H4B⋯O2 0.86 (2) 1.89 (2) 2.7475 (19) 176 (2)
O5—H5B⋯O3i 0.83 (2) 2.04 (2) 2.8705 (19) 177.0 (18)
O5—H5A⋯O8ii 0.86 (2) 1.91 (2) 2.755 (3) 167 (3)
O6—H6B⋯O3iii 0.83 (2) 2.03 (3) 2.8601 (19) 178 (2)
O6—H6A⋯N3iv 0.85 (3) 1.92 (3) 2.763 (2) 173 (2)
O7—H7B⋯O3v 0.84 (3) 2.51 (3) 3.110 (2) 130 (3)
O7—H7B⋯N2v 0.84 (3) 2.21 (3) 2.984 (2) 154 (3)
O7—H7A⋯O2 0.84 (3) 2.12 (3) 2.923 (2) 161 (3)
O8—H8B⋯O1vi 0.85 (4) 2.43 (4) 3.064 (2) 132 (4)
O8—H8A⋯O7iii 0.85 (3) 1.93 (3) 2.769 (3) 170 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of coordination complexes derived from heterocyclic sulfonate ligands have been of increasing interest recently in chemical research (Kimura et al., 1999; Lobana et al., 2004). In our previous work (Zhu et al., 2007; Fang et al., 2009), we have also studied transition metal coordination complexes with the heterocyclic sulfonate ligands, namely 4-(pyridin-2-yl)pyrimidin-2-sulfonate and 4-(pyridin-4-yl)pyrimidin-2-sulfonate. Herein, we report the magnesium(II) coordination complex with its analog, viz. 4-(pyridin-3-yl)pyrimidin-2-sulfonate.

The asymmetric unit of the title compound (Fig. 1) consists of a 4-(3-pyridyl)pyrimidin-2-sulfonate anion, one half of an [Mg(H2O)6]2+ cation and two free water molecules. The averaged Mg—O coordinating bond length is 2.0664 (13) Å. In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds (Table 1) link cations, anions and crystalline water molecules into three-dimensinal network. The crystal packing exhibits also intermolecular ππ interactions between the aromatic rings of the anions with the centroid-centroid distance of 3.604 (2) Å.

Related literature top

For coordination complexes with pyridin-2-sulfonate ligands, see: Kimura et al. (1999); Lobana et al. (2004). For coordination complexes with 4-(pyridin-yl)pyrimidin-2-sulfonate, see: Zhu et al. (2007); Fang et al. (2009).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. 4-(3-Pyridyl)pyrimidin-2-sulfonate (L) was prepared by similar procedure reported in the literature (Zhu et al., 2007; Fang et al., 2009). For the synthesis of title compoud, a solution of L (0.1 mmol), MgSO4 (0.1 mmol) in 30 ml methanol was stirred for 1 h at room temperature. After filtration, the mother liguid was stood for one week to give the colourless crystals suitable for X-ray diffraction annalysis.

Refinement top

C-bound H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms , with Uiso(H)=1.2Ueq(C). O-bound H atoms were located on a difference map and refined isotropically with the bond restraint O—H = 0.84 (2) Å.

Structure description top

The rational design and synthesis of coordination complexes derived from heterocyclic sulfonate ligands have been of increasing interest recently in chemical research (Kimura et al., 1999; Lobana et al., 2004). In our previous work (Zhu et al., 2007; Fang et al., 2009), we have also studied transition metal coordination complexes with the heterocyclic sulfonate ligands, namely 4-(pyridin-2-yl)pyrimidin-2-sulfonate and 4-(pyridin-4-yl)pyrimidin-2-sulfonate. Herein, we report the magnesium(II) coordination complex with its analog, viz. 4-(pyridin-3-yl)pyrimidin-2-sulfonate.

The asymmetric unit of the title compound (Fig. 1) consists of a 4-(3-pyridyl)pyrimidin-2-sulfonate anion, one half of an [Mg(H2O)6]2+ cation and two free water molecules. The averaged Mg—O coordinating bond length is 2.0664 (13) Å. In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds (Table 1) link cations, anions and crystalline water molecules into three-dimensinal network. The crystal packing exhibits also intermolecular ππ interactions between the aromatic rings of the anions with the centroid-centroid distance of 3.604 (2) Å.

For coordination complexes with pyridin-2-sulfonate ligands, see: Kimura et al. (1999); Lobana et al. (2004). For coordination complexes with 4-(pyridin-yl)pyrimidin-2-sulfonate, see: Zhu et al. (2007); Fang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (A) -1 - x, 1 - y, 1 - z].
Hexaaquamagnesium(II) bis[4-(3-pyridyl)pyrimidine-2-sulfonate] tetrahydrate top
Crystal data top
[Mg(H2O)6](C9H6N3O3S)2·4H2OF(000) = 708
Mr = 676.95Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15164 reflections
a = 6.9835 (2) Åθ = 2.0–27.5°
b = 13.3600 (3) ŵ = 0.28 mm1
c = 16.2565 (4) ÅT = 291 K
β = 98.724 (1)°Block, colourless
V = 1499.18 (7) Å30.30 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3438 independent reflections
Radiation source: fine-focus sealed tube2848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.917, Tmax = 0.966k = 1715
14712 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.508P]
where P = (Fo2 + 2Fc2)/3
3438 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.23 e Å3
7 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Mg(H2O)6](C9H6N3O3S)2·4H2OV = 1499.18 (7) Å3
Mr = 676.95Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.9835 (2) ŵ = 0.28 mm1
b = 13.3600 (3) ÅT = 291 K
c = 16.2565 (4) Å0.30 × 0.15 × 0.12 mm
β = 98.724 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2848 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.966Rint = 0.025
14712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0387 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
3438 reflectionsΔρmin = 0.40 e Å3
236 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50000.50000.50000.03117 (19)
S10.05652 (6)0.48762 (3)0.71033 (2)0.03373 (13)
N10.1709 (2)0.47749 (10)0.87143 (9)0.0339 (3)
O10.12580 (18)0.43964 (10)0.71840 (8)0.0441 (3)
O20.20815 (19)0.41651 (10)0.70020 (8)0.0484 (3)
N30.3137 (2)0.26720 (11)1.05433 (9)0.0425 (4)
N20.1324 (2)0.64241 (10)0.81545 (9)0.0416 (3)
C40.2220 (2)0.51444 (12)0.94866 (10)0.0320 (3)
C10.1302 (2)0.54365 (12)0.81052 (10)0.0324 (3)
O30.03921 (19)0.56801 (9)0.64992 (8)0.0443 (3)
C90.2743 (3)0.33887 (12)0.99732 (11)0.0380 (4)
H90.24870.32000.94170.046*
C50.2691 (2)0.44024 (12)1.01627 (10)0.0319 (3)
C60.3095 (3)0.46696 (14)1.09979 (10)0.0411 (4)
H60.30840.53391.11550.049*
C80.3510 (3)0.29500 (14)1.13397 (11)0.0448 (4)
H80.37820.24561.17440.054*
C30.2265 (3)0.61758 (13)0.96124 (11)0.0412 (4)
H30.25930.64451.01420.049*
C70.3512 (3)0.39317 (14)1.15898 (11)0.0466 (4)
H70.37920.40961.21510.056*
C20.1811 (3)0.67811 (13)0.89291 (12)0.0465 (4)
H20.18430.74710.90060.056*
O70.4762 (3)0.29673 (14)0.81603 (13)0.0812 (6)
H7A0.407 (5)0.342 (2)0.791 (2)0.137 (15)*
H7B0.438 (5)0.2425 (19)0.793 (2)0.133 (14)*
O60.7440 (2)0.42088 (10)0.48561 (9)0.0445 (3)
O40.5193 (2)0.43705 (11)0.61644 (8)0.0477 (3)
O50.6808 (2)0.61790 (10)0.54696 (9)0.0467 (3)
O80.1251 (4)0.72373 (16)0.14928 (13)0.0869 (6)
H6A0.773 (3)0.3654 (19)0.5094 (15)0.064 (7)*
H6B0.804 (4)0.425 (2)0.4457 (14)0.081 (8)*
H4B0.422 (3)0.4341 (17)0.6427 (14)0.056 (6)*
H5A0.647 (4)0.6623 (18)0.5805 (15)0.088 (9)*
H5B0.786 (3)0.602 (2)0.5755 (16)0.085 (9)*
H4A0.626 (3)0.438 (2)0.6468 (15)0.074 (8)*
H8A0.245 (4)0.717 (2)0.1660 (17)0.072 (9)*
H8B0.055 (6)0.681 (3)0.169 (3)0.168 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0328 (4)0.0308 (4)0.0295 (4)0.0031 (3)0.0035 (3)0.0025 (3)
S10.0337 (2)0.0357 (2)0.0314 (2)0.00007 (16)0.00366 (16)0.00238 (16)
N10.0345 (7)0.0317 (7)0.0342 (7)0.0004 (6)0.0008 (6)0.0002 (6)
O10.0399 (7)0.0520 (7)0.0390 (7)0.0115 (6)0.0012 (5)0.0002 (6)
O20.0504 (8)0.0518 (7)0.0445 (7)0.0138 (6)0.0115 (6)0.0012 (6)
N30.0540 (9)0.0327 (7)0.0396 (8)0.0044 (7)0.0038 (7)0.0016 (6)
N20.0472 (9)0.0315 (7)0.0440 (8)0.0003 (6)0.0003 (7)0.0036 (6)
C40.0270 (8)0.0330 (8)0.0357 (8)0.0004 (6)0.0034 (6)0.0023 (7)
C10.0271 (8)0.0328 (8)0.0364 (8)0.0010 (6)0.0018 (6)0.0027 (7)
O30.0493 (7)0.0459 (7)0.0370 (7)0.0006 (6)0.0044 (5)0.0092 (5)
C90.0433 (10)0.0354 (8)0.0337 (8)0.0031 (7)0.0011 (7)0.0024 (7)
C50.0287 (8)0.0324 (8)0.0343 (8)0.0014 (6)0.0037 (6)0.0014 (6)
C60.0487 (10)0.0363 (9)0.0379 (9)0.0024 (8)0.0057 (8)0.0060 (7)
C80.0546 (11)0.0429 (9)0.0369 (9)0.0013 (8)0.0067 (8)0.0076 (8)
C30.0481 (10)0.0342 (8)0.0403 (9)0.0014 (8)0.0038 (8)0.0056 (7)
C70.0585 (12)0.0504 (10)0.0303 (9)0.0041 (9)0.0051 (8)0.0025 (8)
C20.0575 (12)0.0285 (8)0.0518 (11)0.0014 (8)0.0026 (9)0.0022 (8)
O70.1034 (15)0.0525 (10)0.0792 (12)0.0227 (11)0.0132 (11)0.0133 (9)
O60.0488 (8)0.0411 (7)0.0463 (8)0.0148 (6)0.0164 (6)0.0104 (6)
O40.0383 (8)0.0696 (9)0.0344 (7)0.0010 (7)0.0025 (6)0.0124 (6)
O50.0434 (8)0.0399 (7)0.0532 (8)0.0009 (6)0.0044 (7)0.0073 (6)
O80.1058 (18)0.0780 (13)0.0705 (12)0.0248 (13)0.0067 (12)0.0268 (10)
Geometric parameters (Å, º) top
Mg1—O62.0487 (13)C5—C61.391 (2)
Mg1—O6i2.0487 (13)C6—C71.378 (3)
Mg1—O42.0570 (13)C6—H60.9300
Mg1—O4i2.0570 (13)C8—C71.373 (3)
Mg1—O5i2.0893 (13)C8—H80.9300
Mg1—O52.0893 (13)C3—C21.372 (3)
S1—O31.4480 (13)C3—H30.9300
S1—O11.4491 (13)C7—H70.9300
S1—O21.4504 (13)C2—H20.9300
S1—C11.7954 (17)O7—H7A0.838 (18)
N1—C11.326 (2)O7—H7B0.837 (19)
N1—C41.346 (2)O6—H6A0.85 (3)
N3—C91.332 (2)O6—H6B0.827 (17)
N3—C81.334 (2)O4—H4B0.85 (2)
N2—C11.322 (2)O4—H4A0.827 (17)
N2—C21.341 (2)O5—H5A0.862 (17)
C4—C31.393 (2)O5—H5B0.837 (17)
C4—C51.480 (2)O8—H8A0.85 (3)
C9—C51.391 (2)O8—H8B0.844 (19)
C9—H90.9300
O6—Mg1—O6i180.00 (8)N3—C9—H9118.1
O6—Mg1—O487.40 (6)C5—C9—H9118.1
O6i—Mg1—O492.60 (6)C9—C5—C6117.26 (16)
O6—Mg1—O4i92.60 (6)C9—C5—C4119.88 (15)
O6i—Mg1—O4i87.40 (6)C6—C5—C4122.86 (15)
O4—Mg1—O4i180.0C7—C6—C5119.23 (16)
O6—Mg1—O5i92.08 (6)C7—C6—H6120.4
O6i—Mg1—O5i87.92 (6)C5—C6—H6120.4
O4—Mg1—O5i88.83 (6)N3—C8—C7122.99 (17)
O4i—Mg1—O5i91.17 (6)N3—C8—H8118.5
O6—Mg1—O587.92 (6)C7—C8—H8118.5
O6i—Mg1—O592.08 (6)C2—C3—C4117.84 (16)
O4—Mg1—O591.17 (6)C2—C3—H3121.1
O4i—Mg1—O588.83 (6)C4—C3—H3121.1
O5i—Mg1—O5180.00 (5)C8—C7—C6119.09 (17)
O3—S1—O1113.91 (8)C8—C7—H7120.5
O3—S1—O2113.33 (8)C6—C7—H7120.5
O1—S1—O2112.78 (8)N2—C2—C3123.04 (16)
O3—S1—C1106.80 (8)N2—C2—H2118.5
O1—S1—C1103.71 (7)C3—C2—H2118.5
O2—S1—C1105.22 (8)H7A—O7—H7B106 (4)
C1—N1—C4116.66 (14)Mg1—O6—H6A122.8 (16)
C9—N3—C8117.68 (15)Mg1—O6—H6B125.8 (19)
C1—N2—C2114.26 (15)H6A—O6—H6B108 (2)
N1—C4—C3119.79 (15)Mg1—O4—H4B122.2 (15)
N1—C4—C5116.42 (14)Mg1—O4—H4A118.0 (19)
C3—C4—C5123.79 (15)H4B—O4—H4A114 (2)
N2—C1—N1128.39 (16)Mg1—O5—H5A122.9 (19)
N2—C1—S1118.06 (13)Mg1—O5—H5B116 (2)
N1—C1—S1113.52 (12)H5A—O5—H5B97 (3)
N3—C9—C5123.75 (16)H8A—O8—H8B114 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1ii0.83 (2)1.94 (2)2.7650 (19)180 (3)
O4—H4B···O20.86 (2)1.89 (2)2.7475 (19)176 (2)
O5—H5B···O3ii0.83 (2)2.04 (2)2.8705 (19)177 (2)
O5—H5A···O8iii0.86 (2)1.91 (2)2.755 (3)167 (3)
O6—H6B···O3i0.83 (2)2.03 (3)2.8601 (19)178 (2)
O6—H6A···N3iv0.85 (3)1.92 (3)2.763 (2)173 (2)
O7—H7B···O3v0.84 (3)2.51 (3)3.110 (2)130 (3)
O7—H7B···N2v0.84 (3)2.21 (3)2.984 (2)154 (3)
O7—H7A···O20.84 (3)2.12 (3)2.923 (2)161 (3)
O8—H8B···O1vi0.85 (4)2.43 (4)3.064 (2)132 (4)
O8—H8A···O7i0.85 (3)1.93 (3)2.769 (3)170 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+3/2; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C9H6N3O3S)2·4H2O
Mr676.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)6.9835 (2), 13.3600 (3), 16.2565 (4)
β (°) 98.724 (1)
V3)1499.18 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.917, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
14712, 3438, 2848
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.04
No. of reflections3438
No. of parameters236
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.83 (2)1.94 (2)2.7650 (19)180 (3)
O4—H4B···O20.86 (2)1.89 (2)2.7475 (19)176 (2)
O5—H5B···O3i0.83 (2)2.04 (2)2.8705 (19)177.0 (18)
O5—H5A···O8ii0.86 (2)1.91 (2)2.755 (3)167 (3)
O6—H6B···O3iii0.83 (2)2.03 (3)2.8601 (19)178 (2)
O6—H6A···N3iv0.85 (3)1.92 (3)2.763 (2)173 (2)
O7—H7B···O3v0.84 (3)2.51 (3)3.110 (2)130 (3)
O7—H7B···N2v0.84 (3)2.21 (3)2.984 (2)154 (3)
O7—H7A···O20.84 (3)2.12 (3)2.923 (2)161 (3)
O8—H8B···O1vi0.85 (4)2.43 (4)3.064 (2)132 (4)
O8—H8A···O7iii0.85 (3)1.93 (3)2.769 (3)170 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+3/2; (vi) x, y+1, z+1.
 

Acknowledgements

The authors are indebted to the Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (grant No. 20871039) for financial support.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, X. B., Dong, H. Z. & Tian, D. B. (2009). Chin. J. Inorg. Chem. 25, 47–53.  CAS Google Scholar
First citationKimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497–498.  Web of Science CSD CrossRef Google Scholar
First citationLobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356–367.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct. 831, 55–60.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds