metal-organic compounds
trans-Dichloridotetrakis[1-(2-hydroxyethyl)-1H-tetrazole-κN4]cobalt(II)
aResearch Institute for Physico-Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk 220030, Belarus
*Correspondence e-mail: iva@bsu.by
The title cobalt(II) complex, [CoCl2(C3H6N4O)4], was obtained from metallic cobalt by direct synthesis. There are two Co atoms in the each lying on an inversion centre and adopting a distorted octahedral coordination. Classical and non-classical hydrogen bonds are responsible for formation of a three-dimensional polymeric network in the crystal.
Related literature
For a review of complexes of 1-substituted tetrazoles, see: Gaponik et al. (2006). For the of a related Co(II) complex, see: Shvedenkov et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: R3m Software (Nicolet, 1980); cell R3m Software; data reduction: OMNIBUS (Gałdecka, 2002); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
https://doi.org/10.1107/S1600536809042263/dn2499sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809042263/dn2499Isup2.hkl
A mixture, containing cobalt powder (0.06 g, 0.001 mol), 1-(2-hydroxyethyl)tetrazole (0.47 g, 0.0041 mol), 5 ml of methanol and 0.2 ml of concentrated solution of HCl, was heated at 325 K with stirring on air until the metal was fully dissolved (6 h). Pink crystals of the title complex were grown by slow evaporation of the reaction mixture in air at room temperature during two weeks. The crystals were filtered off, washed with diethyl ether and dried in air (0.45 g, yield 85%; m.p. 383 K; decomp. 468 K). Calc. (%): Cu 10.1, Cl 12.1. Found (%): Cu 10.2, Cl 12.8. IR (cm-1): 3391 (s), 3091 (s), 3134 (s), 2896 (m), 2946 (m), 2975 (s), 1623 (s), 1497 (s), 1437 (s), 1380 (w), 1359 (m), 1275 (m), 1247 (w), 1171 (s), 1099 (s), 1062 (s), 998 (s), 259 (s), 200 (m), 176(m).
H atoms were placed in calculated positions and refined using riding model, with Uiso(H)=1.2Ueq(C) for the methylene and the tetrazole ring CH group, and Uiso(H)=1.5Ueq(O) for the hydroxyl groups.
Coordination compounds of 1-substituted tetrazoles have been the subject of many investigations (Gaponik et al., 2006). Among reported metal(II) halide complexes containing 1-alkyltetrazoles overwhelming majority present copper(II) complexes CuL2X2, where L = 1-alkyltetrazole, X = Cl or Br. Until now, only one cobalt(II) chloride complex with 1-allyltetrazole of composition CoL2Cl2 have been structurally characterized (Shvedenkov et al., 2003). Here we present novel cobalt(II) chloride complex, namely CoL4Cl2 where L is 1-(2-hydroxyethyl)tetrazole, obtained by dissolving metallic cobalt in a methanol solution of 1-(2-hydroxyethyl)tetrazole in presence of hydrochloric acid in air. This is the first complex of such composition among metal(II) halide with 1-alkyltetrazoles obtained by now.
The title compound, (I), presents molecular complex, with two Co atoms in the
both lying on inversion centres (Fig.1). Co atoms adopt rather distorted octahedral coordination composed of two Cl atoms in axial positions and four tetrazole ring N4 atoms in equatorial sites (Table 1). So, the complex molecules present trans-isomers.The tetrazole ring geometry of ligand molecules is usual for 1-substituted tetrazoles (Cambridge Structural Database, Version 5.30 of November 2008; Allen, 2002).
The crystal packing of (I) is stabilized by a series of intermolecular hydrogen bonds (Table 2). Classic HB, O—H···O and O—H···Cl, link complex molecules to polymeric layers parallel to the ac plane (Fig. 2). Non-classic HB CTz—H···Cl, formed by the tetrazole ring C—H groups, are additional within the layers. The above layers are connected via non-classic CTz—H···O hydrogen bonds to give three-dimensional polymeric network (Fig. 3).
For a review of complexes of 1-substituted tetrazoles, see: Gaponik et al. (2006). For the
of a related Co(II) complex, see: Shvedenkov et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).Data collection: R3m Software (Nicolet, 1980); cell
R3m Software (Nicolet, 1980); data reduction: OMNIBUS (Gałdecka, 2002); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Two complex molecules in the crystal structure of (I), with atom numbering for the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii. | |
Fig. 2. A layer in the structure of (I) parallel with the ac plane formed by classic hydrogen bonds O—H···O and O—H···Cl (dashed lines). Only H atoms, participating in classic hydrogen bonds, are shown. | |
Fig. 3. The crystal structure of (I) viewed along the a axis. Dashed lines show hydrogen bonds. |
[CoCl2(C3H6N4O)4] | Z = 2 |
Mr = 586.30 | F(000) = 602 |
Triclinic, P1 | Dx = 1.650 Mg m−3 |
Hall symbol: -P 1 | Melting point: 383 K |
a = 6.8971 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4602 (17) Å | Cell parameters from 25 reflections |
c = 19.761 (4) Å | θ = 13.4–19.5° |
α = 77.870 (14)° | µ = 1.01 mm−1 |
β = 86.721 (19)° | T = 294 K |
γ = 69.481 (17)° | Prism, pink |
V = 1180.4 (5) Å3 | 0.24 × 0.16 × 0.15 mm |
Nicolet R3m four-circle diffractometer | 3747 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
Graphite monochromator | θmax = 27.6°, θmin = 1.1° |
ω/2θ scans | h = 0→8 |
Absorption correction: ψ scan (North et al., 1968) | k = −11→12 |
Tmin = 0.794, Tmax = 0.863 | l = −25→25 |
5904 measured reflections | 2 standard reflections every 100 reflections |
5449 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.031P)2 + 0.9939P] where P = (Fo2 + 2Fc2)/3 |
5449 reflections | (Δ/σ)max < 0.001 |
323 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
[CoCl2(C3H6N4O)4] | γ = 69.481 (17)° |
Mr = 586.30 | V = 1180.4 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8971 (19) Å | Mo Kα radiation |
b = 9.4602 (17) Å | µ = 1.01 mm−1 |
c = 19.761 (4) Å | T = 294 K |
α = 77.870 (14)° | 0.24 × 0.16 × 0.15 mm |
β = 86.721 (19)° |
Nicolet R3m four-circle diffractometer | 3747 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.024 |
Tmin = 0.794, Tmax = 0.863 | 2 standard reflections every 100 reflections |
5904 measured reflections | intensity decay: none |
5449 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.58 e Å−3 |
5449 reflections | Δρmin = −0.32 e Å−3 |
323 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.0000 | 0.0000 | 0.5000 | 0.02622 (12) | |
Cl1 | −0.33214 (10) | 0.17425 (8) | 0.44772 (3) | 0.03638 (16) | |
N11 | 0.1924 (3) | 0.3322 (2) | 0.56697 (11) | 0.0329 (5) | |
N12 | −0.0116 (4) | 0.3971 (3) | 0.57773 (15) | 0.0471 (6) | |
N13 | −0.1006 (4) | 0.3080 (3) | 0.56183 (14) | 0.0450 (6) | |
N14 | 0.0441 (3) | 0.1851 (2) | 0.54069 (11) | 0.0326 (5) | |
C15 | 0.2219 (4) | 0.2040 (3) | 0.54426 (14) | 0.0342 (6) | |
H15 | 0.3491 | 0.1380 | 0.5327 | 0.041* | |
C16 | 0.3466 (4) | 0.3983 (3) | 0.58033 (15) | 0.0389 (6) | |
H16A | 0.2933 | 0.5089 | 0.5631 | 0.047* | |
H16B | 0.4718 | 0.3556 | 0.5555 | 0.047* | |
C17 | 0.3979 (5) | 0.3655 (3) | 0.65626 (16) | 0.0445 (7) | |
H17A | 0.4320 | 0.2561 | 0.6750 | 0.053* | |
H17B | 0.5183 | 0.3923 | 0.6624 | 0.053* | |
O1 | 0.2309 (4) | 0.4496 (2) | 0.69294 (12) | 0.0564 (6) | |
H1 | 0.1933 | 0.3896 | 0.7222 | 0.085* | |
N21 | 0.2420 (3) | 0.1961 (3) | 0.31580 (11) | 0.0320 (5) | |
N22 | 0.3564 (4) | 0.0462 (3) | 0.32073 (13) | 0.0455 (6) | |
N23 | 0.2998 (4) | −0.0278 (3) | 0.37622 (13) | 0.0417 (6) | |
N24 | 0.1491 (3) | 0.0717 (2) | 0.40773 (11) | 0.0312 (5) | |
C25 | 0.1170 (4) | 0.2095 (3) | 0.36908 (14) | 0.0369 (6) | |
H25 | 0.0219 | 0.3013 | 0.3778 | 0.044* | |
C26 | 0.2763 (5) | 0.3161 (3) | 0.26103 (14) | 0.0417 (7) | |
H26A | 0.1492 | 0.4045 | 0.2521 | 0.050* | |
H26B | 0.3132 | 0.2770 | 0.2187 | 0.050* | |
C27 | 0.4452 (5) | 0.3655 (3) | 0.28125 (16) | 0.0458 (7) | |
H27A | 0.4527 | 0.4530 | 0.2468 | 0.055* | |
H27B | 0.4124 | 0.3981 | 0.3252 | 0.055* | |
O2 | 0.6405 (3) | 0.2449 (3) | 0.28720 (11) | 0.0480 (5) | |
H2 | 0.6670 | 0.2039 | 0.3281 | 0.072* | |
Co2 | 0.5000 | 0.0000 | 0.0000 | 0.02837 (12) | |
Cl2 | 0.84297 (10) | −0.16973 (8) | 0.04419 (4) | 0.03764 (16) | |
N31 | 0.1868 (4) | −0.1224 (3) | 0.18430 (12) | 0.0368 (5) | |
N32 | 0.3021 (4) | −0.2628 (3) | 0.17307 (14) | 0.0507 (7) | |
N33 | 0.4073 (4) | −0.2413 (3) | 0.11812 (14) | 0.0472 (7) | |
N34 | 0.3617 (3) | −0.0878 (2) | 0.09318 (11) | 0.0334 (5) | |
C35 | 0.2248 (4) | −0.0173 (3) | 0.13501 (14) | 0.0337 (6) | |
H35 | 0.1646 | 0.0889 | 0.1308 | 0.040* | |
C36 | 0.0403 (5) | −0.1038 (4) | 0.24140 (15) | 0.0464 (7) | |
H36A | 0.0348 | −0.0141 | 0.2589 | 0.056* | |
H36B | 0.0895 | −0.1933 | 0.2787 | 0.056* | |
C37 | −0.1743 (5) | −0.0850 (4) | 0.21924 (17) | 0.0511 (8) | |
H37A | −0.2701 | −0.0556 | 0.2559 | 0.061* | |
H37B | −0.2174 | −0.0028 | 0.1786 | 0.061* | |
O3 | −0.1834 (5) | −0.2206 (3) | 0.20404 (12) | 0.0682 (7) | |
H3 | −0.1787 | −0.2147 | 0.1620 | 0.102* | |
N41 | 0.3421 (3) | −0.3452 (2) | −0.06627 (11) | 0.0318 (5) | |
N42 | 0.5298 (4) | −0.3745 (3) | −0.09471 (13) | 0.0443 (6) | |
N43 | 0.6031 (4) | −0.2741 (3) | −0.08241 (13) | 0.0406 (6) | |
N44 | 0.4653 (3) | −0.1786 (2) | −0.04598 (11) | 0.0326 (5) | |
C45 | 0.3046 (4) | −0.2248 (3) | −0.03711 (14) | 0.0346 (6) | |
H45 | 0.1844 | −0.1801 | −0.0141 | 0.041* | |
C46 | 0.2061 (5) | −0.4333 (3) | −0.07074 (14) | 0.0377 (6) | |
H46A | 0.0768 | −0.3897 | −0.0481 | 0.045* | |
H46B | 0.2717 | −0.5391 | −0.0466 | 0.045* | |
C47 | 0.1617 (5) | −0.4311 (3) | −0.14470 (14) | 0.0386 (6) | |
H47A | 0.2876 | −0.4887 | −0.1655 | 0.046* | |
H47B | 0.0607 | −0.4807 | −0.1459 | 0.046* | |
O4 | 0.0844 (3) | −0.2775 (2) | −0.18342 (11) | 0.0432 (5) | |
H4 | 0.1605 | −0.2673 | −0.2161 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0253 (2) | 0.0280 (2) | 0.0256 (2) | −0.0109 (2) | 0.00245 (19) | −0.00379 (19) |
Cl1 | 0.0302 (3) | 0.0385 (4) | 0.0346 (3) | −0.0074 (3) | −0.0020 (3) | −0.0023 (3) |
N11 | 0.0332 (12) | 0.0315 (11) | 0.0356 (12) | −0.0121 (10) | 0.0050 (9) | −0.0098 (9) |
N12 | 0.0347 (13) | 0.0423 (14) | 0.0682 (18) | −0.0114 (11) | 0.0058 (12) | −0.0246 (13) |
N13 | 0.0314 (13) | 0.0444 (14) | 0.0629 (17) | −0.0121 (11) | 0.0078 (12) | −0.0223 (13) |
N14 | 0.0310 (12) | 0.0320 (12) | 0.0363 (12) | −0.0118 (9) | 0.0034 (9) | −0.0093 (9) |
C15 | 0.0302 (14) | 0.0343 (14) | 0.0410 (15) | −0.0115 (11) | 0.0062 (11) | −0.0147 (12) |
C16 | 0.0406 (16) | 0.0359 (15) | 0.0484 (17) | −0.0213 (13) | 0.0058 (13) | −0.0136 (13) |
C17 | 0.0465 (18) | 0.0400 (16) | 0.0512 (18) | −0.0150 (14) | −0.0017 (14) | −0.0178 (14) |
O1 | 0.0714 (16) | 0.0409 (12) | 0.0480 (13) | −0.0071 (11) | 0.0100 (11) | −0.0142 (10) |
N21 | 0.0338 (12) | 0.0337 (12) | 0.0284 (11) | −0.0146 (10) | 0.0032 (9) | −0.0016 (9) |
N22 | 0.0558 (16) | 0.0366 (13) | 0.0438 (14) | −0.0174 (12) | 0.0207 (12) | −0.0105 (11) |
N23 | 0.0475 (14) | 0.0316 (12) | 0.0446 (14) | −0.0139 (11) | 0.0174 (11) | −0.0092 (10) |
N24 | 0.0310 (11) | 0.0307 (11) | 0.0305 (11) | −0.0102 (9) | 0.0078 (9) | −0.0057 (9) |
C25 | 0.0343 (14) | 0.0309 (14) | 0.0384 (15) | −0.0074 (11) | 0.0066 (12) | −0.0005 (11) |
C26 | 0.0446 (17) | 0.0445 (16) | 0.0321 (14) | −0.0195 (13) | 0.0014 (12) | 0.0074 (12) |
C27 | 0.057 (2) | 0.0396 (16) | 0.0419 (17) | −0.0244 (15) | 0.0012 (14) | 0.0018 (13) |
O2 | 0.0466 (12) | 0.0555 (13) | 0.0414 (12) | −0.0228 (11) | 0.0020 (10) | 0.0001 (10) |
Co2 | 0.0272 (3) | 0.0275 (3) | 0.0326 (3) | −0.0113 (2) | 0.0062 (2) | −0.0092 (2) |
Cl2 | 0.0288 (3) | 0.0396 (4) | 0.0415 (4) | −0.0086 (3) | 0.0040 (3) | −0.0082 (3) |
N31 | 0.0374 (13) | 0.0353 (12) | 0.0340 (12) | −0.0121 (10) | 0.0061 (10) | −0.0018 (10) |
N32 | 0.0539 (16) | 0.0317 (13) | 0.0546 (16) | −0.0084 (12) | 0.0135 (13) | 0.0024 (11) |
N33 | 0.0461 (15) | 0.0292 (12) | 0.0563 (16) | −0.0068 (11) | 0.0165 (12) | −0.0026 (11) |
N34 | 0.0327 (12) | 0.0285 (11) | 0.0373 (12) | −0.0105 (9) | 0.0061 (9) | −0.0044 (9) |
C35 | 0.0362 (14) | 0.0294 (13) | 0.0345 (14) | −0.0120 (11) | 0.0069 (11) | −0.0054 (11) |
C36 | 0.0562 (19) | 0.0509 (18) | 0.0338 (15) | −0.0231 (15) | 0.0149 (14) | −0.0082 (13) |
C37 | 0.0527 (19) | 0.057 (2) | 0.0509 (19) | −0.0274 (16) | 0.0196 (15) | −0.0163 (16) |
O3 | 0.106 (2) | 0.0774 (17) | 0.0483 (14) | −0.0632 (17) | 0.0223 (15) | −0.0207 (13) |
N41 | 0.0370 (12) | 0.0334 (12) | 0.0285 (11) | −0.0157 (10) | 0.0021 (9) | −0.0080 (9) |
N42 | 0.0465 (15) | 0.0453 (14) | 0.0502 (15) | −0.0205 (12) | 0.0122 (12) | −0.0242 (12) |
N43 | 0.0400 (13) | 0.0427 (13) | 0.0458 (14) | −0.0188 (11) | 0.0124 (11) | −0.0189 (11) |
N44 | 0.0311 (12) | 0.0354 (12) | 0.0348 (12) | −0.0129 (10) | 0.0043 (9) | −0.0130 (10) |
C45 | 0.0324 (14) | 0.0365 (14) | 0.0391 (15) | −0.0133 (12) | 0.0056 (11) | −0.0162 (12) |
C46 | 0.0491 (17) | 0.0352 (14) | 0.0354 (14) | −0.0233 (13) | 0.0021 (12) | −0.0066 (11) |
C47 | 0.0484 (17) | 0.0319 (14) | 0.0384 (15) | −0.0169 (13) | −0.0031 (13) | −0.0070 (12) |
O4 | 0.0442 (12) | 0.0343 (10) | 0.0431 (12) | −0.0087 (9) | 0.0006 (9) | 0.0006 (9) |
Co1—N24 | 2.144 (2) | Co2—N44ii | 2.165 (2) |
Co1—N24i | 2.144 (2) | Co2—N44 | 2.165 (2) |
Co1—N14i | 2.191 (2) | Co2—N34ii | 2.168 (2) |
Co1—N14 | 2.191 (2) | Co2—N34 | 2.168 (2) |
Co1—Cl1i | 2.4372 (10) | Co2—Cl2ii | 2.4333 (10) |
Co1—Cl1 | 2.4372 (10) | Co2—Cl2 | 2.4333 (10) |
N11—C15 | 1.326 (3) | N31—C35 | 1.325 (3) |
N11—N12 | 1.348 (3) | N31—N32 | 1.345 (3) |
N11—C16 | 1.469 (3) | N31—C36 | 1.467 (3) |
N12—N13 | 1.297 (3) | N32—N33 | 1.292 (3) |
N13—N14 | 1.366 (3) | N33—N34 | 1.359 (3) |
N14—C15 | 1.308 (3) | N34—C35 | 1.312 (3) |
C15—H15 | 0.9300 | C35—H35 | 0.9300 |
C16—C17 | 1.504 (4) | C36—C37 | 1.507 (4) |
C16—H16A | 0.9700 | C36—H36A | 0.9700 |
C16—H16B | 0.9700 | C36—H36B | 0.9700 |
C17—O1 | 1.410 (3) | C37—O3 | 1.400 (4) |
C17—H17A | 0.9700 | C37—H37A | 0.9700 |
C17—H17B | 0.9700 | C37—H37B | 0.9700 |
O1—H1 | 0.8200 | O3—H3 | 0.8200 |
N21—C25 | 1.320 (3) | N41—C45 | 1.322 (3) |
N21—N22 | 1.346 (3) | N41—N42 | 1.342 (3) |
N21—C26 | 1.469 (3) | N41—C46 | 1.474 (3) |
N22—N23 | 1.290 (3) | N42—N43 | 1.290 (3) |
N23—N24 | 1.356 (3) | N43—N44 | 1.353 (3) |
N24—C25 | 1.316 (3) | N44—C45 | 1.318 (3) |
C25—H25 | 0.9300 | C45—H45 | 0.9300 |
C26—C27 | 1.500 (4) | C46—C47 | 1.505 (4) |
C26—H26A | 0.9700 | C46—H46A | 0.9700 |
C26—H26B | 0.9700 | C46—H46B | 0.9700 |
C27—O2 | 1.419 (4) | C47—O4 | 1.421 (3) |
C27—H27A | 0.9700 | C47—H47A | 0.9700 |
C27—H27B | 0.9700 | C47—H47B | 0.9700 |
O2—H2 | 0.8200 | O4—H4 | 0.8200 |
N24—Co1—N24i | 180.00 (10) | N44ii—Co2—N44 | 180.000 (1) |
N24—Co1—N14i | 92.41 (8) | N44ii—Co2—N34ii | 88.52 (8) |
N24i—Co1—N14i | 87.59 (8) | N44—Co2—N34ii | 91.48 (8) |
N24—Co1—N14 | 87.59 (8) | N44ii—Co2—N34 | 91.48 (8) |
N24i—Co1—N14 | 92.41 (8) | N44—Co2—N34 | 88.52 (8) |
N14i—Co1—N14 | 180.0 | N34ii—Co2—N34 | 180.00 (8) |
N24—Co1—Cl1i | 91.04 (6) | N44ii—Co2—Cl2ii | 90.56 (6) |
N24i—Co1—Cl1i | 88.96 (6) | N44—Co2—Cl2ii | 89.45 (6) |
N14i—Co1—Cl1i | 91.03 (6) | N34ii—Co2—Cl2ii | 90.42 (6) |
N14—Co1—Cl1i | 88.97 (6) | N34—Co2—Cl2ii | 89.58 (6) |
N24—Co1—Cl1 | 88.96 (6) | N44ii—Co2—Cl2 | 89.45 (6) |
N24i—Co1—Cl1 | 91.04 (6) | N44—Co2—Cl2 | 90.55 (6) |
N14i—Co1—Cl1 | 88.97 (6) | N34ii—Co2—Cl2 | 89.58 (6) |
N14—Co1—Cl1 | 91.03 (6) | N34—Co2—Cl2 | 90.42 (6) |
Cl1i—Co1—Cl1 | 180.00 (2) | Cl2ii—Co2—Cl2 | 180.0 |
C15—N11—N12 | 108.2 (2) | C35—N31—N32 | 108.4 (2) |
C15—N11—C16 | 128.7 (2) | C35—N31—C36 | 130.1 (2) |
N12—N11—C16 | 123.1 (2) | N32—N31—C36 | 121.4 (2) |
N13—N12—N11 | 106.7 (2) | N33—N32—N31 | 106.8 (2) |
N12—N13—N14 | 109.9 (2) | N32—N33—N34 | 109.9 (2) |
C15—N14—N13 | 105.9 (2) | C35—N34—N33 | 106.3 (2) |
C15—N14—Co1 | 124.65 (18) | C35—N34—Co2 | 131.63 (18) |
N13—N14—Co1 | 129.21 (17) | N33—N34—Co2 | 122.09 (17) |
N14—C15—N11 | 109.3 (2) | N34—C35—N31 | 108.7 (2) |
N14—C15—H15 | 125.4 | N34—C35—H35 | 125.7 |
N11—C15—H15 | 125.4 | N31—C35—H35 | 125.7 |
N11—C16—C17 | 111.7 (2) | N31—C36—C37 | 112.1 (3) |
N11—C16—H16A | 109.3 | N31—C36—H36A | 109.2 |
C17—C16—H16A | 109.3 | C37—C36—H36A | 109.2 |
N11—C16—H16B | 109.3 | N31—C36—H36B | 109.2 |
C17—C16—H16B | 109.3 | C37—C36—H36B | 109.2 |
H16A—C16—H16B | 107.9 | H36A—C36—H36B | 107.9 |
O1—C17—C16 | 111.5 (3) | O3—C37—C36 | 112.0 (3) |
O1—C17—H17A | 109.3 | O3—C37—H37A | 109.2 |
C16—C17—H17A | 109.3 | C36—C37—H37A | 109.2 |
O1—C17—H17B | 109.3 | O3—C37—H37B | 109.2 |
C16—C17—H17B | 109.3 | C36—C37—H37B | 109.2 |
H17A—C17—H17B | 108.0 | H37A—C37—H37B | 107.9 |
C17—O1—H1 | 109.5 | C37—O3—H3 | 109.5 |
C25—N21—N22 | 108.5 (2) | C45—N41—N42 | 108.1 (2) |
C25—N21—C26 | 129.8 (2) | C45—N41—C46 | 128.3 (2) |
N22—N21—C26 | 121.5 (2) | N42—N41—C46 | 123.6 (2) |
N23—N22—N21 | 106.7 (2) | N43—N42—N41 | 107.2 (2) |
N22—N23—N24 | 110.2 (2) | N42—N43—N44 | 109.9 (2) |
C25—N24—N23 | 105.9 (2) | C45—N44—N43 | 106.0 (2) |
C25—N24—Co1 | 130.62 (18) | C45—N44—Co2 | 124.45 (17) |
N23—N24—Co1 | 123.40 (16) | N43—N44—Co2 | 129.29 (17) |
N24—C25—N21 | 108.8 (2) | N44—C45—N41 | 108.9 (2) |
N24—C25—H25 | 125.6 | N44—C45—H45 | 125.6 |
N21—C25—H25 | 125.6 | N41—C45—H45 | 125.6 |
N21—C26—C27 | 111.3 (2) | N41—C46—C47 | 111.7 (2) |
N21—C26—H26A | 109.4 | N41—C46—H46A | 109.3 |
C27—C26—H26A | 109.4 | C47—C46—H46A | 109.3 |
N21—C26—H26B | 109.4 | N41—C46—H46B | 109.3 |
C27—C26—H26B | 109.4 | C47—C46—H46B | 109.3 |
H26A—C26—H26B | 108.0 | H46A—C46—H46B | 108.0 |
O2—C27—C26 | 111.9 (3) | O4—C47—C46 | 110.8 (2) |
O2—C27—H27A | 109.2 | O4—C47—H47A | 109.5 |
C26—C27—H27A | 109.2 | C46—C47—H47A | 109.5 |
O2—C27—H27B | 109.2 | O4—C47—H47B | 109.5 |
C26—C27—H27B | 109.2 | C46—C47—H47B | 109.5 |
H27A—C27—H27B | 107.9 | H47A—C47—H47B | 108.1 |
C27—O2—H2 | 109.5 | C47—O4—H4 | 109.5 |
C15—N11—N12—N13 | 0.2 (3) | C35—N31—N32—N33 | 0.2 (3) |
C16—N11—N12—N13 | −179.0 (2) | C36—N31—N32—N33 | 177.3 (3) |
N11—N12—N13—N14 | 0.0 (3) | N31—N32—N33—N34 | −0.1 (4) |
N12—N13—N14—C15 | −0.2 (3) | N32—N33—N34—C35 | −0.1 (3) |
N12—N13—N14—Co1 | −175.40 (19) | N32—N33—N34—Co2 | −178.8 (2) |
N24—Co1—N14—C15 | −53.8 (2) | N44ii—Co2—N34—C35 | 41.8 (3) |
N24i—Co1—N14—C15 | 126.2 (2) | N44—Co2—N34—C35 | −138.2 (3) |
Cl1i—Co1—N14—C15 | 37.3 (2) | Cl2ii—Co2—N34—C35 | −48.7 (3) |
Cl1—Co1—N14—C15 | −142.7 (2) | Cl2—Co2—N34—C35 | 131.3 (3) |
N24—Co1—N14—N13 | 120.6 (2) | N44ii—Co2—N34—N33 | −139.8 (2) |
N24i—Co1—N14—N13 | −59.4 (2) | N44—Co2—N34—N33 | 40.2 (2) |
Cl1i—Co1—N14—N13 | −148.4 (2) | Cl2ii—Co2—N34—N33 | 129.6 (2) |
Cl1—Co1—N14—N13 | 31.6 (2) | Cl2—Co2—N34—N33 | −50.4 (2) |
N13—N14—C15—N11 | 0.4 (3) | N33—N34—C35—N31 | 0.2 (3) |
Co1—N14—C15—N11 | 175.83 (16) | Co2—N34—C35—N31 | 178.73 (19) |
N12—N11—C15—N14 | −0.4 (3) | N32—N31—C35—N34 | −0.2 (3) |
C16—N11—C15—N14 | 178.8 (2) | C36—N31—C35—N34 | −177.0 (3) |
C15—N11—C16—C17 | −101.2 (3) | C35—N31—C36—C37 | 84.0 (4) |
N12—N11—C16—C17 | 77.8 (3) | N32—N31—C36—C37 | −92.4 (3) |
N11—C16—C17—O1 | −70.2 (3) | N31—C36—C37—O3 | 68.6 (3) |
C25—N21—N22—N23 | −0.1 (3) | C45—N41—N42—N43 | 0.3 (3) |
C26—N21—N22—N23 | 175.4 (3) | C46—N41—N42—N43 | 178.5 (2) |
N21—N22—N23—N24 | 0.2 (3) | N41—N42—N43—N44 | 0.0 (3) |
N22—N23—N24—C25 | −0.2 (3) | N42—N43—N44—C45 | −0.4 (3) |
N22—N23—N24—Co1 | 177.84 (19) | N42—N43—N44—Co2 | 173.47 (19) |
N14i—Co1—N24—C25 | 131.3 (3) | N34ii—Co2—N44—C45 | −141.5 (2) |
N14—Co1—N24—C25 | −48.7 (3) | N34—Co2—N44—C45 | 38.5 (2) |
Cl1i—Co1—N24—C25 | −137.6 (3) | Cl2ii—Co2—N44—C45 | −51.1 (2) |
Cl1—Co1—N24—C25 | 42.4 (3) | Cl2—Co2—N44—C45 | 128.9 (2) |
N14i—Co1—N24—N23 | −46.2 (2) | N34ii—Co2—N44—N43 | 45.6 (2) |
N14—Co1—N24—N23 | 133.8 (2) | N34—Co2—N44—N43 | −134.4 (2) |
Cl1i—Co1—N24—N23 | 44.8 (2) | Cl2ii—Co2—N44—N43 | 136.0 (2) |
Cl1—Co1—N24—N23 | −135.2 (2) | Cl2—Co2—N44—N43 | −44.0 (2) |
N23—N24—C25—N21 | 0.2 (3) | N43—N44—C45—N41 | 0.6 (3) |
Co1—N24—C25—N21 | −177.68 (18) | Co2—N44—C45—N41 | −173.65 (17) |
N22—N21—C25—N24 | −0.1 (3) | N42—N41—C45—N44 | −0.6 (3) |
C26—N21—C25—N24 | −175.1 (3) | C46—N41—C45—N44 | −178.6 (2) |
C25—N21—C26—C27 | 89.6 (4) | C45—N41—C46—C47 | 120.9 (3) |
N22—N21—C26—C27 | −84.9 (3) | N42—N41—C46—C47 | −56.9 (3) |
N21—C26—C27—O2 | 65.8 (3) | N41—C46—C47—O4 | −53.2 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.82 | 1.94 | 2.741 (3) | 165 |
O2—H2···Cl1iii | 0.82 | 2.32 | 3.104 (2) | 160 |
O3—H3···Cl2iv | 0.82 | 2.28 | 3.098 (3) | 173 |
O4—H4···O2ii | 0.82 | 1.94 | 2.757 (3) | 175 |
C15—H15···Cl1iii | 0.93 | 2.76 | 3.482 (3) | 135 |
C25—H25···O1v | 0.93 | 2.56 | 3.303 (4) | 137 |
C35—H35···O4vi | 0.93 | 2.38 | 3.156 (3) | 141 |
C45—H45···Cl2iv | 0.93 | 2.54 | 3.405 (3) | 155 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z; (iii) x+1, y, z; (iv) x−1, y, z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [CoCl2(C3H6N4O)4] |
Mr | 586.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 6.8971 (19), 9.4602 (17), 19.761 (4) |
α, β, γ (°) | 77.870 (14), 86.721 (19), 69.481 (17) |
V (Å3) | 1180.4 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.01 |
Crystal size (mm) | 0.24 × 0.16 × 0.15 |
Data collection | |
Diffractometer | Nicolet R3m four-circle diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.794, 0.863 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5904, 5449, 3747 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.097, 1.04 |
No. of reflections | 5449 |
No. of parameters | 323 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.32 |
Computer programs: R3m Software (Nicolet, 1980), OMNIBUS (Gałdecka, 2002), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Co1—N24 | 2.144 (2) | Co2—N44 | 2.165 (2) |
Co1—N14 | 2.191 (2) | Co2—N34 | 2.168 (2) |
Co1—Cl1 | 2.4372 (10) | Co2—Cl2 | 2.4333 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.82 | 1.94 | 2.741 (3) | 165. |
O2—H2···Cl1ii | 0.82 | 2.32 | 3.104 (2) | 160. |
O3—H3···Cl2iii | 0.82 | 2.28 | 3.098 (3) | 173. |
O4—H4···O2iv | 0.82 | 1.94 | 2.757 (3) | 175. |
C15—H15···Cl1ii | 0.93 | 2.76 | 3.482 (3) | 135. |
C25—H25···O1v | 0.93 | 2.56 | 3.303 (4) | 137. |
C35—H35···O4vi | 0.93 | 2.38 | 3.156 (3) | 141. |
C45—H45···Cl2iii | 0.93 | 2.54 | 3.405 (3) | 155. |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+1, −y, −z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z. |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gałdecka, E. (2002). J. Appl. Cryst. 35, 641–643. CrossRef IUCr Journals Google Scholar
Gaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev. 75, 507–539. CrossRef CAS Google Scholar
Nicolet (1980). R3m Software. Nicolet XRD Corporation, Cupertino, USA. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shvedenkov, Y. G., Virovets, A. V. & Lavrenova, L. G. (2003). Russ. Chem. Bull. 52, 1353–1357. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination compounds of 1-substituted tetrazoles have been the subject of many investigations (Gaponik et al., 2006). Among reported metal(II) halide complexes containing 1-alkyltetrazoles overwhelming majority present copper(II) complexes CuL2X2, where L = 1-alkyltetrazole, X = Cl or Br. Until now, only one cobalt(II) chloride complex with 1-allyltetrazole of composition CoL2Cl2 have been structurally characterized (Shvedenkov et al., 2003). Here we present novel cobalt(II) chloride complex, namely CoL4Cl2 where L is 1-(2-hydroxyethyl)tetrazole, obtained by dissolving metallic cobalt in a methanol solution of 1-(2-hydroxyethyl)tetrazole in presence of hydrochloric acid in air. This is the first complex of such composition among metal(II) halide with 1-alkyltetrazoles obtained by now.
The title compound, (I), presents molecular complex, with two Co atoms in the asymmetric unit, both lying on inversion centres (Fig.1). Co atoms adopt rather distorted octahedral coordination composed of two Cl atoms in axial positions and four tetrazole ring N4 atoms in equatorial sites (Table 1). So, the complex molecules present trans-isomers.
The tetrazole ring geometry of ligand molecules is usual for 1-substituted tetrazoles (Cambridge Structural Database, Version 5.30 of November 2008; Allen, 2002).
The crystal packing of (I) is stabilized by a series of intermolecular hydrogen bonds (Table 2). Classic HB, O—H···O and O—H···Cl, link complex molecules to polymeric layers parallel to the ac plane (Fig. 2). Non-classic HB CTz—H···Cl, formed by the tetrazole ring C—H groups, are additional within the layers. The above layers are connected via non-classic CTz—H···O hydrogen bonds to give three-dimensional polymeric network (Fig. 3).