metal-organic compounds
Hexaaquamagnesium(II) bis[4-(3-pyridyl)pyrimidine-2-sulfonate] tetrahydrate
aDepartment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China
*Correspondence e-mail: dapdong@163.com
The 2O)6](C9H6N3O3S)2·4H2O, contains half of a centrosymmetric cation, one 4-(3-pyridyl)pyrimidin-2-sulfonate anion and two solvent water molecules. Intermolecular O—H⋯O and O—H⋯N hydrogen bonds link the cations, anions and water molecules into a three-dimensional supramolecular structure. The crystal packing also exhibits intermolecular π–π interactions between the aromatic rings of the anions with a centroid–centroid distance of 3.604 (2) Å.
of the title compound, [Mg(HRelated literature
For coordination complexes with pyridin-2-sulfonate ligands, see: Kimura et al. (1999); Lobana et al. (2004). For coordination complexes with 4-(pyridin-yl)pyrimidin-2-sulfonate, see: Zhu et al. (2007); Fang et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053680904344X/cv2632sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680904344X/cv2632Isup2.hkl
All solvents and chemicals were of analytical grade and were used without further purification. 4-(3-Pyridyl)pyrimidin-2-sulfonate (L) was prepared by similar procedure reported in the literature (Zhu et al., 2007; Fang et al., 2009). For the synthesis of title compoud, a solution of L (0.1 mmol), MgSO4 (0.1 mmol) in 30 ml methanol was stirred for 1 h at room temperature. After filtration, the mother liguid was stood for one week to give the colourless crystals suitable for X-ray diffraction annalysis.
C-bound H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms , with Uiso(H)=1.2Ueq(C). O-bound H atoms were located on a difference map and refined isotropically with the bond restraint O—H = 0.84 (2) Å.
The rational design and synthesis of coordination complexes derived from heterocyclic sulfonate ligands have been of increasing interest recently in chemical research (Kimura et al., 1999; Lobana et al., 2004). In our previous work (Zhu et al., 2007; Fang et al., 2009), we have also studied transition metal coordination complexes with the heterocyclic sulfonate ligands, namely 4-(pyridin-2-yl)pyrimidin-2-sulfonate and 4-(pyridin-4-yl)pyrimidin-2-sulfonate. Herein, we report the magnesium(II) coordination complex with its analog, viz. 4-(pyridin-3-yl)pyrimidin-2-sulfonate.
The π—π interactions between the aromatic rings of the anions with the centroid-centroid distance of 3.604 (2) Å.
of the title compound (Fig. 1) consists of a 4-(3-pyridyl)pyrimidin-2-sulfonate anion, one half of an [Mg(H2O)6]2+ cation and two free water molecules. The averaged Mg—O coordinating bond length is 2.0664 (13) Å. In the intermolecular O—H···O and O—H···N hydrogen bonds (Table 1) link cations, anions and crystalline water molecules into three-dimensinal network. The crystal packing exhibits also intermolecularFor coordination complexes with pyridin-2-sulfonate ligands, see: Kimura et al. (1999); Lobana et al. (2004). For coordination complexes with 4-(pyridin-yl)pyrimidin-2-sulfonate, see: Zhu et al. (2007); Fang et al. (2009).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A portion of the crystal structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (A) -1 - x, 1 - y, 1 - z]. |
[Mg(H2O)6](C9H6N3O3S)2·4H2O | F(000) = 708 |
Mr = 676.95 | Dx = 1.500 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 15164 reflections |
a = 6.9835 (2) Å | θ = 2.0–27.5° |
b = 13.3600 (3) Å | µ = 0.28 mm−1 |
c = 16.2565 (4) Å | T = 291 K |
β = 98.724 (1)° | Block, colourless |
V = 1499.18 (7) Å3 | 0.30 × 0.15 × 0.12 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3438 independent reflections |
Radiation source: fine-focus sealed tube | 2848 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −9→9 |
Tmin = 0.917, Tmax = 0.966 | k = −17→15 |
14712 measured reflections | l = −19→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0509P)2 + 0.508P] where P = (Fo2 + 2Fc2)/3 |
3438 reflections | (Δ/σ)max = 0.001 |
236 parameters | Δρmax = 0.23 e Å−3 |
7 restraints | Δρmin = −0.40 e Å−3 |
[Mg(H2O)6](C9H6N3O3S)2·4H2O | V = 1499.18 (7) Å3 |
Mr = 676.95 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.9835 (2) Å | µ = 0.28 mm−1 |
b = 13.3600 (3) Å | T = 291 K |
c = 16.2565 (4) Å | 0.30 × 0.15 × 0.12 mm |
β = 98.724 (1)° |
Bruker SMART CCD area-detector diffractometer | 3438 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2848 reflections with I > 2σ(I) |
Tmin = 0.917, Tmax = 0.966 | Rint = 0.025 |
14712 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 7 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.23 e Å−3 |
3438 reflections | Δρmin = −0.40 e Å−3 |
236 parameters |
Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.5000 | 0.5000 | 0.5000 | 0.03117 (19) | |
S1 | 0.05652 (6) | 0.48762 (3) | 0.71033 (2) | 0.03373 (13) | |
N1 | 0.1709 (2) | 0.47749 (10) | 0.87143 (9) | 0.0339 (3) | |
O1 | −0.12580 (18) | 0.43964 (10) | 0.71840 (8) | 0.0441 (3) | |
O2 | 0.20815 (19) | 0.41651 (10) | 0.70020 (8) | 0.0484 (3) | |
N3 | 0.3137 (2) | 0.26720 (11) | 1.05433 (9) | 0.0425 (4) | |
N2 | 0.1324 (2) | 0.64241 (10) | 0.81545 (9) | 0.0416 (3) | |
C4 | 0.2220 (2) | 0.51444 (12) | 0.94866 (10) | 0.0320 (3) | |
C1 | 0.1302 (2) | 0.54365 (12) | 0.81052 (10) | 0.0324 (3) | |
O3 | 0.03921 (19) | 0.56801 (9) | 0.64992 (8) | 0.0443 (3) | |
C9 | 0.2743 (3) | 0.33887 (12) | 0.99732 (11) | 0.0380 (4) | |
H9 | 0.2487 | 0.3200 | 0.9417 | 0.046* | |
C5 | 0.2691 (2) | 0.44024 (12) | 1.01627 (10) | 0.0319 (3) | |
C6 | 0.3095 (3) | 0.46696 (14) | 1.09979 (10) | 0.0411 (4) | |
H6 | 0.3084 | 0.5339 | 1.1155 | 0.049* | |
C8 | 0.3510 (3) | 0.29500 (14) | 1.13397 (11) | 0.0448 (4) | |
H8 | 0.3782 | 0.2456 | 1.1744 | 0.054* | |
C3 | 0.2265 (3) | 0.61758 (13) | 0.96124 (11) | 0.0412 (4) | |
H3 | 0.2593 | 0.6445 | 1.0142 | 0.049* | |
C7 | 0.3512 (3) | 0.39317 (14) | 1.15898 (11) | 0.0466 (4) | |
H7 | 0.3792 | 0.4096 | 1.2151 | 0.056* | |
C2 | 0.1811 (3) | 0.67811 (13) | 0.89291 (12) | 0.0465 (4) | |
H2 | 0.1843 | 0.7471 | 0.9006 | 0.056* | |
O7 | 0.4762 (3) | 0.29673 (14) | 0.81603 (13) | 0.0812 (6) | |
H7A | 0.407 (5) | 0.342 (2) | 0.791 (2) | 0.137 (15)* | |
H7B | 0.438 (5) | 0.2425 (19) | 0.793 (2) | 0.133 (14)* | |
O6 | 0.7440 (2) | 0.42088 (10) | 0.48561 (9) | 0.0445 (3) | |
O4 | 0.5193 (2) | 0.43705 (11) | 0.61644 (8) | 0.0477 (3) | |
O5 | 0.6808 (2) | 0.61790 (10) | 0.54696 (9) | 0.0467 (3) | |
O8 | 0.1251 (4) | 0.72373 (16) | 0.14928 (13) | 0.0869 (6) | |
H6A | 0.773 (3) | 0.3654 (19) | 0.5094 (15) | 0.064 (7)* | |
H6B | 0.804 (4) | 0.425 (2) | 0.4457 (14) | 0.081 (8)* | |
H4B | 0.422 (3) | 0.4341 (17) | 0.6427 (14) | 0.056 (6)* | |
H5A | 0.647 (4) | 0.6623 (18) | 0.5805 (15) | 0.088 (9)* | |
H5B | 0.786 (3) | 0.602 (2) | 0.5755 (16) | 0.085 (9)* | |
H4A | 0.626 (3) | 0.438 (2) | 0.6468 (15) | 0.074 (8)* | |
H8A | 0.245 (4) | 0.717 (2) | 0.1660 (17) | 0.072 (9)* | |
H8B | 0.055 (6) | 0.681 (3) | 0.169 (3) | 0.168 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0328 (4) | 0.0308 (4) | 0.0295 (4) | 0.0031 (3) | 0.0035 (3) | 0.0025 (3) |
S1 | 0.0337 (2) | 0.0357 (2) | 0.0314 (2) | −0.00007 (16) | 0.00366 (16) | 0.00238 (16) |
N1 | 0.0345 (7) | 0.0317 (7) | 0.0342 (7) | −0.0004 (6) | 0.0008 (6) | 0.0002 (6) |
O1 | 0.0399 (7) | 0.0520 (7) | 0.0390 (7) | −0.0115 (6) | 0.0012 (5) | −0.0002 (6) |
O2 | 0.0504 (8) | 0.0518 (7) | 0.0445 (7) | 0.0138 (6) | 0.0115 (6) | 0.0012 (6) |
N3 | 0.0540 (9) | 0.0327 (7) | 0.0396 (8) | −0.0044 (7) | 0.0038 (7) | 0.0016 (6) |
N2 | 0.0472 (9) | 0.0315 (7) | 0.0440 (8) | −0.0003 (6) | −0.0003 (7) | 0.0036 (6) |
C4 | 0.0270 (8) | 0.0330 (8) | 0.0357 (8) | −0.0004 (6) | 0.0034 (6) | −0.0023 (7) |
C1 | 0.0271 (8) | 0.0328 (8) | 0.0364 (8) | −0.0010 (6) | 0.0018 (6) | 0.0027 (7) |
O3 | 0.0493 (7) | 0.0459 (7) | 0.0370 (7) | 0.0006 (6) | 0.0044 (5) | 0.0092 (5) |
C9 | 0.0433 (10) | 0.0354 (8) | 0.0337 (8) | −0.0031 (7) | 0.0011 (7) | −0.0024 (7) |
C5 | 0.0287 (8) | 0.0324 (8) | 0.0343 (8) | −0.0014 (6) | 0.0037 (6) | −0.0014 (6) |
C6 | 0.0487 (10) | 0.0363 (9) | 0.0379 (9) | 0.0024 (8) | 0.0057 (8) | −0.0060 (7) |
C8 | 0.0546 (11) | 0.0429 (9) | 0.0369 (9) | 0.0013 (8) | 0.0067 (8) | 0.0076 (8) |
C3 | 0.0481 (10) | 0.0342 (8) | 0.0403 (9) | −0.0014 (8) | 0.0038 (8) | −0.0056 (7) |
C7 | 0.0585 (12) | 0.0504 (10) | 0.0303 (9) | 0.0041 (9) | 0.0051 (8) | −0.0025 (8) |
C2 | 0.0575 (12) | 0.0285 (8) | 0.0518 (11) | 0.0014 (8) | 0.0026 (9) | −0.0022 (8) |
O7 | 0.1034 (15) | 0.0525 (10) | 0.0792 (12) | 0.0227 (11) | −0.0132 (11) | −0.0133 (9) |
O6 | 0.0488 (8) | 0.0411 (7) | 0.0463 (8) | 0.0148 (6) | 0.0164 (6) | 0.0104 (6) |
O4 | 0.0383 (8) | 0.0696 (9) | 0.0344 (7) | 0.0010 (7) | 0.0025 (6) | 0.0124 (6) |
O5 | 0.0434 (8) | 0.0399 (7) | 0.0532 (8) | 0.0009 (6) | −0.0044 (7) | −0.0073 (6) |
O8 | 0.1058 (18) | 0.0780 (13) | 0.0705 (12) | −0.0248 (13) | −0.0067 (12) | 0.0268 (10) |
Mg1—O6 | 2.0487 (13) | C5—C6 | 1.391 (2) |
Mg1—O6i | 2.0487 (13) | C6—C7 | 1.378 (3) |
Mg1—O4 | 2.0570 (13) | C6—H6 | 0.9300 |
Mg1—O4i | 2.0570 (13) | C8—C7 | 1.373 (3) |
Mg1—O5i | 2.0893 (13) | C8—H8 | 0.9300 |
Mg1—O5 | 2.0893 (13) | C3—C2 | 1.372 (3) |
S1—O3 | 1.4480 (13) | C3—H3 | 0.9300 |
S1—O1 | 1.4491 (13) | C7—H7 | 0.9300 |
S1—O2 | 1.4504 (13) | C2—H2 | 0.9300 |
S1—C1 | 1.7954 (17) | O7—H7A | 0.838 (18) |
N1—C1 | 1.326 (2) | O7—H7B | 0.837 (19) |
N1—C4 | 1.346 (2) | O6—H6A | 0.85 (3) |
N3—C9 | 1.332 (2) | O6—H6B | 0.827 (17) |
N3—C8 | 1.334 (2) | O4—H4B | 0.85 (2) |
N2—C1 | 1.322 (2) | O4—H4A | 0.827 (17) |
N2—C2 | 1.341 (2) | O5—H5A | 0.862 (17) |
C4—C3 | 1.393 (2) | O5—H5B | 0.837 (17) |
C4—C5 | 1.480 (2) | O8—H8A | 0.85 (3) |
C9—C5 | 1.391 (2) | O8—H8B | 0.844 (19) |
C9—H9 | 0.9300 | ||
O6—Mg1—O6i | 180.00 (8) | N3—C9—H9 | 118.1 |
O6—Mg1—O4 | 87.40 (6) | C5—C9—H9 | 118.1 |
O6i—Mg1—O4 | 92.60 (6) | C9—C5—C6 | 117.26 (16) |
O6—Mg1—O4i | 92.60 (6) | C9—C5—C4 | 119.88 (15) |
O6i—Mg1—O4i | 87.40 (6) | C6—C5—C4 | 122.86 (15) |
O4—Mg1—O4i | 180.0 | C7—C6—C5 | 119.23 (16) |
O6—Mg1—O5i | 92.08 (6) | C7—C6—H6 | 120.4 |
O6i—Mg1—O5i | 87.92 (6) | C5—C6—H6 | 120.4 |
O4—Mg1—O5i | 88.83 (6) | N3—C8—C7 | 122.99 (17) |
O4i—Mg1—O5i | 91.17 (6) | N3—C8—H8 | 118.5 |
O6—Mg1—O5 | 87.92 (6) | C7—C8—H8 | 118.5 |
O6i—Mg1—O5 | 92.08 (6) | C2—C3—C4 | 117.84 (16) |
O4—Mg1—O5 | 91.17 (6) | C2—C3—H3 | 121.1 |
O4i—Mg1—O5 | 88.83 (6) | C4—C3—H3 | 121.1 |
O5i—Mg1—O5 | 180.00 (5) | C8—C7—C6 | 119.09 (17) |
O3—S1—O1 | 113.91 (8) | C8—C7—H7 | 120.5 |
O3—S1—O2 | 113.33 (8) | C6—C7—H7 | 120.5 |
O1—S1—O2 | 112.78 (8) | N2—C2—C3 | 123.04 (16) |
O3—S1—C1 | 106.80 (8) | N2—C2—H2 | 118.5 |
O1—S1—C1 | 103.71 (7) | C3—C2—H2 | 118.5 |
O2—S1—C1 | 105.22 (8) | H7A—O7—H7B | 106 (4) |
C1—N1—C4 | 116.66 (14) | Mg1—O6—H6A | 122.8 (16) |
C9—N3—C8 | 117.68 (15) | Mg1—O6—H6B | 125.8 (19) |
C1—N2—C2 | 114.26 (15) | H6A—O6—H6B | 108 (2) |
N1—C4—C3 | 119.79 (15) | Mg1—O4—H4B | 122.2 (15) |
N1—C4—C5 | 116.42 (14) | Mg1—O4—H4A | 118.0 (19) |
C3—C4—C5 | 123.79 (15) | H4B—O4—H4A | 114 (2) |
N2—C1—N1 | 128.39 (16) | Mg1—O5—H5A | 122.9 (19) |
N2—C1—S1 | 118.06 (13) | Mg1—O5—H5B | 116 (2) |
N1—C1—S1 | 113.52 (12) | H5A—O5—H5B | 97 (3) |
N3—C9—C5 | 123.75 (16) | H8A—O8—H8B | 114 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O1ii | 0.83 (2) | 1.94 (2) | 2.7650 (19) | 180 (3) |
O4—H4B···O2 | 0.86 (2) | 1.89 (2) | 2.7475 (19) | 176 (2) |
O5—H5B···O3ii | 0.83 (2) | 2.04 (2) | 2.8705 (19) | 177 (2) |
O5—H5A···O8iii | 0.86 (2) | 1.91 (2) | 2.755 (3) | 167 (3) |
O6—H6B···O3i | 0.83 (2) | 2.03 (3) | 2.8601 (19) | 178 (2) |
O6—H6A···N3iv | 0.85 (3) | 1.92 (3) | 2.763 (2) | 173 (2) |
O7—H7B···O3v | 0.84 (3) | 2.51 (3) | 3.110 (2) | 130 (3) |
O7—H7B···N2v | 0.84 (3) | 2.21 (3) | 2.984 (2) | 154 (3) |
O7—H7A···O2 | 0.84 (3) | 2.12 (3) | 2.923 (2) | 161 (3) |
O8—H8B···O1vi | 0.85 (4) | 2.43 (4) | 3.064 (2) | 132 (4) |
O8—H8A···O7i | 0.85 (3) | 1.93 (3) | 2.769 (3) | 170 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x+1/2, −y+3/2, z+1/2; (iv) x+1/2, −y+1/2, z−1/2; (v) −x+1/2, y−1/2, −z+3/2; (vi) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mg(H2O)6](C9H6N3O3S)2·4H2O |
Mr | 676.95 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 291 |
a, b, c (Å) | 6.9835 (2), 13.3600 (3), 16.2565 (4) |
β (°) | 98.724 (1) |
V (Å3) | 1499.18 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.30 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.917, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14712, 3438, 2848 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.102, 1.04 |
No. of reflections | 3438 |
No. of parameters | 236 |
No. of restraints | 7 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.40 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O1i | 0.83 (2) | 1.94 (2) | 2.7650 (19) | 180 (3) |
O4—H4B···O2 | 0.86 (2) | 1.89 (2) | 2.7475 (19) | 176 (2) |
O5—H5B···O3i | 0.83 (2) | 2.04 (2) | 2.8705 (19) | 177.0 (18) |
O5—H5A···O8ii | 0.86 (2) | 1.91 (2) | 2.755 (3) | 167 (3) |
O6—H6B···O3iii | 0.83 (2) | 2.03 (3) | 2.8601 (19) | 178 (2) |
O6—H6A···N3iv | 0.85 (3) | 1.92 (3) | 2.763 (2) | 173 (2) |
O7—H7B···O3v | 0.84 (3) | 2.51 (3) | 3.110 (2) | 130 (3) |
O7—H7B···N2v | 0.84 (3) | 2.21 (3) | 2.984 (2) | 154 (3) |
O7—H7A···O2 | 0.84 (3) | 2.12 (3) | 2.923 (2) | 161 (3) |
O8—H8B···O1vi | 0.85 (4) | 2.43 (4) | 3.064 (2) | 132 (4) |
O8—H8A···O7iii | 0.85 (3) | 1.93 (3) | 2.769 (3) | 170 (3) |
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x+1/2, −y+1/2, z−1/2; (v) −x+1/2, y−1/2, −z+3/2; (vi) −x, −y+1, −z+1. |
Acknowledgements
The authors are indebted to the Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (grant No. 20871039) for financial support.
References
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fang, X. B., Dong, H. Z. & Tian, D. B. (2009). Chin. J. Inorg. Chem. 25, 47–53. CAS Google Scholar
Kimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497–498. Web of Science CSD CrossRef Google Scholar
Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356–367. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct. 831, 55–60. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The rational design and synthesis of coordination complexes derived from heterocyclic sulfonate ligands have been of increasing interest recently in chemical research (Kimura et al., 1999; Lobana et al., 2004). In our previous work (Zhu et al., 2007; Fang et al., 2009), we have also studied transition metal coordination complexes with the heterocyclic sulfonate ligands, namely 4-(pyridin-2-yl)pyrimidin-2-sulfonate and 4-(pyridin-4-yl)pyrimidin-2-sulfonate. Herein, we report the magnesium(II) coordination complex with its analog, viz. 4-(pyridin-3-yl)pyrimidin-2-sulfonate.
The asymmetric unit of the title compound (Fig. 1) consists of a 4-(3-pyridyl)pyrimidin-2-sulfonate anion, one half of an [Mg(H2O)6]2+ cation and two free water molecules. The averaged Mg—O coordinating bond length is 2.0664 (13) Å. In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds (Table 1) link cations, anions and crystalline water molecules into three-dimensinal network. The crystal packing exhibits also intermolecular π—π interactions between the aromatic rings of the anions with the centroid-centroid distance of 3.604 (2) Å.