organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,4,4-Tetra­methyl­piperazinediium dibromide

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 JY, Finland
*Correspondence e-mail: manu.lahtinen@jyu.fi

(Received 23 October 2009; accepted 28 October 2009; online 31 October 2009)

A small quantity of the title compound, C8H20N22+·2Br, was formed as a by-product in a reaction between a diamine and an alkyl bromide. The asymmetric unit contains half of a centrosymmetric dication and a bromide anion. In the crystal, weak inter­molecular C—H⋯Br hydrogen bonds consolidate the crystal packing.

Related literature

For a possible synthetic route, see Creighton & Taylor (1987[Creighton, J. L. & Taylor, M. J. (1987). Can. J. Chem. 65, 2526-2528.]). For related structures, see; Linden et al. (1999[Linden, A., Nugent, K. W., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 285, 122-128.], 2002[Linden, A., Petridis, A. & James, B. D. (2002). Acta Cryst. C58, m53-m55.]); Guo et al. (2007[Guo, H.-X., Wu, S.-Z., Cai, M.-S. & Yao, S.-S. (2007). Acta Cryst. E63, m2747.]).

[Scheme 1]

Experimental

Crystal data
  • C8H20N22+·2Br

  • Mr = 304.08

  • Monoclinic, P 21 /c

  • a = 5.8769 (12) Å

  • b = 8.4584 (17) Å

  • c = 11.200 (2) Å

  • β = 92.79 (3)°

  • V = 556.07 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.25 mm−1

  • T = 123 K

  • 0.24 × 0.16 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.296, Tmax = 0.390

  • 5032 measured reflections

  • 1370 independent reflections

  • 1223 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.11

  • 1370 reflections

  • 95 parameters

  • All H-atom parameters refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Br1i 0.96 (3) 2.88 (4) 3.816 (4) 165 (2)
C2—H2B⋯Br1 0.93 (3) 2.92 (4) 3.820 (4) 163 (2)
C2—H2C⋯Br1ii 0.98 (3) 2.83 (4) 3.770 (3) 161 (2)
C3—H3B⋯Br1iii 1.00 (3) 2.84 (3) 3.806 (4) 163 (2)
C4—H4A⋯Br1iv 0.93 (3) 2.92 (2) 3.566 (2) 127 (2)
C4—H4B⋯Br1ii 0.97 (3) 2.86 (5) 3.787 (2) 159 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Low quantity of the title compound (Fig. 1) was formed as a byproduct in a synthesis between a tetramethylethylenediamine (TMEDA) and ethoxyethylbromide. Most probably residues of dibromoethane existed as an impurity on either of the starting materials as it is known that piperazinium can be formed by reacting TMEDA and 1,2-dibromoethane. The compound has been recrystallized from acetonitrile/methanol solvent and its crystal structure is reported here.

The asymmetric unit consists of one anion and half a cation. The C—H···Br distances vary from 2.826 (30) to 2.924 (20) Å. In the crystal, cations are packed columnary along a axis forming at the same time layers along b axis. The bromide anions are analogously packed between the cation layers. The structure is stabilized by weak intermolecular C—H···Br interactions. Cation conformation of this compound is similar to those previously reported tetraiodidocadmate and pentabromothallate salts.

Related literature top

For a possible synthetic route, see Creighton & Taylor (1987). For related structures, see; Linden et al. (1999, 2002); Guo et al. (2007).

Experimental top

The compound was a byproduct from a reaction between tetramethylenediamine and ethoxyethylbromide. Few crystals suitable for a single-crystal structure determination recrystallized from an acetonitrile-methanol solution.

Refinement top

All H atoms were located from the difference map and refined isotropically.

Structure description top

Low quantity of the title compound (Fig. 1) was formed as a byproduct in a synthesis between a tetramethylethylenediamine (TMEDA) and ethoxyethylbromide. Most probably residues of dibromoethane existed as an impurity on either of the starting materials as it is known that piperazinium can be formed by reacting TMEDA and 1,2-dibromoethane. The compound has been recrystallized from acetonitrile/methanol solvent and its crystal structure is reported here.

The asymmetric unit consists of one anion and half a cation. The C—H···Br distances vary from 2.826 (30) to 2.924 (20) Å. In the crystal, cations are packed columnary along a axis forming at the same time layers along b axis. The bromide anions are analogously packed between the cation layers. The structure is stabilized by weak intermolecular C—H···Br interactions. Cation conformation of this compound is similar to those previously reported tetraiodidocadmate and pentabromothallate salts.

For a possible synthetic route, see Creighton & Taylor (1987). For related structures, see; Linden et al. (1999, 2002); Guo et al. (2007).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003); data reduction: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Left: The molecular structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering [symmetry code: (i) -x + 1, y + 1/2, -z + 3/2]. Right: Spacefill presentation of location of eight bromides around a single dication. Six of the anions belong to the neighboring ion pairs.
1,1,4,4-Tetramethylpiperazinediium dibromide top
Crystal data top
C8H20N22+·2BrF(000) = 304
Mr = 304.08Dx = 1.816 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8769 (12) ÅCell parameters from 3094 reflections
b = 8.4584 (17) Åθ = 0.4–28.3°
c = 11.200 (2) ŵ = 7.25 mm1
β = 92.79 (3)°T = 123 K
V = 556.07 (19) Å3Block, colourless
Z = 20.24 × 0.16 × 0.16 mm
Data collection top
Bruker Kappa APEXII
diffractometer
1370 independent reflections
Radiation source: fine-focus sealed tube1223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 28.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 67
Tmin = 0.296, Tmax = 0.390k = 1110
5032 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.061All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.322P]
where P = (Fo2 + 2Fc2)/3
1370 reflections(Δ/σ)max = 0.001
95 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C8H20N22+·2BrV = 556.07 (19) Å3
Mr = 304.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.8769 (12) ŵ = 7.25 mm1
b = 8.4584 (17) ÅT = 123 K
c = 11.200 (2) Å0.24 × 0.16 × 0.16 mm
β = 92.79 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
1370 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1223 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.390Rint = 0.032
5032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.061All H-atom parameters refined
S = 1.11Δρmax = 0.38 e Å3
1370 reflectionsΔρmin = 0.70 e Å3
95 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5241 (3)0.3260 (2)0.48286 (16)0.0111 (4)
C20.6413 (5)0.1983 (3)0.4148 (2)0.0146 (5)
C30.3697 (5)0.2474 (3)0.5693 (2)0.0155 (5)
C40.3920 (4)0.4292 (3)0.3948 (2)0.0120 (4)
C50.2945 (4)0.5749 (3)0.4538 (2)0.0117 (5)
Br10.89763 (4)0.01387 (3)0.702200 (19)0.01391 (10)
H2A0.524 (5)0.137 (3)0.374 (2)0.017 (7)*
H2B0.720 (5)0.138 (3)0.473 (2)0.013 (7)*
H2C0.733 (4)0.252 (3)0.356 (2)0.011 (6)*
H3A0.462 (5)0.186 (3)0.620 (2)0.019 (7)*
H3B0.292 (5)0.333 (3)0.614 (2)0.020 (7)*
H3C0.270 (5)0.190 (3)0.524 (3)0.021 (8)*
H4A0.272 (4)0.370 (3)0.360 (2)0.010 (6)*
H4B0.491 (5)0.456 (3)0.331 (2)0.010 (6)*
H5A0.182 (5)0.546 (3)0.519 (2)0.013 (7)*
H5B0.220 (4)0.637 (3)0.394 (2)0.005 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0101 (10)0.0108 (9)0.0122 (9)0.0002 (7)0.0004 (7)0.0004 (7)
C20.0186 (14)0.0101 (11)0.0149 (11)0.0019 (10)0.0000 (10)0.0024 (9)
C30.0157 (14)0.0142 (12)0.0168 (12)0.0011 (10)0.0034 (10)0.0033 (9)
C40.0128 (12)0.0105 (10)0.0122 (10)0.0004 (9)0.0029 (9)0.0010 (9)
C50.0116 (12)0.0095 (10)0.0137 (11)0.0019 (9)0.0034 (9)0.0011 (9)
Br10.01243 (16)0.01658 (15)0.01261 (14)0.00082 (9)0.00030 (9)0.00037 (8)
Geometric parameters (Å, º) top
N1—C41.505 (3)C3—H3B1.01 (3)
N1—C5i1.506 (3)C3—H3C0.90 (3)
N1—C21.507 (3)C4—C51.524 (3)
N1—C31.512 (3)C4—H4A0.93 (3)
C2—H2A0.96 (3)C4—H4B0.97 (3)
C2—H2B0.93 (3)C5—N1i1.506 (3)
C2—H2C0.99 (3)C5—H5A1.04 (3)
C3—H3A0.93 (3)C5—H5B0.94 (2)
C4—N1—C5i108.49 (18)N1—C3—H3C105.5 (18)
C4—N1—C2108.52 (17)H3A—C3—H3C113 (2)
C5i—N1—C2107.85 (18)H3B—C3—H3C112 (2)
C4—N1—C3111.58 (19)N1—C4—C5112.19 (18)
C5i—N1—C3112.09 (17)N1—C4—H4A108.5 (16)
C2—N1—C3108.19 (18)C5—C4—H4A108.6 (16)
N1—C2—H2A107.1 (16)N1—C4—H4B108.0 (16)
N1—C2—H2B105.1 (16)C5—C4—H4B112.5 (15)
H2A—C2—H2B111 (2)H4A—C4—H4B107 (2)
N1—C2—H2C106.7 (15)N1i—C5—C4112.47 (19)
H2A—C2—H2C109 (2)N1i—C5—H5A104.9 (15)
H2B—C2—H2C117 (2)C4—C5—H5A112.6 (15)
N1—C3—H3A106.8 (18)N1i—C5—H5B108.7 (15)
N1—C3—H3B107.6 (15)C4—C5—H5B108.2 (14)
H3A—C3—H3B112 (2)H5A—C5—H5B110 (2)
C5i—N1—C4—C555.1 (3)C3—N1—C4—C568.8 (2)
C2—N1—C4—C5172.1 (2)N1—C4—C5—N1i57.4 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br1ii0.96 (3)2.88 (4)3.816 (4)165 (2)
C2—H2B···Br10.93 (3)2.92 (4)3.820 (4)163 (2)
C2—H2C···Br1iii0.98 (3)2.83 (4)3.770 (3)161 (2)
C3—H3B···Br1iv1.00 (3)2.84 (3)3.806 (4)163 (2)
C4—H4A···Br1v0.93 (3)2.92 (2)3.566 (2)127 (2)
C4—H4B···Br1iii0.97 (3)2.86 (5)3.787 (2)159 (2)
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2; (v) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H20N22+·2Br
Mr304.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)5.8769 (12), 8.4584 (17), 11.200 (2)
β (°) 92.79 (3)
V3)556.07 (19)
Z2
Radiation typeMo Kα
µ (mm1)7.25
Crystal size (mm)0.24 × 0.16 × 0.16
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.296, 0.390
No. of measured, independent and
observed [I > 2σ(I)] reflections
5032, 1370, 1223
Rint0.032
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.11
No. of reflections1370
No. of parameters95
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.70

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br1i0.96 (3)2.88 (4)3.816 (4)165 (2)
C2—H2B···Br10.93 (3)2.92 (4)3.820 (4)163 (2)
C2—H2C···Br1ii0.98 (3)2.83 (4)3.770 (3)161 (2)
C3—H3B···Br1iii1.00 (3)2.84 (3)3.806 (4)163 (2)
C4—H4A···Br1iv0.93 (3)2.92 (2)3.566 (2)127 (2)
C4—H4B···Br1ii0.97 (3)2.86 (5)3.787 (2)159 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x1, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Inorganic Materials Chemistry Graduate Program and the Magnus Ehrnrooth Foundation for financial support.

References

First citationCreighton, J. L. & Taylor, M. J. (1987). Can. J. Chem. 65, 2526–2528.  CrossRef CAS Web of Science Google Scholar
First citationGuo, H.-X., Wu, S.-Z., Cai, M.-S. & Yao, S.-S. (2007). Acta Cryst. E63, m2747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Nugent, K. W., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 285, 122–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationLinden, A., Petridis, A. & James, B. D. (2002). Acta Cryst. C58, m53–m55.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds