organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-phenyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 September 2009; accepted 28 September 2009; online 3 October 2009)

In the title compound, C20H13BrO2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent are located on opposite sides of the plane of the benzofuran system. The S-bound phenyl ring is almost perpendicular to this plane [80.35 (8)°]. The phenyl ring in the 2-position is twisted with respect to the benzofuran plane, making a dihedral angle of 16.0 (1)°.

Related literature

For the crystal structures of similar 5-halo-2-phenyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1809.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1958.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products involving a benzofuran ring system, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Reuss & König (2004[Reuss, S. H. & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13BrO2S

  • Mr = 397.27

  • Triclinic, [P \overline 1]

  • a = 8.2670 (1) Å

  • b = 9.5233 (2) Å

  • c = 11.8663 (2) Å

  • α = 72.187 (1)°

  • β = 80.772 (1)°

  • γ = 69.526 (1)°

  • V = 831.76 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.61 mm−1

  • T = 293 K

  • 0.35 × 0.22 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.462, Tmax = 0.763

  • 13542 measured reflections

  • 3275 independent reflections

  • 2716 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.05

  • 3275 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing benzofuran moiety have received much attenttion in the field of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999), and these compounds are ubiquitous in nature (Akgul & Anil, 2003; Reuss & König, 2004). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b), we present the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.010 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran unit and the plane of 2-phenyl ring is 16.0 (1)°. The phenyl ring (C15-C20) is almost perpendicular to the plane of the benzofuran unit [80.35 (8)°].

Related literature top

For the crystal structures of similar 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products involving a benzofuran ring system, see: Akgul & Anil (2003); Reuss & König (2004).

Experimental top

77% 3-Chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-2-phenyl-3-phenylsulfanyl-1-benzofuran (343 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2 : 1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 417-418 K; Rf = 0.56 (hexane-ethyl acetate, 2 : 1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were fixed geometrically and treated as riding with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C)

Structure description top

Molecules containing benzofuran moiety have received much attenttion in the field of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999), and these compounds are ubiquitous in nature (Akgul & Anil, 2003; Reuss & König, 2004). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b), we present the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.010 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran unit and the plane of 2-phenyl ring is 16.0 (1)°. The phenyl ring (C15-C20) is almost perpendicular to the plane of the benzofuran unit [80.35 (8)°].

For the crystal structures of similar 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products involving a benzofuran ring system, see: Akgul & Anil (2003); Reuss & König (2004).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii.
5-Bromo-2-phenyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C20H13BrO2SZ = 2
Mr = 397.27F(000) = 400
Triclinic, P1Dx = 1.586 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2670 (1) ÅCell parameters from 5885 reflections
b = 9.5233 (2) Åθ = 2.4–26.0°
c = 11.8663 (2) ŵ = 2.61 mm1
α = 72.187 (1)°T = 293 K
β = 80.772 (1)°Block, colorless
γ = 69.526 (1)°0.35 × 0.22 × 0.11 mm
V = 831.76 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
3275 independent reflections
Radiation source: fine-focus sealed tube2716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.8°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1111
Tmin = 0.462, Tmax = 0.763l = 1414
13542 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3341P]
where P = (Fo2 + 2Fc2)/3
3275 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C20H13BrO2Sγ = 69.526 (1)°
Mr = 397.27V = 831.76 (2) Å3
Triclinic, P1Z = 2
a = 8.2670 (1) ÅMo Kα radiation
b = 9.5233 (2) ŵ = 2.61 mm1
c = 11.8663 (2) ÅT = 293 K
α = 72.187 (1)°0.35 × 0.22 × 0.11 mm
β = 80.772 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3275 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2716 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.763Rint = 0.030
13542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
3275 reflectionsΔρmin = 0.59 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1.01046 (4)0.24078 (4)0.38069 (3)0.07875 (15)
S0.60607 (8)0.10785 (7)0.86253 (6)0.05063 (17)
O10.5011 (2)0.56165 (18)0.71087 (15)0.0552 (4)
O20.7801 (2)0.0093 (2)0.8283 (2)0.0760 (6)
C10.5823 (3)0.3012 (2)0.7751 (2)0.0453 (5)
C20.6714 (3)0.3415 (3)0.6609 (2)0.0470 (5)
C30.7888 (3)0.2607 (3)0.5871 (2)0.0516 (6)
H30.82690.15250.60700.062*
C40.8466 (3)0.3472 (3)0.4831 (2)0.0566 (6)
C50.7910 (4)0.5094 (3)0.4506 (3)0.0655 (7)
H50.83380.56320.37960.079*
C60.6738 (4)0.5895 (3)0.5225 (3)0.0645 (7)
H60.63430.69780.50170.077*
C70.6166 (3)0.5035 (3)0.6272 (2)0.0518 (6)
C80.4830 (3)0.4365 (3)0.8020 (2)0.0486 (5)
C90.3645 (3)0.4760 (3)0.9012 (2)0.0505 (6)
C100.3612 (4)0.3686 (3)1.0094 (3)0.0660 (7)
H100.43650.26721.02070.079*
C110.2474 (4)0.4101 (4)1.1009 (3)0.0750 (8)
H110.24690.33631.17350.090*
C120.1352 (4)0.5581 (4)1.0866 (3)0.0768 (9)
H120.05810.58501.14870.092*
C130.1375 (5)0.6667 (4)0.9799 (3)0.0868 (10)
H130.06220.76800.96960.104*
C140.2507 (4)0.6265 (3)0.8877 (3)0.0732 (8)
H140.25110.70110.81560.088*
C150.4515 (3)0.0742 (2)0.7931 (2)0.0455 (5)
C160.5017 (4)0.0001 (3)0.7038 (3)0.0647 (7)
H160.61700.03070.67620.078*
C170.3767 (6)0.0275 (4)0.6558 (3)0.0833 (10)
H170.40820.07780.59590.100*
C180.2085 (5)0.0188 (4)0.6965 (4)0.0836 (10)
H180.12540.00150.66290.100*
C190.1600 (4)0.0901 (4)0.7856 (4)0.0791 (10)
H190.04450.12000.81290.095*
C200.2804 (3)0.1180 (3)0.8351 (3)0.0592 (6)
H200.24740.16590.89640.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0790 (2)0.0939 (3)0.0630 (2)0.03538 (18)0.01864 (16)0.02325 (17)
S0.0434 (3)0.0442 (3)0.0520 (4)0.0148 (2)0.0066 (3)0.0070 (2)
O10.0669 (11)0.0419 (8)0.0506 (10)0.0212 (8)0.0008 (8)0.0010 (7)
O20.0417 (10)0.0554 (10)0.1019 (16)0.0060 (8)0.0054 (10)0.0088 (10)
C10.0446 (12)0.0424 (11)0.0450 (13)0.0191 (9)0.0066 (10)0.0017 (9)
C20.0452 (12)0.0475 (12)0.0462 (13)0.0220 (10)0.0059 (10)0.0002 (10)
C30.0468 (13)0.0515 (13)0.0524 (14)0.0201 (10)0.0030 (11)0.0034 (11)
C40.0540 (14)0.0659 (15)0.0496 (15)0.0267 (12)0.0013 (11)0.0085 (12)
C50.0774 (19)0.0670 (17)0.0487 (15)0.0372 (15)0.0034 (13)0.0020 (13)
C60.0787 (19)0.0507 (14)0.0568 (16)0.0289 (13)0.0025 (14)0.0045 (12)
C70.0548 (14)0.0484 (12)0.0489 (14)0.0222 (11)0.0026 (11)0.0022 (10)
C80.0516 (13)0.0473 (12)0.0438 (13)0.0214 (10)0.0071 (10)0.0008 (10)
C90.0501 (13)0.0527 (13)0.0490 (14)0.0208 (11)0.0042 (11)0.0085 (11)
C100.0787 (19)0.0550 (15)0.0548 (16)0.0188 (13)0.0048 (14)0.0090 (12)
C110.088 (2)0.0731 (19)0.0537 (17)0.0271 (17)0.0110 (15)0.0100 (14)
C120.0691 (19)0.088 (2)0.070 (2)0.0255 (17)0.0152 (15)0.0269 (17)
C130.077 (2)0.0691 (19)0.089 (3)0.0030 (16)0.0095 (18)0.0164 (18)
C140.0709 (19)0.0611 (16)0.0660 (19)0.0098 (14)0.0026 (15)0.0036 (14)
C150.0445 (12)0.0335 (10)0.0491 (13)0.0121 (9)0.0008 (10)0.0006 (9)
C160.0687 (17)0.0482 (13)0.0679 (18)0.0157 (12)0.0089 (14)0.0125 (12)
C170.127 (3)0.0537 (16)0.078 (2)0.0311 (19)0.018 (2)0.0209 (15)
C180.090 (3)0.0569 (17)0.112 (3)0.0276 (17)0.037 (2)0.0142 (18)
C190.0525 (17)0.0681 (18)0.116 (3)0.0219 (14)0.0125 (17)0.0174 (19)
C200.0474 (14)0.0579 (14)0.0708 (18)0.0168 (11)0.0004 (12)0.0174 (13)
Geometric parameters (Å, º) top
Br—C41.899 (3)C10—C111.377 (4)
S—O21.489 (2)C10—H100.9300
S—C11.775 (2)C11—C121.366 (5)
S—C151.789 (2)C11—H110.9300
O1—C71.366 (3)C12—C131.371 (5)
O1—C81.377 (3)C12—H120.9300
C1—C81.365 (4)C13—C141.377 (5)
C1—C21.444 (3)C13—H130.9300
C2—C31.385 (4)C14—H140.9300
C2—C71.391 (3)C15—C161.379 (4)
C3—C41.376 (3)C15—C201.383 (3)
C3—H30.9300C16—C171.390 (5)
C4—C51.393 (4)C16—H160.9300
C5—C61.366 (4)C17—C181.359 (5)
C5—H50.9300C17—H170.9300
C6—C71.378 (4)C18—C191.361 (5)
C6—H60.9300C18—H180.9300
C8—C91.459 (4)C19—C201.370 (4)
C9—C101.379 (4)C19—H190.9300
C9—C141.389 (4)C20—H200.9300
O2—S—C1106.63 (11)C11—C10—H10119.7
O2—S—C15106.87 (13)C9—C10—H10119.7
C1—S—C1597.41 (10)C12—C11—C10120.9 (3)
C7—O1—C8107.23 (18)C12—C11—H11119.6
C8—C1—C2107.74 (19)C10—C11—H11119.6
C8—C1—S127.74 (19)C11—C12—C13119.3 (3)
C2—C1—S124.50 (18)C11—C12—H12120.3
C3—C2—C7119.5 (2)C13—C12—H12120.3
C3—C2—C1136.0 (2)C12—C13—C14120.3 (3)
C7—C2—C1104.5 (2)C12—C13—H13119.9
C4—C3—C2117.2 (2)C14—C13—H13119.9
C4—C3—H3121.4C13—C14—C9120.8 (3)
C2—C3—H3121.4C13—C14—H14119.6
C3—C4—C5122.7 (3)C9—C14—H14119.6
C3—C4—Br118.6 (2)C16—C15—C20120.5 (3)
C5—C4—Br118.8 (2)C16—C15—S121.3 (2)
C6—C5—C4120.3 (2)C20—C15—S118.1 (2)
C6—C5—H5119.9C15—C16—C17118.8 (3)
C4—C5—H5119.9C15—C16—H16120.6
C5—C6—C7117.3 (2)C17—C16—H16120.6
C5—C6—H6121.4C18—C17—C16120.1 (3)
C7—C6—H6121.4C18—C17—H17120.0
O1—C7—C6126.1 (2)C16—C17—H17120.0
O1—C7—C2110.8 (2)C17—C18—C19120.9 (3)
C6—C7—C2123.0 (3)C17—C18—H18119.5
C1—C8—O1109.7 (2)C19—C18—H18119.5
C1—C8—C9135.1 (2)C18—C19—C20120.3 (3)
O1—C8—C9115.3 (2)C18—C19—H19119.8
C10—C9—C14118.1 (3)C20—C19—H19119.8
C10—C9—C8122.2 (2)C19—C20—C15119.3 (3)
C14—C9—C8119.6 (2)C19—C20—H20120.3
C11—C10—C9120.6 (3)C15—C20—H20120.3
O2—S—C1—C8152.9 (2)C7—O1—C8—C11.4 (3)
C15—S—C1—C896.9 (2)C7—O1—C8—C9179.5 (2)
O2—S—C1—C225.7 (2)C1—C8—C9—C1016.4 (5)
C15—S—C1—C284.4 (2)O1—C8—C9—C10164.9 (2)
C8—C1—C2—C3179.1 (3)C1—C8—C9—C14163.9 (3)
S—C1—C2—C30.2 (4)O1—C8—C9—C1414.8 (4)
C8—C1—C2—C70.1 (3)C14—C9—C10—C110.3 (5)
S—C1—C2—C7178.80 (18)C8—C9—C10—C11180.0 (3)
C7—C2—C3—C40.5 (4)C9—C10—C11—C120.1 (5)
C1—C2—C3—C4178.4 (3)C10—C11—C12—C130.6 (6)
C2—C3—C4—C50.4 (4)C11—C12—C13—C140.6 (6)
C2—C3—C4—Br179.02 (18)C12—C13—C14—C90.1 (6)
C3—C4—C5—C60.3 (4)C10—C9—C14—C130.3 (5)
Br—C4—C5—C6179.7 (2)C8—C9—C14—C13179.9 (3)
C4—C5—C6—C70.8 (4)O2—S—C15—C1614.1 (2)
C8—O1—C7—C6178.7 (3)C1—S—C15—C1695.8 (2)
C8—O1—C7—C21.5 (3)O2—S—C15—C20162.89 (18)
C5—C6—C7—O1179.6 (3)C1—S—C15—C2087.2 (2)
C5—C6—C7—C20.7 (4)C20—C15—C16—C170.9 (4)
C3—C2—C7—O1179.8 (2)S—C15—C16—C17177.9 (2)
C1—C2—C7—O11.0 (3)C15—C16—C17—C180.3 (4)
C3—C2—C7—C60.0 (4)C16—C17—C18—C191.2 (5)
C1—C2—C7—C6179.2 (3)C17—C18—C19—C200.7 (5)
C2—C1—C8—O10.9 (3)C18—C19—C20—C150.5 (5)
S—C1—C8—O1179.67 (17)C16—C15—C20—C191.3 (4)
C2—C1—C8—C9179.6 (3)S—C15—C20—C19178.4 (2)
S—C1—C8—C91.6 (4)

Experimental details

Crystal data
Chemical formulaC20H13BrO2S
Mr397.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2670 (1), 9.5233 (2), 11.8663 (2)
α, β, γ (°)72.187 (1), 80.772 (1), 69.526 (1)
V3)831.76 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.61
Crystal size (mm)0.35 × 0.22 × 0.11
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.462, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
13542, 3275, 2716
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.05
No. of reflections3275
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.59

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReuss, S. H. & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds