organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,4S,5S,8R)-8-Nitro­­oxy-2,6-dioxa­bi­cyclo­[3.3.0]octan-4-yl 3,4,5-tri­acet­oxy­benzoate

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032, Xi-An, People's Republic of China
*Correspondence e-mail: xiaoli_sun@yahoo.cn

(Received 9 October 2009; accepted 15 October 2009; online 23 October 2009)

In the title compound, C19H19NO13, one of the two fused furan­ose rings adopts an envelope conformation whereas the other displays a twisted conformation. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions between a methine H atom and the triacetoxy­phenyl ring of an adjacent mol­ecule, and by weak non-classical inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Velazquez et al. (2007[Velazquez, C. A., Rao, P., Citro, M. L., Keefer, L. K. & Knaus, E. E. (2007). Bioorg. Med. Chem. 15, 4767-4774.]), Calmès et al.(2003[Calmès, M., Escale, F., Rolland, M. & Martinez, J. (2003). Tetrahedron Asymmetry, 14, 1685-1689.]). For related structures, see: Ezhilmuthu et al. (2008[Ezhilmuthu, R. P., Vembu, N. & Sulochana, N. (2008). Acta Cryst. E64, o1306-o1307.]). For the bioactivity of the title compound, see: Rigas & Williams (2008[Rigas, B. & Williams, J. L. (2008). Nitric Oxide, 19, 199-204.]); Carini et al. (2002[Carini, M., Aldini, G., Orioli, M. & Maffei, F. R. (2002). J. Pharm. Biomed. Anal. 29, 1061-1071.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). For the determination of the absolute structure, see: van Koningsveld et al. (1984[Koningsveld, H. van, Peters, J. A. & Jansen, J. C. (1984). Acta Cryst. C40, 519-521.]); Brown et al. (2000[Brown, C. Marston, R. W., Quigley, P. F. & Roberts, S. M. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1809-1810.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO13

  • Mr = 469.35

  • Monoclinic, P 21

  • a = 10.8053 (19) Å

  • b = 6.5941 (12) Å

  • c = 16.075 (3) Å

  • β = 108.243 (3)°

  • V = 1087.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.31 × 0.25 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.983

  • 5474 measured reflections

  • 2112 independent reflections

  • 1394 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.02

  • 2112 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.98 2.56 3.365 (13) 139
C4—H4⋯O42ii 0.98 2.53 3.507 (15) 177
C43—H43⋯O11i 0.93 2.51 3.25 (3) 136
C47—H47⋯O42iii 0.93 2.52 3.314 (14) 144
C11—H11B⋯O83iv 0.96 2.52 3.39 (3) 151
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) [-x, y-{\script{1\over 2}}, -z]; (iv) x+1, y-1, z. Cg1 is the centroid of the C42–C47 phenyl ring.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is synthesized by esterification of 3,4,5-triacetoxybenzoic acid with Isosorbide Mononitrate.It can be rapidly metabolized to 3,4,5-trihydroxybenzoic acid and Isosorbide Mononitrate in vivo(Carini et al.,2002). 3,4,5-trihydroxybenzoic acid is a bioactivesubstance which can scavenge oxygen free radicals and Isosorbide Mononitrate is a classical nitric oxide-donor drug. This bifunctional molecule may have better bioactivity but do bring fewer side effect.

The molecule is built up from the isosorbide mononitrate skeleton substituted on C4 by the 3,4,5-triacetoxybenzoate (Fig. 1). The two fused furanose rings have slightly different conformation. Indeed, the Cremer & Pople (1975) puckering parameters for the C1-O2-C3-C4-C5 ring are Q(2) = 0.359 (4)Å and φ(2) = 289.1 (6)° whereas those for the C5-O6-C7-C8-C1 ring are Q(2) = 0.334 (4)Å and φ(2) = 343.4 (7)°. These values indicate that these two rings have different extent of puckering caused by the different substituent group in the ring. The pseudorotation parameters (Rao et al. 1981) for C1-O2-C3-C4-C5 ring are P = 20.8 (4)° & τ(M) = 37.3 (2)° for the C5—C4 reference bond with the closest pucker descriptor being enveloped on C(4) and those for C5-O6-C7-C8-C1 ring are P = 75.4 (4)° and τ(M) = 35.7 (3)° for the C8—C1 reference bond with the closest puckering descriptor being twisted on C5—O6.

Owing to the know absolute configuration of the starting isosorbide mononitrate, the absolute configuration of the title compound could be deduced to be 1S,4S,5S,8R.

The molecular packing is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds and by intermolecular C–H···π interaction between methine H atom of perhydrofurofuranyl system and the triacetoxyphenyl ring of an adjacent molecule (Table 1, Cg1 is the centroid of C42—C47 phenyl ring).

Related literature top

For the preparation of the title compound, see: Velazquez et al. (2007), Calmès et al.(2003). For related structures, see: Ezhilmuthu et al. (2008). For the bioactivity of the title compound, see: Rigas & Williams (2008); Carini et al. (2002). For puckering parameters, see: Cremer & Pople (1975); Rao et al. (1981). For the determination of the absolute structure, see: Van Koningsveld et al. (1984); Brown et al. (2000).

Cg1 is the centroid of the C42–C47 phenyl ring.

Experimental top

3,4,5-triacetoxybenzoic acid(2.96 g, 10 mmol), Isosorbide Mononitrate (1.91 g, 10 mmol, CAS No:16051–77-7, [α]D=168 ° (c=1.0, EtOH) and DMAP (0.24 g, 1 mmol) were dissolved in 100 ml dry THF, then DCC (4.12 g, 10 mmol) was added to the solution at 0°C. The mixture was stirred at room temperature for 5 h. The resulting mixture was filtered and concentrated in vacuo. The crude product was purified by column chromatography over silica gelusing ethyl acetate/n-hexane (7:3) as eluent. Yield: 4.21 g (85%). Single crystals of the title compound suitable for X-ray diffraction was recrystallized from hexane/ethyl acetate (1:1).

Refinement top

All H atoms were positioned geometrically and treated as riding with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97Å & methyl C—H = 0.96 Å. The H atom isotropic displacement parameters were fixed; Uiso(aromatic H, methine H) = 1.2 times Ueq of the parent atom; Uiso(methylene H, methyl H) = 1.5 times Ueq of the parent atom.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed. The enantiomer has been assigned by reference to unchanging chiral centres in the synthetic procedure.

Structure description top

The title compound is synthesized by esterification of 3,4,5-triacetoxybenzoic acid with Isosorbide Mononitrate.It can be rapidly metabolized to 3,4,5-trihydroxybenzoic acid and Isosorbide Mononitrate in vivo(Carini et al.,2002). 3,4,5-trihydroxybenzoic acid is a bioactivesubstance which can scavenge oxygen free radicals and Isosorbide Mononitrate is a classical nitric oxide-donor drug. This bifunctional molecule may have better bioactivity but do bring fewer side effect.

The molecule is built up from the isosorbide mononitrate skeleton substituted on C4 by the 3,4,5-triacetoxybenzoate (Fig. 1). The two fused furanose rings have slightly different conformation. Indeed, the Cremer & Pople (1975) puckering parameters for the C1-O2-C3-C4-C5 ring are Q(2) = 0.359 (4)Å and φ(2) = 289.1 (6)° whereas those for the C5-O6-C7-C8-C1 ring are Q(2) = 0.334 (4)Å and φ(2) = 343.4 (7)°. These values indicate that these two rings have different extent of puckering caused by the different substituent group in the ring. The pseudorotation parameters (Rao et al. 1981) for C1-O2-C3-C4-C5 ring are P = 20.8 (4)° & τ(M) = 37.3 (2)° for the C5—C4 reference bond with the closest pucker descriptor being enveloped on C(4) and those for C5-O6-C7-C8-C1 ring are P = 75.4 (4)° and τ(M) = 35.7 (3)° for the C8—C1 reference bond with the closest puckering descriptor being twisted on C5—O6.

Owing to the know absolute configuration of the starting isosorbide mononitrate, the absolute configuration of the title compound could be deduced to be 1S,4S,5S,8R.

The molecular packing is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds and by intermolecular C–H···π interaction between methine H atom of perhydrofurofuranyl system and the triacetoxyphenyl ring of an adjacent molecule (Table 1, Cg1 is the centroid of C42—C47 phenyl ring).

For the preparation of the title compound, see: Velazquez et al. (2007), Calmès et al.(2003). For related structures, see: Ezhilmuthu et al. (2008). For the bioactivity of the title compound, see: Rigas & Williams (2008); Carini et al. (2002). For puckering parameters, see: Cremer & Pople (1975); Rao et al. (1981). For the determination of the absolute structure, see: Van Koningsveld et al. (1984); Brown et al. (2000).

Cg1 is the centroid of the C42–C47 phenyl ring.

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,4S,5S,8R)-8-Nitrooxy-2,6- dioxabicyclo[3.3.0]octan-4-yl 3,4,5-triacetoxybenzoate top
Crystal data top
C19H19NO13F(000) = 488
Mr = 469.35Dx = 1.433 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1117 reflections
a = 10.8053 (19) Åθ = 2.7–19.9°
b = 6.5941 (12) ŵ = 0.12 mm1
c = 16.075 (3) ÅT = 296 K
β = 108.243 (3)°Block, colorless
V = 1087.8 (3) Å30.31 × 0.25 × 0.14 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2112 independent reflections
Radiation source: fine-focus sealed tube1394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.962, Tmax = 0.983k = 77
5474 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0523P)2]
where P = (Fo2 + 2Fc2)/3
2112 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C19H19NO13V = 1087.8 (3) Å3
Mr = 469.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.8053 (19) ŵ = 0.12 mm1
b = 6.5941 (12) ÅT = 296 K
c = 16.075 (3) Å0.31 × 0.25 × 0.14 mm
β = 108.243 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2112 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1394 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.983Rint = 0.023
5474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
2112 reflectionsΔρmin = 0.14 e Å3
301 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0658 (8)0.548 (4)0.4472 (4)0.1120 (17)
O20.0166 (3)0.369 (4)0.28660 (18)0.0708 (8)
O60.0245 (3)0.779 (4)0.21440 (17)0.0650 (8)
O80.5258 (2)0.138 (4)0.32531 (17)0.0659 (8)
O90.3795 (4)0.169 (4)0.39702 (18)0.0954 (12)
O100.5277 (3)0.439 (4)0.20426 (18)0.0688 (8)
O110.4726 (3)0.581 (4)0.3144 (2)0.0781 (9)
O120.3201 (3)0.487 (4)0.05899 (17)0.0737 (8)
O130.3616 (5)0.318 (4)0.0486 (2)0.1167 (14)
O410.1465 (2)0.293 (4)0.17708 (15)0.0585 (7)
O420.0434 (3)0.151 (4)0.04764 (18)0.0826 (10)
O810.0735 (3)0.671 (4)0.37604 (19)0.0816 (9)
O820.0378 (6)0.480 (4)0.4869 (3)0.158 (2)
O830.1700 (6)0.521 (4)0.4569 (4)0.172 (2)
C10.0854 (4)0.513 (4)0.3148 (2)0.0605 (11)
H10.16560.44960.35200.073*
C30.0643 (4)0.367 (4)0.1932 (3)0.0649 (11)
H3A0.14030.45330.17190.078*
H3B0.08760.23030.17150.078*
C40.0463 (4)0.446 (4)0.1642 (2)0.0565 (10)
H40.01750.50080.10460.068*
C50.1061 (4)0.605 (4)0.2330 (2)0.0548 (10)
H50.19750.63480.23950.066*
C70.0305 (6)0.868 (4)0.2950 (3)0.0952 (17)
H7A0.04960.94040.28990.114*
H7B0.10250.96300.31300.114*
C80.0497 (5)0.700 (4)0.3605 (3)0.0670 (11)
H80.11900.73220.41490.080*
C100.4899 (5)0.151 (4)0.3995 (3)0.0729 (13)
C110.6060 (5)0.142 (4)0.4792 (3)0.112 (2)
H11A0.62130.00440.49910.168*
H11B0.68080.19210.46550.168*
H11C0.59100.22430.52440.168*
C120.5425 (4)0.574 (4)0.2703 (3)0.0662 (12)
C130.6544 (4)0.711 (4)0.2740 (3)0.0902 (15)
H13A0.66820.80330.32230.135*
H13B0.73150.63130.28170.135*
H13C0.63530.78650.22040.135*
C140.3353 (5)0.473 (4)0.0211 (3)0.0778 (14)
C150.3109 (6)0.673 (4)0.0662 (3)0.1031 (18)
H15A0.32500.66200.12210.155*
H15B0.22250.71370.07450.155*
H15C0.36930.77210.03110.155*
C410.1323 (4)0.151 (4)0.1152 (2)0.0600 (11)
C420.2370 (4)0.002 (4)0.1410 (2)0.0518 (9)
C430.3335 (4)0.005 (4)0.2218 (2)0.0544 (10)
H430.33480.11030.26050.065*
C440.4267 (4)0.144 (4)0.2443 (2)0.0535 (10)
C450.4261 (4)0.300 (4)0.1875 (2)0.0577 (10)
C460.3280 (4)0.310 (4)0.1084 (2)0.0567 (10)
C470.2337 (4)0.165 (4)0.0849 (2)0.0576 (10)
H470.16750.17450.03160.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.154 (5)0.100 (4)0.110 (4)0.009 (4)0.083 (4)0.021 (3)
O20.100 (2)0.0474 (17)0.0766 (19)0.0117 (17)0.0451 (17)0.0010 (16)
O60.087 (2)0.0495 (16)0.0616 (16)0.0065 (16)0.0272 (14)0.0106 (14)
O80.0588 (16)0.0684 (19)0.0611 (16)0.0001 (15)0.0055 (14)0.0052 (16)
O90.086 (2)0.139 (3)0.0596 (17)0.009 (3)0.0203 (17)0.007 (2)
O100.0723 (19)0.074 (2)0.0657 (17)0.0082 (17)0.0301 (15)0.0047 (16)
O110.092 (2)0.069 (2)0.0833 (19)0.0089 (18)0.0409 (18)0.0031 (18)
O120.099 (2)0.0669 (19)0.0561 (16)0.0005 (19)0.0261 (15)0.0150 (16)
O130.169 (4)0.120 (4)0.081 (2)0.016 (4)0.067 (3)0.010 (3)
O410.0613 (16)0.0570 (17)0.0504 (15)0.0048 (15)0.0076 (12)0.0069 (14)
O420.097 (2)0.077 (2)0.0528 (15)0.0207 (19)0.0076 (16)0.0134 (17)
O810.093 (2)0.074 (2)0.0826 (19)0.0111 (19)0.0350 (18)0.002 (2)
O820.174 (5)0.188 (6)0.125 (4)0.050 (5)0.064 (4)0.085 (4)
O830.195 (5)0.151 (5)0.233 (6)0.010 (5)0.161 (5)0.039 (5)
C10.073 (3)0.057 (3)0.050 (2)0.010 (3)0.0168 (19)0.008 (2)
C30.054 (2)0.052 (2)0.082 (3)0.001 (2)0.012 (2)0.004 (2)
C40.061 (2)0.056 (2)0.047 (2)0.005 (2)0.0093 (19)0.0003 (19)
C50.062 (2)0.051 (2)0.051 (2)0.001 (2)0.0169 (19)0.0018 (19)
C70.156 (5)0.059 (3)0.085 (3)0.019 (4)0.059 (3)0.001 (3)
C80.083 (3)0.060 (3)0.060 (2)0.005 (2)0.026 (2)0.001 (2)
C100.078 (3)0.078 (3)0.055 (3)0.004 (3)0.009 (2)0.011 (2)
C110.091 (3)0.160 (6)0.063 (3)0.019 (4)0.008 (3)0.013 (4)
C120.071 (3)0.057 (3)0.071 (3)0.016 (2)0.023 (2)0.008 (2)
C130.069 (3)0.074 (3)0.132 (4)0.013 (3)0.036 (3)0.014 (3)
C140.077 (3)0.099 (4)0.056 (3)0.009 (3)0.018 (2)0.021 (3)
C150.114 (4)0.109 (5)0.083 (3)0.006 (4)0.026 (3)0.038 (4)
C410.082 (3)0.052 (3)0.044 (2)0.001 (2)0.017 (2)0.001 (2)
C420.061 (2)0.048 (2)0.045 (2)0.001 (2)0.0135 (18)0.0041 (19)
C430.066 (2)0.047 (2)0.049 (2)0.008 (2)0.0159 (19)0.0077 (19)
C440.052 (2)0.057 (3)0.048 (2)0.005 (2)0.0107 (18)0.007 (2)
C450.059 (2)0.061 (3)0.056 (2)0.006 (2)0.021 (2)0.006 (2)
C460.072 (3)0.054 (2)0.046 (2)0.006 (2)0.021 (2)0.010 (2)
C470.071 (3)0.057 (3)0.0437 (19)0.004 (2)0.0153 (19)0.005 (2)
Geometric parameters (Å, º) top
O2—C11.42 (3)C14—C151.49 (3)
O2—C31.427 (5)C41—C421.48 (3)
O6—C51.42 (3)C42—C431.389 (5)
O6—C71.405 (16)C42—C471.40 (3)
O8—C101.367 (6)C43—C441.37 (3)
O8—C441.404 (4)C44—C451.37 (3)
O9—C101.187 (8)C45—C461.379 (5)
O10—C121.36 (2)C46—C471.36 (3)
O10—C451.39 (2)C1—H10.9800
O11—C121.188 (6)C3—H3A0.9700
O12—C141.351 (6)C3—H3B0.9700
O12—C461.40 (3)C4—H40.9800
O13—C141.18 (3)C5—H50.9800
O41—C41.45 (3)C7—H7A0.9700
O41—C411.34 (3)C7—H7B0.9700
O42—C411.204 (5)C8—H80.9800
O81—N11.38 (2)C11—H11A0.9600
O81—C81.442 (8)C11—H11B0.9600
O82—N11.189 (17)C11—H11C0.9600
O83—N11.197 (12)C13—H13A0.9600
C1—C51.527 (15)C13—H13B0.9600
C1—C81.55 (3)C13—H13C0.9600
C3—C41.505 (14)C15—H15A0.9600
C4—C51.51 (3)C15—H15B0.9600
C7—C81.50 (3)C15—H15C0.9600
C10—C111.487 (7)C43—H430.9300
C12—C131.50 (2)C47—H470.9300
C1—O2—C3109.4 (13)O12—C46—C47121.4 (8)
C5—O6—C7107.3 (10)C45—C46—C47121.0 (18)
C10—O8—C44117.7 (4)C42—C47—C46119.7 (7)
C12—O10—C45118.5 (7)O2—C1—H1111.00
C14—O12—C46119 (2)C5—C1—H1111.00
C4—O41—C41118.3 (7)C8—C1—H1111.00
N1—O81—C8113.7 (11)O2—C3—H3A111.00
O81—N1—O82117.9 (10)O2—C3—H3B111.00
O81—N1—O83112.3 (12)C4—C3—H3A111.00
O82—N1—O83129.8 (18)C4—C3—H3B111.00
O2—C1—C5107.4 (8)H3A—C3—H3B109.00
O2—C1—C8113.7 (8)O41—C4—H4113.00
C5—C1—C8102.6 (18)C3—C4—H4113.00
O2—C3—C4105.2 (7)C5—C4—H4113.00
O41—C4—C3110.2 (19)O6—C5—H5114.00
O41—C4—C5104.4 (8)C1—C5—H5114.00
C3—C4—C5102.2 (8)C4—C5—H5114.00
O6—C5—C1104.7 (10)O6—C7—H7A110.00
O6—C5—C4108.1 (9)O6—C7—H7B110.00
C1—C5—C4102.1 (17)C8—C7—H7A110.00
O6—C7—C8107 (2)C8—C7—H7B110.00
O81—C8—C1111.0 (18)H7A—C7—H7B109.00
O81—C8—C7106.7 (12)O81—C8—H8111.00
C1—C8—C7104.9 (9)C1—C8—H8111.00
O8—C10—O9122.2 (4)C7—C8—H8111.00
O8—C10—C11110.8 (5)C10—C11—H11A110.00
O9—C10—C11126.9 (5)C10—C11—H11B109.00
O10—C12—O11123.5 (18)C10—C11—H11C109.00
O10—C12—C13108.9 (8)H11A—C11—H11B109.00
O11—C12—C13127.6 (19)H11A—C11—H11C110.00
O12—C14—O13122 (2)H11B—C11—H11C109.00
O12—C14—C15110.4 (19)C12—C13—H13A110.00
O13—C14—C15127.6 (8)C12—C13—H13B109.00
O41—C41—O42123 (2)C12—C13—H13C109.00
O41—C41—C42111.7 (8)H13A—C13—H13B110.00
O42—C41—C42125 (2)H13A—C13—H13C109.00
C41—C42—C43121.7 (17)H13B—C13—H13C110.00
C41—C42—C47118.9 (7)C14—C15—H15A109.00
C43—C42—C47119.3 (17)C14—C15—H15B109.00
C42—C43—C44119.8 (18)C14—C15—H15C109.00
O8—C44—C43120.5 (18)H15A—C15—H15B109.00
O8—C44—C45118.8 (17)H15A—C15—H15C110.00
C43—C44—C45120.7 (7)H15B—C15—H15C109.00
O10—C45—C44121.7 (7)C42—C43—H43120.00
O10—C45—C46118.7 (16)C44—C43—H43120.00
C44—C45—C46119.4 (17)C42—C47—H47120.00
O12—C46—C45117.1 (18)C46—C47—H47120.00
C3—O2—C1—C52 (2)O2—C1—C8—C7106.1 (12)
C3—O2—C1—C8111.2 (14)C5—C1—C8—O81124.5 (9)
C1—O2—C3—C424 (2)C5—C1—C8—C79.6 (7)
C7—O6—C5—C138.2 (16)O2—C3—C4—O4175 (2)
C7—O6—C5—C4146.4 (11)O2—C3—C4—C536 (2)
C5—O6—C7—C832.0 (12)O41—C4—C5—O6168.9 (10)
C44—O8—C10—O91 (4)O41—C4—C5—C181.0 (10)
C44—O8—C10—C11180 (2)C3—C4—C5—O676.2 (15)
C10—O8—C44—C4363 (3)C3—C4—C5—C133.9 (15)
C10—O8—C44—C45118 (2)O6—C7—C8—O81105.3 (13)
C45—O10—C12—O111 (3)O6—C7—C8—C112.6 (7)
C45—O10—C12—C13178.2 (15)O41—C41—C42—C432 (2)
C12—O10—C45—C4470 (3)O41—C41—C42—C47177.7 (14)
C12—O10—C45—C46115.3 (16)O42—C41—C42—C43177.5 (16)
C46—O12—C14—O134.0 (11)O42—C41—C42—C472 (2)
C46—O12—C14—C15174.5 (6)C41—C42—C43—C44177.9 (14)
C14—O12—C46—C45118.2 (11)C47—C42—C43—C442 (2)
C14—O12—C46—C4769.8 (11)C41—C42—C47—C46178.7 (13)
C41—O41—C4—C383.5 (13)C43—C42—C47—C463 (2)
C41—O41—C4—C5167.3 (14)C42—C43—C44—O8179.3 (14)
C4—O41—C41—O424 (2)C42—C43—C44—C450 (2)
C4—O41—C41—C42175.7 (13)O8—C44—C45—O107 (2)
N1—O81—C8—C178.0 (16)O8—C44—C45—C46178.8 (14)
N1—O81—C8—C7168.3 (17)C43—C44—C45—O10172.3 (15)
C8—O81—N1—O820 (3)C43—C44—C45—C462 (2)
C8—O81—N1—O83178 (2)O10—C45—C46—O1215 (2)
O2—C1—C5—O691.8 (18)O10—C45—C46—C47173.0 (15)
O2—C1—C5—C420.9 (17)C44—C45—C46—O12170.4 (13)
C8—C1—C5—O628.4 (11)C44—C45—C46—C472 (2)
C8—C1—C5—C4141.0 (9)O12—C46—C47—C42172.6 (13)
O2—C1—C8—O818.8 (14)C45—C46—C47—C421 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.982.563.365 (13)139
C4—H4···O42ii0.982.533.507 (15)177
C43—H43···O11i0.932.513.25 (3)136
C47—H47···O42iii0.932.523.314 (14)144
C11—H11B···O83iv0.962.523.39 (3)151
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z; (iii) x, y1/2, z; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H19NO13
Mr469.35
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.8053 (19), 6.5941 (12), 16.075 (3)
β (°) 108.243 (3)
V3)1087.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.31 × 0.25 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.962, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5474, 2112, 1394
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.02
No. of reflections2112
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
O2—C11.42 (3)O12—C141.351 (6)
O2—C31.427 (5)O12—C461.40 (3)
O6—C51.42 (3)O13—C141.18 (3)
O6—C71.405 (16)O41—C41.45 (3)
O8—C101.367 (6)O41—C411.34 (3)
O8—C441.404 (4)O42—C411.204 (5)
O9—C101.187 (8)O81—N11.38 (2)
O10—C121.36 (2)O81—C81.442 (8)
O10—C451.39 (2)O82—N11.189 (17)
O11—C121.188 (6)O83—N11.197 (12)
C1—O2—C3109.4 (13)O81—C8—C7106.7 (12)
C5—O6—C7107.3 (10)O8—C10—O9122.2 (4)
C10—O8—C44117.7 (4)O8—C10—C11110.8 (5)
C12—O10—C45118.5 (7)O9—C10—C11126.9 (5)
C14—O12—C46119 (2)O10—C12—O11123.5 (18)
C4—O41—C41118.3 (7)O10—C12—C13108.9 (8)
N1—O81—C8113.7 (11)O11—C12—C13127.6 (19)
O81—N1—O82117.9 (10)O12—C14—O13122 (2)
O81—N1—O83112.3 (12)O12—C14—C15110.4 (19)
O82—N1—O83129.8 (18)O13—C14—C15127.6 (8)
O2—C1—C5107.4 (8)O41—C41—O42123 (2)
O2—C1—C8113.7 (8)O41—C41—C42111.7 (8)
O2—C3—C4105.2 (7)O42—C41—C42125 (2)
O41—C4—C3110.2 (19)O8—C44—C43120.5 (18)
O41—C4—C5104.4 (8)O8—C44—C45118.8 (17)
O6—C5—C1104.7 (10)O10—C45—C44121.7 (7)
O6—C5—C4108.1 (9)O10—C45—C46118.7 (16)
O6—C7—C8107 (2)O12—C46—C45117.1 (18)
O81—C8—C1111.0 (18)O12—C46—C47121.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.982.563.365 (13)139.0
C4—H4···O42ii0.982.533.507 (15)176.6
C43—H43···O11i0.932.513.25 (3)136.1
C47—H47···O42iii0.932.523.314 (14)144.1
C11—H11B···O83iv0.962.523.39 (3)150.5
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z; (iii) x, y1/2, z; (iv) x+1, y1, z.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

References

First citationBrown, C. Marston, R. W., Quigley, P. F. & Roberts, S. M. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1809–1810.  Web of Science CrossRef Google Scholar
First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCalmès, M., Escale, F., Rolland, M. & Martinez, J. (2003). Tetrahedron Asymmetry, 14, 1685–1689.  Google Scholar
First citationCarini, M., Aldini, G., Orioli, M. & Maffei, F. R. (2002). J. Pharm. Biomed. Anal. 29, 1061–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEzhilmuthu, R. P., Vembu, N. & Sulochana, N. (2008). Acta Cryst. E64, o1306–o1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKoningsveld, H. van, Peters, J. A. & Jansen, J. C. (1984). Acta Cryst. C40, 519–521.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRigas, B. & Williams, J. L. (2008). Nitric Oxide, 19, 199–204.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVelazquez, C. A., Rao, P., Citro, M. L., Keefer, L. K. & Knaus, E. E. (2007). Bioorg. Med. Chem. 15, 4767–4774.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds