metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chlorido­tetra­kis­­[1-(2-hy­droxy­ethyl)-1H-tetrazole-κN4]cobalt(II)

aResearch Institute for Physico-Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk 220030, Belarus
*Correspondence e-mail: iva@bsu.by

(Received 12 October 2009; accepted 14 October 2009; online 23 October 2009)

The title cobalt(II) complex, [CoCl2(C3H6N4O)4], was obtained from metallic cobalt by direct synthesis. There are two Co atoms in the asymmetric unit, each lying on an inversion centre and adopting a distorted octa­hedral coordination. Classical and non-classical hydrogen bonds are responsible for formation of a three-dimensional polymeric network in the crystal.

Related literature

For a review of complexes of 1-substituted tetra­zoles, see: Gaponik et al. (2006[Gaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev. 75, 507-539.]). For the crystal structure of a related Co(II) complex, see: Shvedenkov et al. (2003[Shvedenkov, Y. G., Virovets, A. V. & Lavrenova, L. G. (2003). Russ. Chem. Bull. 52, 1353-1357.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C3H6N4O)4]

  • Mr = 586.30

  • Triclinic, [P \overline 1]

  • a = 6.8971 (19) Å

  • b = 9.4602 (17) Å

  • c = 19.761 (4) Å

  • α = 77.870 (14)°

  • β = 86.721 (19)°

  • γ = 69.481 (17)°

  • V = 1180.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 294 K

  • 0.24 × 0.16 × 0.15 mm

Data collection
  • Nicolet R3m four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.794, Tmax = 0.863

  • 5904 measured reflections

  • 5449 independent reflections

  • 3747 reflections with I > 2σ(I)

  • Rint = 0.024

  • 2 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.04

  • 5449 reflections

  • 323 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N24 2.144 (2)
Co1—N14 2.191 (2)
Co1—Cl1 2.4372 (10)
Co2—N44 2.165 (2)
Co2—N34 2.168 (2)
Co2—Cl2 2.4333 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.94 2.741 (3) 165
O2—H2⋯Cl1ii 0.82 2.32 3.104 (2) 160
O3—H3⋯Cl2iii 0.82 2.28 3.098 (3) 173
O4—H4⋯O2iv 0.82 1.94 2.757 (3) 175
C15—H15⋯Cl1ii 0.93 2.76 3.482 (3) 135
C25—H25⋯O1v 0.93 2.56 3.303 (4) 137
C35—H35⋯O4vi 0.93 2.38 3.156 (3) 141
C45—H45⋯Cl2iii 0.93 2.54 3.405 (3) 155
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) x-1, y, z; (iv) -x+1, -y, -z; (v) -x, -y+1, -z+1; (vi) -x, -y, -z.

Data collection: R3m Software (Nicolet, 1980[Nicolet (1980). R3m Software. Nicolet XRD Corporation, Cupertino, USA.]); cell refinement: R3m Software; data reduction: OMNIBUS (Gałdecka, 2002[Gałdecka, E. (2002). J. Appl. Cryst. 35, 641-643.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Coordination compounds of 1-substituted tetrazoles have been the subject of many investigations (Gaponik et al., 2006). Among reported metal(II) halide complexes containing 1-alkyltetrazoles overwhelming majority present copper(II) complexes CuL2X2, where L = 1-alkyltetrazole, X = Cl or Br. Until now, only one cobalt(II) chloride complex with 1-allyltetrazole of composition CoL2Cl2 have been structurally characterized (Shvedenkov et al., 2003). Here we present novel cobalt(II) chloride complex, namely CoL4Cl2 where L is 1-(2-hydroxyethyl)tetrazole, obtained by dissolving metallic cobalt in a methanol solution of 1-(2-hydroxyethyl)tetrazole in presence of hydrochloric acid in air. This is the first complex of such composition among metal(II) halide with 1-alkyltetrazoles obtained by now.

The title compound, (I), presents molecular complex, with two Co atoms in the asymmetric unit, both lying on inversion centres (Fig.1). Co atoms adopt rather distorted octahedral coordination composed of two Cl atoms in axial positions and four tetrazole ring N4 atoms in equatorial sites (Table 1). So, the complex molecules present trans-isomers.

The tetrazole ring geometry of ligand molecules is usual for 1-substituted tetrazoles (Cambridge Structural Database, Version 5.30 of November 2008; Allen, 2002).

The crystal packing of (I) is stabilized by a series of intermolecular hydrogen bonds (Table 2). Classic HB, O—H···O and O—H···Cl, link complex molecules to polymeric layers parallel to the ac plane (Fig. 2). Non-classic HB CTz—H···Cl, formed by the tetrazole ring C—H groups, are additional within the layers. The above layers are connected via non-classic CTz—H···O hydrogen bonds to give three-dimensional polymeric network (Fig. 3).

Related literature top

For a review of complexes of 1-substituted tetrazoles, see: Gaponik et al. (2006). For the crystal structure of a related Co(II) complex, see: Shvedenkov et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture, containing cobalt powder (0.06 g, 0.001 mol), 1-(2-hydroxyethyl)tetrazole (0.47 g, 0.0041 mol), 5 ml of methanol and 0.2 ml of concentrated solution of HCl, was heated at 325 K with stirring on air until the metal was fully dissolved (6 h). Pink crystals of the title complex were grown by slow evaporation of the reaction mixture in air at room temperature during two weeks. The crystals were filtered off, washed with diethyl ether and dried in air (0.45 g, yield 85%; m.p. 383 K; decomp. 468 K). Calc. (%): Cu 10.1, Cl 12.1. Found (%): Cu 10.2, Cl 12.8. IR (cm-1): 3391 (s), 3091 (s), 3134 (s), 2896 (m), 2946 (m), 2975 (s), 1623 (s), 1497 (s), 1437 (s), 1380 (w), 1359 (m), 1275 (m), 1247 (w), 1171 (s), 1099 (s), 1062 (s), 998 (s), 259 (s), 200 (m), 176(m).

Refinement top

H atoms were placed in calculated positions and refined using riding model, with Uiso(H)=1.2Ueq(C) for the methylene and the tetrazole ring CH group, and Uiso(H)=1.5Ueq(O) for the hydroxyl groups.

Structure description top

Coordination compounds of 1-substituted tetrazoles have been the subject of many investigations (Gaponik et al., 2006). Among reported metal(II) halide complexes containing 1-alkyltetrazoles overwhelming majority present copper(II) complexes CuL2X2, where L = 1-alkyltetrazole, X = Cl or Br. Until now, only one cobalt(II) chloride complex with 1-allyltetrazole of composition CoL2Cl2 have been structurally characterized (Shvedenkov et al., 2003). Here we present novel cobalt(II) chloride complex, namely CoL4Cl2 where L is 1-(2-hydroxyethyl)tetrazole, obtained by dissolving metallic cobalt in a methanol solution of 1-(2-hydroxyethyl)tetrazole in presence of hydrochloric acid in air. This is the first complex of such composition among metal(II) halide with 1-alkyltetrazoles obtained by now.

The title compound, (I), presents molecular complex, with two Co atoms in the asymmetric unit, both lying on inversion centres (Fig.1). Co atoms adopt rather distorted octahedral coordination composed of two Cl atoms in axial positions and four tetrazole ring N4 atoms in equatorial sites (Table 1). So, the complex molecules present trans-isomers.

The tetrazole ring geometry of ligand molecules is usual for 1-substituted tetrazoles (Cambridge Structural Database, Version 5.30 of November 2008; Allen, 2002).

The crystal packing of (I) is stabilized by a series of intermolecular hydrogen bonds (Table 2). Classic HB, O—H···O and O—H···Cl, link complex molecules to polymeric layers parallel to the ac plane (Fig. 2). Non-classic HB CTz—H···Cl, formed by the tetrazole ring C—H groups, are additional within the layers. The above layers are connected via non-classic CTz—H···O hydrogen bonds to give three-dimensional polymeric network (Fig. 3).

For a review of complexes of 1-substituted tetrazoles, see: Gaponik et al. (2006). For the crystal structure of a related Co(II) complex, see: Shvedenkov et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: R3m Software (Nicolet, 1980); cell refinement: R3m Software (Nicolet, 1980); data reduction: OMNIBUS (Gałdecka, 2002); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Two complex molecules in the crystal structure of (I), with atom numbering for the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A layer in the structure of (I) parallel with the ac plane formed by classic hydrogen bonds O—H···O and O—H···Cl (dashed lines). Only H atoms, participating in classic hydrogen bonds, are shown.
[Figure 3] Fig. 3. The crystal structure of (I) viewed along the a axis. Dashed lines show hydrogen bonds.
trans-Dichloridotetrakis[1-(2-hydroxyethyl)-1H-tetrazole- κN4]cobalt(II) top
Crystal data top
[CoCl2(C3H6N4O)4]Z = 2
Mr = 586.30F(000) = 602
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Melting point: 383 K
a = 6.8971 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4602 (17) ÅCell parameters from 25 reflections
c = 19.761 (4) Åθ = 13.4–19.5°
α = 77.870 (14)°µ = 1.01 mm1
β = 86.721 (19)°T = 294 K
γ = 69.481 (17)°Prism, pink
V = 1180.4 (5) Å30.24 × 0.16 × 0.15 mm
Data collection top
Nicolet R3m four-circle
diffractometer
3747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.6°, θmin = 1.1°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1112
Tmin = 0.794, Tmax = 0.863l = 2525
5904 measured reflections2 standard reflections every 100 reflections
5449 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.031P)2 + 0.9939P]
where P = (Fo2 + 2Fc2)/3
5449 reflections(Δ/σ)max < 0.001
323 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[CoCl2(C3H6N4O)4]γ = 69.481 (17)°
Mr = 586.30V = 1180.4 (5) Å3
Triclinic, P1Z = 2
a = 6.8971 (19) ÅMo Kα radiation
b = 9.4602 (17) ŵ = 1.01 mm1
c = 19.761 (4) ÅT = 294 K
α = 77.870 (14)°0.24 × 0.16 × 0.15 mm
β = 86.721 (19)°
Data collection top
Nicolet R3m four-circle
diffractometer
3747 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.794, Tmax = 0.8632 standard reflections every 100 reflections
5904 measured reflections intensity decay: none
5449 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.58 e Å3
5449 reflectionsΔρmin = 0.32 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.50000.02622 (12)
Cl10.33214 (10)0.17425 (8)0.44772 (3)0.03638 (16)
N110.1924 (3)0.3322 (2)0.56697 (11)0.0329 (5)
N120.0116 (4)0.3971 (3)0.57773 (15)0.0471 (6)
N130.1006 (4)0.3080 (3)0.56183 (14)0.0450 (6)
N140.0441 (3)0.1851 (2)0.54069 (11)0.0326 (5)
C150.2219 (4)0.2040 (3)0.54426 (14)0.0342 (6)
H150.34910.13800.53270.041*
C160.3466 (4)0.3983 (3)0.58033 (15)0.0389 (6)
H16A0.29330.50890.56310.047*
H16B0.47180.35560.55550.047*
C170.3979 (5)0.3655 (3)0.65626 (16)0.0445 (7)
H17A0.43200.25610.67500.053*
H17B0.51830.39230.66240.053*
O10.2309 (4)0.4496 (2)0.69294 (12)0.0564 (6)
H10.19330.38960.72220.085*
N210.2420 (3)0.1961 (3)0.31580 (11)0.0320 (5)
N220.3564 (4)0.0462 (3)0.32073 (13)0.0455 (6)
N230.2998 (4)0.0278 (3)0.37622 (13)0.0417 (6)
N240.1491 (3)0.0717 (2)0.40773 (11)0.0312 (5)
C250.1170 (4)0.2095 (3)0.36908 (14)0.0369 (6)
H250.02190.30130.37780.044*
C260.2763 (5)0.3161 (3)0.26103 (14)0.0417 (7)
H26A0.14920.40450.25210.050*
H26B0.31320.27700.21870.050*
C270.4452 (5)0.3655 (3)0.28125 (16)0.0458 (7)
H27A0.45270.45300.24680.055*
H27B0.41240.39810.32520.055*
O20.6405 (3)0.2449 (3)0.28720 (11)0.0480 (5)
H20.66700.20390.32810.072*
Co20.50000.00000.00000.02837 (12)
Cl20.84297 (10)0.16973 (8)0.04419 (4)0.03764 (16)
N310.1868 (4)0.1224 (3)0.18430 (12)0.0368 (5)
N320.3021 (4)0.2628 (3)0.17307 (14)0.0507 (7)
N330.4073 (4)0.2413 (3)0.11812 (14)0.0472 (7)
N340.3617 (3)0.0878 (2)0.09318 (11)0.0334 (5)
C350.2248 (4)0.0173 (3)0.13501 (14)0.0337 (6)
H350.16460.08890.13080.040*
C360.0403 (5)0.1038 (4)0.24140 (15)0.0464 (7)
H36A0.03480.01410.25890.056*
H36B0.08950.19330.27870.056*
C370.1743 (5)0.0850 (4)0.21924 (17)0.0511 (8)
H37A0.27010.05560.25590.061*
H37B0.21740.00280.17860.061*
O30.1834 (5)0.2206 (3)0.20404 (12)0.0682 (7)
H30.17870.21470.16200.102*
N410.3421 (3)0.3452 (2)0.06627 (11)0.0318 (5)
N420.5298 (4)0.3745 (3)0.09471 (13)0.0443 (6)
N430.6031 (4)0.2741 (3)0.08241 (13)0.0406 (6)
N440.4653 (3)0.1786 (2)0.04598 (11)0.0326 (5)
C450.3046 (4)0.2248 (3)0.03711 (14)0.0346 (6)
H450.18440.18010.01410.041*
C460.2061 (5)0.4333 (3)0.07074 (14)0.0377 (6)
H46A0.07680.38970.04810.045*
H46B0.27170.53910.04660.045*
C470.1617 (5)0.4311 (3)0.14470 (14)0.0386 (6)
H47A0.28760.48870.16550.046*
H47B0.06070.48070.14590.046*
O40.0844 (3)0.2775 (2)0.18342 (11)0.0432 (5)
H40.16050.26730.21610.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0253 (2)0.0280 (2)0.0256 (2)0.0109 (2)0.00245 (19)0.00379 (19)
Cl10.0302 (3)0.0385 (4)0.0346 (3)0.0074 (3)0.0020 (3)0.0023 (3)
N110.0332 (12)0.0315 (11)0.0356 (12)0.0121 (10)0.0050 (9)0.0098 (9)
N120.0347 (13)0.0423 (14)0.0682 (18)0.0114 (11)0.0058 (12)0.0246 (13)
N130.0314 (13)0.0444 (14)0.0629 (17)0.0121 (11)0.0078 (12)0.0223 (13)
N140.0310 (12)0.0320 (12)0.0363 (12)0.0118 (9)0.0034 (9)0.0093 (9)
C150.0302 (14)0.0343 (14)0.0410 (15)0.0115 (11)0.0062 (11)0.0147 (12)
C160.0406 (16)0.0359 (15)0.0484 (17)0.0213 (13)0.0058 (13)0.0136 (13)
C170.0465 (18)0.0400 (16)0.0512 (18)0.0150 (14)0.0017 (14)0.0178 (14)
O10.0714 (16)0.0409 (12)0.0480 (13)0.0071 (11)0.0100 (11)0.0142 (10)
N210.0338 (12)0.0337 (12)0.0284 (11)0.0146 (10)0.0032 (9)0.0016 (9)
N220.0558 (16)0.0366 (13)0.0438 (14)0.0174 (12)0.0207 (12)0.0105 (11)
N230.0475 (14)0.0316 (12)0.0446 (14)0.0139 (11)0.0174 (11)0.0092 (10)
N240.0310 (11)0.0307 (11)0.0305 (11)0.0102 (9)0.0078 (9)0.0057 (9)
C250.0343 (14)0.0309 (14)0.0384 (15)0.0074 (11)0.0066 (12)0.0005 (11)
C260.0446 (17)0.0445 (16)0.0321 (14)0.0195 (13)0.0014 (12)0.0074 (12)
C270.057 (2)0.0396 (16)0.0419 (17)0.0244 (15)0.0012 (14)0.0018 (13)
O20.0466 (12)0.0555 (13)0.0414 (12)0.0228 (11)0.0020 (10)0.0001 (10)
Co20.0272 (3)0.0275 (3)0.0326 (3)0.0113 (2)0.0062 (2)0.0092 (2)
Cl20.0288 (3)0.0396 (4)0.0415 (4)0.0086 (3)0.0040 (3)0.0082 (3)
N310.0374 (13)0.0353 (12)0.0340 (12)0.0121 (10)0.0061 (10)0.0018 (10)
N320.0539 (16)0.0317 (13)0.0546 (16)0.0084 (12)0.0135 (13)0.0024 (11)
N330.0461 (15)0.0292 (12)0.0563 (16)0.0068 (11)0.0165 (12)0.0026 (11)
N340.0327 (12)0.0285 (11)0.0373 (12)0.0105 (9)0.0061 (9)0.0044 (9)
C350.0362 (14)0.0294 (13)0.0345 (14)0.0120 (11)0.0069 (11)0.0054 (11)
C360.0562 (19)0.0509 (18)0.0338 (15)0.0231 (15)0.0149 (14)0.0082 (13)
C370.0527 (19)0.057 (2)0.0509 (19)0.0274 (16)0.0196 (15)0.0163 (16)
O30.106 (2)0.0774 (17)0.0483 (14)0.0632 (17)0.0223 (15)0.0207 (13)
N410.0370 (12)0.0334 (12)0.0285 (11)0.0157 (10)0.0021 (9)0.0080 (9)
N420.0465 (15)0.0453 (14)0.0502 (15)0.0205 (12)0.0122 (12)0.0242 (12)
N430.0400 (13)0.0427 (13)0.0458 (14)0.0188 (11)0.0124 (11)0.0189 (11)
N440.0311 (12)0.0354 (12)0.0348 (12)0.0129 (10)0.0043 (9)0.0130 (10)
C450.0324 (14)0.0365 (14)0.0391 (15)0.0133 (12)0.0056 (11)0.0162 (12)
C460.0491 (17)0.0352 (14)0.0354 (14)0.0233 (13)0.0021 (12)0.0066 (11)
C470.0484 (17)0.0319 (14)0.0384 (15)0.0169 (13)0.0031 (13)0.0070 (12)
O40.0442 (12)0.0343 (10)0.0431 (12)0.0087 (9)0.0006 (9)0.0006 (9)
Geometric parameters (Å, º) top
Co1—N242.144 (2)Co2—N44ii2.165 (2)
Co1—N24i2.144 (2)Co2—N442.165 (2)
Co1—N14i2.191 (2)Co2—N34ii2.168 (2)
Co1—N142.191 (2)Co2—N342.168 (2)
Co1—Cl1i2.4372 (10)Co2—Cl2ii2.4333 (10)
Co1—Cl12.4372 (10)Co2—Cl22.4333 (10)
N11—C151.326 (3)N31—C351.325 (3)
N11—N121.348 (3)N31—N321.345 (3)
N11—C161.469 (3)N31—C361.467 (3)
N12—N131.297 (3)N32—N331.292 (3)
N13—N141.366 (3)N33—N341.359 (3)
N14—C151.308 (3)N34—C351.312 (3)
C15—H150.9300C35—H350.9300
C16—C171.504 (4)C36—C371.507 (4)
C16—H16A0.9700C36—H36A0.9700
C16—H16B0.9700C36—H36B0.9700
C17—O11.410 (3)C37—O31.400 (4)
C17—H17A0.9700C37—H37A0.9700
C17—H17B0.9700C37—H37B0.9700
O1—H10.8200O3—H30.8200
N21—C251.320 (3)N41—C451.322 (3)
N21—N221.346 (3)N41—N421.342 (3)
N21—C261.469 (3)N41—C461.474 (3)
N22—N231.290 (3)N42—N431.290 (3)
N23—N241.356 (3)N43—N441.353 (3)
N24—C251.316 (3)N44—C451.318 (3)
C25—H250.9300C45—H450.9300
C26—C271.500 (4)C46—C471.505 (4)
C26—H26A0.9700C46—H46A0.9700
C26—H26B0.9700C46—H46B0.9700
C27—O21.419 (4)C47—O41.421 (3)
C27—H27A0.9700C47—H47A0.9700
C27—H27B0.9700C47—H47B0.9700
O2—H20.8200O4—H40.8200
N24—Co1—N24i180.00 (10)N44ii—Co2—N44180.000 (1)
N24—Co1—N14i92.41 (8)N44ii—Co2—N34ii88.52 (8)
N24i—Co1—N14i87.59 (8)N44—Co2—N34ii91.48 (8)
N24—Co1—N1487.59 (8)N44ii—Co2—N3491.48 (8)
N24i—Co1—N1492.41 (8)N44—Co2—N3488.52 (8)
N14i—Co1—N14180.0N34ii—Co2—N34180.00 (8)
N24—Co1—Cl1i91.04 (6)N44ii—Co2—Cl2ii90.56 (6)
N24i—Co1—Cl1i88.96 (6)N44—Co2—Cl2ii89.45 (6)
N14i—Co1—Cl1i91.03 (6)N34ii—Co2—Cl2ii90.42 (6)
N14—Co1—Cl1i88.97 (6)N34—Co2—Cl2ii89.58 (6)
N24—Co1—Cl188.96 (6)N44ii—Co2—Cl289.45 (6)
N24i—Co1—Cl191.04 (6)N44—Co2—Cl290.55 (6)
N14i—Co1—Cl188.97 (6)N34ii—Co2—Cl289.58 (6)
N14—Co1—Cl191.03 (6)N34—Co2—Cl290.42 (6)
Cl1i—Co1—Cl1180.00 (2)Cl2ii—Co2—Cl2180.0
C15—N11—N12108.2 (2)C35—N31—N32108.4 (2)
C15—N11—C16128.7 (2)C35—N31—C36130.1 (2)
N12—N11—C16123.1 (2)N32—N31—C36121.4 (2)
N13—N12—N11106.7 (2)N33—N32—N31106.8 (2)
N12—N13—N14109.9 (2)N32—N33—N34109.9 (2)
C15—N14—N13105.9 (2)C35—N34—N33106.3 (2)
C15—N14—Co1124.65 (18)C35—N34—Co2131.63 (18)
N13—N14—Co1129.21 (17)N33—N34—Co2122.09 (17)
N14—C15—N11109.3 (2)N34—C35—N31108.7 (2)
N14—C15—H15125.4N34—C35—H35125.7
N11—C15—H15125.4N31—C35—H35125.7
N11—C16—C17111.7 (2)N31—C36—C37112.1 (3)
N11—C16—H16A109.3N31—C36—H36A109.2
C17—C16—H16A109.3C37—C36—H36A109.2
N11—C16—H16B109.3N31—C36—H36B109.2
C17—C16—H16B109.3C37—C36—H36B109.2
H16A—C16—H16B107.9H36A—C36—H36B107.9
O1—C17—C16111.5 (3)O3—C37—C36112.0 (3)
O1—C17—H17A109.3O3—C37—H37A109.2
C16—C17—H17A109.3C36—C37—H37A109.2
O1—C17—H17B109.3O3—C37—H37B109.2
C16—C17—H17B109.3C36—C37—H37B109.2
H17A—C17—H17B108.0H37A—C37—H37B107.9
C17—O1—H1109.5C37—O3—H3109.5
C25—N21—N22108.5 (2)C45—N41—N42108.1 (2)
C25—N21—C26129.8 (2)C45—N41—C46128.3 (2)
N22—N21—C26121.5 (2)N42—N41—C46123.6 (2)
N23—N22—N21106.7 (2)N43—N42—N41107.2 (2)
N22—N23—N24110.2 (2)N42—N43—N44109.9 (2)
C25—N24—N23105.9 (2)C45—N44—N43106.0 (2)
C25—N24—Co1130.62 (18)C45—N44—Co2124.45 (17)
N23—N24—Co1123.40 (16)N43—N44—Co2129.29 (17)
N24—C25—N21108.8 (2)N44—C45—N41108.9 (2)
N24—C25—H25125.6N44—C45—H45125.6
N21—C25—H25125.6N41—C45—H45125.6
N21—C26—C27111.3 (2)N41—C46—C47111.7 (2)
N21—C26—H26A109.4N41—C46—H46A109.3
C27—C26—H26A109.4C47—C46—H46A109.3
N21—C26—H26B109.4N41—C46—H46B109.3
C27—C26—H26B109.4C47—C46—H46B109.3
H26A—C26—H26B108.0H46A—C46—H46B108.0
O2—C27—C26111.9 (3)O4—C47—C46110.8 (2)
O2—C27—H27A109.2O4—C47—H47A109.5
C26—C27—H27A109.2C46—C47—H47A109.5
O2—C27—H27B109.2O4—C47—H47B109.5
C26—C27—H27B109.2C46—C47—H47B109.5
H27A—C27—H27B107.9H47A—C47—H47B108.1
C27—O2—H2109.5C47—O4—H4109.5
C15—N11—N12—N130.2 (3)C35—N31—N32—N330.2 (3)
C16—N11—N12—N13179.0 (2)C36—N31—N32—N33177.3 (3)
N11—N12—N13—N140.0 (3)N31—N32—N33—N340.1 (4)
N12—N13—N14—C150.2 (3)N32—N33—N34—C350.1 (3)
N12—N13—N14—Co1175.40 (19)N32—N33—N34—Co2178.8 (2)
N24—Co1—N14—C1553.8 (2)N44ii—Co2—N34—C3541.8 (3)
N24i—Co1—N14—C15126.2 (2)N44—Co2—N34—C35138.2 (3)
Cl1i—Co1—N14—C1537.3 (2)Cl2ii—Co2—N34—C3548.7 (3)
Cl1—Co1—N14—C15142.7 (2)Cl2—Co2—N34—C35131.3 (3)
N24—Co1—N14—N13120.6 (2)N44ii—Co2—N34—N33139.8 (2)
N24i—Co1—N14—N1359.4 (2)N44—Co2—N34—N3340.2 (2)
Cl1i—Co1—N14—N13148.4 (2)Cl2ii—Co2—N34—N33129.6 (2)
Cl1—Co1—N14—N1331.6 (2)Cl2—Co2—N34—N3350.4 (2)
N13—N14—C15—N110.4 (3)N33—N34—C35—N310.2 (3)
Co1—N14—C15—N11175.83 (16)Co2—N34—C35—N31178.73 (19)
N12—N11—C15—N140.4 (3)N32—N31—C35—N340.2 (3)
C16—N11—C15—N14178.8 (2)C36—N31—C35—N34177.0 (3)
C15—N11—C16—C17101.2 (3)C35—N31—C36—C3784.0 (4)
N12—N11—C16—C1777.8 (3)N32—N31—C36—C3792.4 (3)
N11—C16—C17—O170.2 (3)N31—C36—C37—O368.6 (3)
C25—N21—N22—N230.1 (3)C45—N41—N42—N430.3 (3)
C26—N21—N22—N23175.4 (3)C46—N41—N42—N43178.5 (2)
N21—N22—N23—N240.2 (3)N41—N42—N43—N440.0 (3)
N22—N23—N24—C250.2 (3)N42—N43—N44—C450.4 (3)
N22—N23—N24—Co1177.84 (19)N42—N43—N44—Co2173.47 (19)
N14i—Co1—N24—C25131.3 (3)N34ii—Co2—N44—C45141.5 (2)
N14—Co1—N24—C2548.7 (3)N34—Co2—N44—C4538.5 (2)
Cl1i—Co1—N24—C25137.6 (3)Cl2ii—Co2—N44—C4551.1 (2)
Cl1—Co1—N24—C2542.4 (3)Cl2—Co2—N44—C45128.9 (2)
N14i—Co1—N24—N2346.2 (2)N34ii—Co2—N44—N4345.6 (2)
N14—Co1—N24—N23133.8 (2)N34—Co2—N44—N43134.4 (2)
Cl1i—Co1—N24—N2344.8 (2)Cl2ii—Co2—N44—N43136.0 (2)
Cl1—Co1—N24—N23135.2 (2)Cl2—Co2—N44—N4344.0 (2)
N23—N24—C25—N210.2 (3)N43—N44—C45—N410.6 (3)
Co1—N24—C25—N21177.68 (18)Co2—N44—C45—N41173.65 (17)
N22—N21—C25—N240.1 (3)N42—N41—C45—N440.6 (3)
C26—N21—C25—N24175.1 (3)C46—N41—C45—N44178.6 (2)
C25—N21—C26—C2789.6 (4)C45—N41—C46—C47120.9 (3)
N22—N21—C26—C2784.9 (3)N42—N41—C46—C4756.9 (3)
N21—C26—C27—O265.8 (3)N41—C46—C47—O453.2 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.942.741 (3)165
O2—H2···Cl1iii0.822.323.104 (2)160
O3—H3···Cl2iv0.822.283.098 (3)173
O4—H4···O2ii0.821.942.757 (3)175
C15—H15···Cl1iii0.932.763.482 (3)135
C25—H25···O1v0.932.563.303 (4)137
C35—H35···O4vi0.932.383.156 (3)141
C45—H45···Cl2iv0.932.543.405 (3)155
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x, y, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C3H6N4O)4]
Mr586.30
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.8971 (19), 9.4602 (17), 19.761 (4)
α, β, γ (°)77.870 (14), 86.721 (19), 69.481 (17)
V3)1180.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.24 × 0.16 × 0.15
Data collection
DiffractometerNicolet R3m four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.794, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
5904, 5449, 3747
Rint0.024
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.04
No. of reflections5449
No. of parameters323
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.32

Computer programs: R3m Software (Nicolet, 1980), OMNIBUS (Gałdecka, 2002), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N242.144 (2)Co2—N442.165 (2)
Co1—N142.191 (2)Co2—N342.168 (2)
Co1—Cl12.4372 (10)Co2—Cl22.4333 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.942.741 (3)165.
O2—H2···Cl1ii0.822.323.104 (2)160.
O3—H3···Cl2iii0.822.283.098 (3)173.
O4—H4···O2iv0.821.942.757 (3)175.
C15—H15···Cl1ii0.932.763.482 (3)135.
C25—H25···O1v0.932.563.303 (4)137.
C35—H35···O4vi0.932.383.156 (3)141.
C45—H45···Cl2iii0.932.543.405 (3)155.
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y+1, z+1; (vi) x, y, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGałdecka, E. (2002). J. Appl. Cryst. 35, 641–643.  CrossRef IUCr Journals Google Scholar
First citationGaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev. 75, 507–539.  CrossRef CAS Google Scholar
First citationNicolet (1980). R3m Software. Nicolet XRD Corporation, Cupertino, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShvedenkov, Y. G., Virovets, A. V. & Lavrenova, L. G. (2003). Russ. Chem. Bull. 52, 1353–1357.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds