organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Di­phenyl­methyl­ene-2-hy­droxy­benzohydrazide

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: jiningning16@163.com

(Received 16 October 2009; accepted 22 October 2009; online 28 October 2009)

The title compound, C20H16N2O2, was synthesized by the reaction of 2-hydroxy­benzohydrazide with diphenyl­methanone. The dihedral angle between the phenyl rings is 76.28 (11)°. The amino H atom is involved in an intra­molecular N—H⋯O hydrogen bond. In the crystal structure, the hydr­oxy groups and carbonyl O atoms form inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into chains running along the b axis.

Related literature

For general background to Schiff bases in coordination chemistry, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Musie et al. (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Paul et al. (2002[Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803-5809.]); Anderson et al. (1997[Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]). For a related structure, see Ji & Shi (2008[Ji, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o1918.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O2

  • Mr = 316.35

  • Monoclinic, P 21 /c

  • a = 15.4057 (18) Å

  • b = 12.5179 (15) Å

  • c = 8.8445 (10) Å

  • β = 103.777 (2)°

  • V = 1656.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.992

  • 8538 measured reflections

  • 2934 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.05

  • 2934 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.90 2.7204 (17) 173
N1—H1A⋯O1 0.86 2.08 2.696 (2) 128
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, a number of Schiff-bases have been investigated in terms of their coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Paul et al., 2002) and biological systems (Anderson et al., 1997). In order to search for new Schiff-bases with higher bioactivity, the title compound, (I), was synthesized and its crystal structure determined.

In (I) (Fig. 1), the bond lengths and angles are in a good agreement with those observed in the related compound (Ji & Shi, 2008). Intramolecular O—H···N hydrogen bond (Table 1) influences the molecular conformation. In the crystal structure, the molecules are linked into infinite chains by O—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For general background to Schiff bases in coordination chemistry, see: Garnovskii et al. (1993); Musie et al. (2001); Paul et al. (2002); Anderson et al. (1997). For a related structure, see Ji & Shi (2008).

Experimental top

The title compound was synthesized by the reaction of 2-hydroxy-benzoic acid hydrazide(1 mmol, 152.2 mg) with diphenyl-methanone (1 mmol, 182.2 mg) in ethanol (20 ml) under reflux conditions (348 K) for 5 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After six days, colourless crystals suitable for X-ray diffraction study were obtained.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93— 0.97 Å, N—H = 0.86 Å, O—H = 0.82 Å) and refined as riding atoms, with Uiso(H) = 1.2 or 1.5Ueq of the parent atom.

Structure description top

In recent years, a number of Schiff-bases have been investigated in terms of their coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Paul et al., 2002) and biological systems (Anderson et al., 1997). In order to search for new Schiff-bases with higher bioactivity, the title compound, (I), was synthesized and its crystal structure determined.

In (I) (Fig. 1), the bond lengths and angles are in a good agreement with those observed in the related compound (Ji & Shi, 2008). Intramolecular O—H···N hydrogen bond (Table 1) influences the molecular conformation. In the crystal structure, the molecules are linked into infinite chains by O—H···O hydrogen bonds (Table 1, Fig. 2).

For general background to Schiff bases in coordination chemistry, see: Garnovskii et al. (1993); Musie et al. (2001); Paul et al. (2002); Anderson et al. (1997). For a related structure, see Ji & Shi (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing showing the hydrogen-bonded (dashed lines) chain.
N'-Diphenylmethylene-2-hydroxybenzohydrazide top
Crystal data top
C20H16N2O2F(000) = 664
Mr = 316.35Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1519 reflections
a = 15.4057 (18) Åθ = 2.7–21.7°
b = 12.5179 (15) ŵ = 0.08 mm1
c = 8.8445 (10) ÅT = 295 K
β = 103.777 (2)°Block, colourless
V = 1656.6 (3) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1816
Tmin = 0.988, Tmax = 0.992k = 1413
8538 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0637P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2934 reflectionsΔρmax = 0.15 e Å3
219 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (15)
Crystal data top
C20H16N2O2V = 1656.6 (3) Å3
Mr = 316.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4057 (18) ŵ = 0.08 mm1
b = 12.5179 (15) ÅT = 295 K
c = 8.8445 (10) Å0.15 × 0.12 × 0.10 mm
β = 103.777 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1910 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.992Rint = 0.034
8538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
2934 reflectionsΔρmin = 0.15 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00834 (9)0.02500 (10)0.30160 (15)0.0574 (4)
H10.00880.03590.31250.086*
O20.06286 (9)0.32928 (10)0.16995 (15)0.0555 (4)
N10.12496 (10)0.18665 (12)0.30963 (18)0.0502 (4)
H1A0.12220.11970.32970.060*
N20.19612 (10)0.24715 (12)0.38673 (19)0.0528 (4)
C80.26326 (12)0.19876 (15)0.4739 (2)0.0482 (5)
C20.01536 (12)0.16611 (13)0.1159 (2)0.0422 (4)
C70.05922 (12)0.23391 (14)0.2017 (2)0.0434 (5)
C90.27034 (12)0.08062 (15)0.4971 (2)0.0484 (5)
C60.10938 (12)0.00942 (15)0.0696 (2)0.0502 (5)
H60.12540.05700.10160.060*
C10.03865 (12)0.06532 (14)0.1631 (2)0.0431 (5)
C150.34002 (12)0.26687 (16)0.5508 (2)0.0520 (5)
C30.06406 (13)0.20669 (15)0.0252 (2)0.0521 (5)
H30.04960.27380.05700.063*
C160.34477 (13)0.37350 (16)0.5095 (2)0.0586 (6)
H160.29840.40330.43430.070*
C50.15573 (13)0.05148 (16)0.0693 (2)0.0577 (5)
H50.20290.01330.13090.069*
C170.41724 (15)0.43560 (19)0.5786 (3)0.0684 (6)
H170.41930.50680.54990.082*
C200.41002 (13)0.22566 (19)0.6647 (3)0.0659 (6)
H200.40810.15480.69510.079*
C40.13280 (14)0.15061 (16)0.1188 (2)0.0601 (6)
H40.16360.17850.21390.072*
C100.32717 (14)0.02240 (18)0.4281 (2)0.0635 (6)
H100.36090.05700.36850.076*
C140.22226 (14)0.02769 (16)0.5863 (3)0.0620 (6)
H140.18410.06580.63360.074*
C120.28481 (17)0.13853 (18)0.5365 (3)0.0733 (7)
H120.28910.21230.54890.088*
C130.23000 (16)0.08149 (18)0.6065 (3)0.0746 (7)
H130.19770.11630.66820.089*
C180.48636 (16)0.3929 (2)0.6896 (3)0.0767 (7)
H180.53560.43470.73480.092*
C110.33363 (16)0.08721 (19)0.4479 (3)0.0739 (7)
H110.37130.12620.40080.089*
C190.48253 (15)0.2882 (2)0.7335 (3)0.0791 (7)
H190.52880.25930.80980.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0607 (9)0.0447 (8)0.0559 (9)0.0078 (7)0.0078 (7)0.0078 (7)
O20.0594 (9)0.0384 (7)0.0623 (9)0.0028 (6)0.0021 (7)0.0022 (6)
N10.0429 (9)0.0383 (8)0.0611 (10)0.0037 (7)0.0043 (8)0.0002 (8)
N20.0446 (9)0.0491 (9)0.0586 (10)0.0067 (8)0.0000 (8)0.0011 (8)
C80.0404 (11)0.0523 (11)0.0488 (11)0.0012 (9)0.0042 (9)0.0004 (9)
C20.0399 (10)0.0395 (10)0.0448 (11)0.0032 (8)0.0056 (8)0.0019 (8)
C70.0413 (10)0.0396 (11)0.0472 (11)0.0028 (9)0.0059 (9)0.0006 (9)
C90.0382 (10)0.0516 (11)0.0494 (12)0.0018 (9)0.0011 (9)0.0013 (9)
C60.0461 (11)0.0439 (11)0.0562 (12)0.0032 (9)0.0038 (10)0.0039 (9)
C10.0422 (10)0.0405 (10)0.0433 (11)0.0032 (8)0.0034 (9)0.0025 (8)
C150.0426 (11)0.0608 (13)0.0500 (12)0.0057 (10)0.0055 (9)0.0017 (10)
C30.0526 (12)0.0480 (11)0.0514 (12)0.0015 (9)0.0038 (10)0.0028 (9)
C160.0492 (12)0.0623 (13)0.0614 (14)0.0066 (11)0.0078 (10)0.0012 (11)
C50.0510 (12)0.0580 (13)0.0564 (13)0.0049 (10)0.0025 (10)0.0116 (11)
C170.0616 (14)0.0704 (14)0.0731 (16)0.0205 (12)0.0156 (13)0.0029 (12)
C200.0542 (13)0.0691 (14)0.0652 (14)0.0085 (11)0.0041 (11)0.0014 (11)
C40.0604 (13)0.0600 (13)0.0493 (12)0.0007 (11)0.0078 (10)0.0012 (10)
C100.0580 (14)0.0745 (15)0.0561 (13)0.0080 (12)0.0096 (11)0.0011 (12)
C140.0535 (13)0.0533 (12)0.0791 (15)0.0034 (10)0.0157 (11)0.0031 (11)
C120.0687 (16)0.0562 (14)0.0826 (17)0.0063 (12)0.0065 (14)0.0007 (13)
C130.0647 (15)0.0598 (14)0.0981 (19)0.0009 (12)0.0170 (14)0.0087 (13)
C180.0557 (15)0.0946 (19)0.0743 (16)0.0265 (14)0.0043 (13)0.0112 (14)
C110.0684 (16)0.0753 (16)0.0708 (16)0.0239 (13)0.0021 (13)0.0180 (13)
C190.0538 (14)0.0948 (19)0.0756 (17)0.0127 (13)0.0108 (12)0.0011 (14)
Geometric parameters (Å, º) top
O1—C11.363 (2)C16—C171.378 (3)
O1—H10.8200C16—H160.9300
O2—C71.231 (2)C5—C41.389 (3)
N1—C71.352 (2)C5—H50.9300
N1—N21.373 (2)C17—C181.373 (3)
N1—H1A0.8600C17—H170.9300
N2—C81.285 (2)C20—C191.381 (3)
C8—C151.485 (3)C20—H200.9300
C8—C91.493 (3)C4—H40.9300
C2—C31.390 (3)C10—C111.384 (3)
C2—C11.402 (2)C10—H100.9300
C2—C71.483 (2)C14—C131.380 (3)
C9—C141.374 (3)C14—H140.9300
C9—C101.388 (3)C12—C131.362 (3)
C6—C51.371 (3)C12—C111.369 (3)
C6—C11.390 (3)C12—H120.9300
C6—H60.9300C13—H130.9300
C15—C201.388 (3)C18—C191.372 (3)
C15—C161.390 (3)C18—H180.9300
C3—C41.372 (3)C11—H110.9300
C3—H30.9300C19—H190.9300
C1—O1—H1109.5C6—C5—H5119.7
C7—N1—N2119.00 (15)C4—C5—H5119.7
C7—N1—H1A120.5C18—C17—C16120.4 (2)
N2—N1—H1A120.5C18—C17—H17119.8
C8—N2—N1118.12 (16)C16—C17—H17119.8
N2—C8—C15116.33 (17)C19—C20—C15121.1 (2)
N2—C8—C9124.85 (17)C19—C20—H20119.5
C15—C8—C9118.78 (16)C15—C20—H20119.5
C3—C2—C1118.30 (17)C3—C4—C5118.98 (19)
C3—C2—C7115.88 (16)C3—C4—H4120.5
C1—C2—C7125.80 (16)C5—C4—H4120.5
O2—C7—N1121.23 (17)C11—C10—C9119.9 (2)
O2—C7—C2120.69 (16)C11—C10—H10120.0
N1—C7—C2118.00 (16)C9—C10—H10120.0
C14—C9—C10118.84 (19)C9—C14—C13120.7 (2)
C14—C9—C8121.65 (17)C9—C14—H14119.7
C10—C9—C8119.51 (18)C13—C14—H14119.7
C5—C6—C1120.47 (18)C13—C12—C11119.9 (2)
C5—C6—H6119.8C13—C12—H12120.0
C1—C6—H6119.8C11—C12—H12120.0
O1—C1—C6121.44 (16)C12—C13—C14120.3 (2)
O1—C1—C2118.79 (16)C12—C13—H13119.9
C6—C1—C2119.76 (17)C14—C13—H13119.9
C20—C15—C16117.83 (19)C19—C18—C17119.7 (2)
C20—C15—C8121.03 (18)C19—C18—H18120.1
C16—C15—C8121.13 (18)C17—C18—H18120.1
C4—C3—C2121.93 (18)C12—C11—C10120.4 (2)
C4—C3—H3119.0C12—C11—H11119.8
C2—C3—H3119.0C10—C11—H11119.8
C17—C16—C15120.9 (2)C18—C19—C20120.1 (2)
C17—C16—H16119.6C18—C19—H19120.0
C15—C16—H16119.6C20—C19—H19120.0
C6—C5—C4120.55 (19)
C7—N1—N2—C8171.19 (17)C9—C8—C15—C16167.06 (18)
N1—N2—C8—C15177.98 (15)C1—C2—C3—C40.7 (3)
N1—N2—C8—C90.5 (3)C7—C2—C3—C4177.72 (17)
N2—N1—C7—O21.2 (3)C20—C15—C16—C170.7 (3)
N2—N1—C7—C2177.88 (15)C8—C15—C16—C17178.39 (18)
C3—C2—C7—O217.5 (3)C1—C6—C5—C40.1 (3)
C1—C2—C7—O2164.16 (17)C15—C16—C17—C180.2 (3)
C3—C2—C7—N1159.20 (16)C16—C15—C20—C190.7 (3)
C1—C2—C7—N119.1 (3)C8—C15—C20—C19178.36 (19)
N2—C8—C9—C1473.8 (3)C2—C3—C4—C51.6 (3)
C15—C8—C9—C14108.8 (2)C6—C5—C4—C31.2 (3)
N2—C8—C9—C10106.6 (2)C14—C9—C10—C110.9 (3)
C15—C8—C9—C1070.8 (2)C8—C9—C10—C11179.48 (19)
C5—C6—C1—O1180.00 (17)C10—C9—C14—C130.3 (3)
C5—C6—C1—C20.9 (3)C8—C9—C14—C13179.9 (2)
C3—C2—C1—O1179.66 (16)C11—C12—C13—C141.1 (4)
C7—C2—C1—O12.1 (3)C9—C14—C13—C120.8 (4)
C3—C2—C1—C60.5 (3)C16—C17—C18—C191.0 (4)
C7—C2—C1—C6178.80 (16)C13—C12—C11—C100.5 (4)
N2—C8—C15—C20170.39 (19)C9—C10—C11—C120.6 (3)
C9—C8—C15—C2012.0 (3)C17—C18—C19—C201.0 (4)
N2—C8—C15—C1610.6 (3)C15—C20—C19—C180.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.7204 (17)173
N1—H1A···O10.862.082.696 (2)128
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16N2O2
Mr316.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.4057 (18), 12.5179 (15), 8.8445 (10)
β (°) 103.777 (2)
V3)1656.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.988, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
8538, 2934, 1910
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.05
No. of reflections2934
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.7204 (17)173.0
N1—H1A···O10.862.082.696 (2)127.7
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y06–2–08).

References

First citationAnderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationJi, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds