metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η6-p-Cymene)bis­­(tri­chlorido­stannyl)(tri­eth­oxy­phosphine-κP)ruthenium(II)

aInstitut de Chimie, Université de Neuchâtel, Case postale 158, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch

(Received 15 October 2009; accepted 19 October 2009; online 23 October 2009)

In the title complex, [RuSn2(C10H14)Cl6(C6H15O3P)], the Ru—Sn bond lengths [2.5619 (3) and 2.5669 (3) Å] are about 0.3 Å shorter than the sum of the covalent Ru and Sn radii (1.46 + 1.39 = 2.85 Å), in line with other structurally characterized arene ruthenium trichlorido­stannyl derivatives. The Ru(II) atom is surrounded by a para-cymene, a triethylphosphite and two trichloridostannyl ligands in a typical piano-stool coordination.

Related literature

For the synthesis of the P(OMe)3 analogue (η6-p-cymene){bis­(trichlorido­stannyl-κSn)}(trimethyl­phosphite-κP)ruth­enium(II), see: Hodson & Simpson (2004[Hodson, E. & Simpson, S. J. (2004). Polyhedron, 23, 2695-2707.]). For the structures of other trichloro­stannyl arene ruthenium derivatives, see: Cordero et al. (2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]); Korp & Bernal (1981[Korp, J. D. & Bernal, I. (1981). Inorg. Chem. 20, 4065-4069.]); Alvarez et al. (1994[Alvarez, B., Miguel, D., Pérez-Martínez, J. A. & Riera, V. (1994). J. Organomet. Chem. 474, 143-147.]); Therrien et al. (2009[Therrien, B., Thai, T.-T., Freudenreich, J., Süss-Fink, G., Shapovalov, S. S., Pasynskii, A. A. & Plasseraud, L. (2009). J. Organomet. Chem. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • [RuSn2(C10H14)Cl6(C6H15O3P)]

  • Mr = 851.51

  • Orthorhombic, P c 21 b

  • a = 8.8928 (4) Å

  • b = 16.2936 (6) Å

  • c = 18.9520 (11) Å

  • V = 2746.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 173 K

  • 0.17 × 0.15 × 0.08 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.616, Tmax = 0.886

  • 26284 measured reflections

  • 4889 independent reflections

  • 4558 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.024

  • S = 0.89

  • 4889 reflections

  • 268 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2326 Friedel pairs

  • Flack parameter: −0.031 (11)

Data collection: EXPOSE (Stoe, 2000[Stoe (2000). EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe, 2000[Stoe (2000). EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe, 2000[Stoe (2000). EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Insertion of tin dichloride into ruthenium-halogen bonds remains scarce, in spite of the rich chemistry of this metal. Recently, we reported the synthesis of neutral, anionic and cationic arene ruthenium complexes containing trichlorostannyl ligands (Therrien et al., 2009). A strategy similar to the one used by Hodson & Simpson (Hodson & Simpson, 2004) to synthesize [(η6-iPrC6H4Me)Ru{P(OMe)3}(SnCl3)2] was employed. We have now synthesized the triethylphosphite analogue and obtained good quality crystals of the neutral complex [(η6-iPrC6H4Me)Ru{P(OEt)3}(SnCl3)2].

scheme 1 here

The single-crystal X-ray structure analysis of [(η6-iPrC6H4Me)Ru{P(OEt)3}(SnCl3)2] reveals a typical piano-stool geometry with the ruthenium atom being coordinated by a para-cymene, a triethylphosphite and two trichlorostannyl ligands, see Fig. 1. The Ru—Sn bond lengths [2.5619 (3) and 2.5669 (3) Å] are about 0.3 Å shorter than the sum of the covalent Ru and Sn radii (1.46 + 1.39 = 2.85 Å)(Cordero et al., 2008), but are comparable to those found in other arene-Ru—Sn complexes (Korp & Bernal, 1981; Alvarez et al., 1994; Therrien et al., 2009). Similarly, the Ru—P bond distance [2.2579 (8) Å] is comparable to the one found in [(η6-iPrC6H4Me)Ru{P(OPh)3}Cl2] [2.2642 (8) Å] (Hodson & Simpson, 2004). The distance between Ru and the centroid of the arene ligand is normal at 1.779 Å. No meaningful interactions between independent complexes are observed in the crystal packing, the Cl···H-C distances ranging from 2.753 to 2.947 Å.

Related literature top

For the synthesis of the P(OMe)3 analogue (η6-p-cymene){bis(trichlorostannyl-κSn)}(trimethylphosphite-κP)ruthenium(II), see: Hodson & Simpson (2004). For the structures of other trichlorostannyl arene ruthenium derivatives, see: Cordero et al. (2008); Korp & Bernal (1981); Alvarez et al. (1994); Therrien et al. (2009).

Experimental top

(η6-p-Cymene){bis(trichlorostannyl-κSn)} (triethylphosphite-κP)ruthenium(II), was disolved in hot chloroform, and crystals suitable for X-ray diffraction analysis were obtained, after days, by slow evaporation of the chloroform solution.

1H NMR (400 MHz, DMSO-d6, p.p.m.): 6.30 (d, 2H, Hp-cym), 6.08 (d, 2H, Hp-cym), 4.13 (br, 6H, CH2), 3.04 (sept, 1H, CHp-cym), 2.32 (s, 3H, CH3), 1.30 (m, 15H, CH3)

13C{1H} NMR (100 MHz, DMSO-d6, p.p.m.): 118.7 (Cp-cym), 112.1 (Cp-cym), 92.5 (CHp-cym), 91.8 (CHp-cym), 64.3 (CH2), 30.3 (CH), 23.2 (CH3), 19.5 (CH3), 16.1 (CH3)

31P NMR (162 MHz, DMSO-d6): 127.0 p.p.m. (t, 2JP—Sn = 358 Hz)

119Sn NMR (149 MHz, DMSO-d6): -241.4 p.p.m. (d)

Refinement top

The H atoms were included in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Insertion of tin dichloride into ruthenium-halogen bonds remains scarce, in spite of the rich chemistry of this metal. Recently, we reported the synthesis of neutral, anionic and cationic arene ruthenium complexes containing trichlorostannyl ligands (Therrien et al., 2009). A strategy similar to the one used by Hodson & Simpson (Hodson & Simpson, 2004) to synthesize [(η6-iPrC6H4Me)Ru{P(OMe)3}(SnCl3)2] was employed. We have now synthesized the triethylphosphite analogue and obtained good quality crystals of the neutral complex [(η6-iPrC6H4Me)Ru{P(OEt)3}(SnCl3)2].

scheme 1 here

The single-crystal X-ray structure analysis of [(η6-iPrC6H4Me)Ru{P(OEt)3}(SnCl3)2] reveals a typical piano-stool geometry with the ruthenium atom being coordinated by a para-cymene, a triethylphosphite and two trichlorostannyl ligands, see Fig. 1. The Ru—Sn bond lengths [2.5619 (3) and 2.5669 (3) Å] are about 0.3 Å shorter than the sum of the covalent Ru and Sn radii (1.46 + 1.39 = 2.85 Å)(Cordero et al., 2008), but are comparable to those found in other arene-Ru—Sn complexes (Korp & Bernal, 1981; Alvarez et al., 1994; Therrien et al., 2009). Similarly, the Ru—P bond distance [2.2579 (8) Å] is comparable to the one found in [(η6-iPrC6H4Me)Ru{P(OPh)3}Cl2] [2.2642 (8) Å] (Hodson & Simpson, 2004). The distance between Ru and the centroid of the arene ligand is normal at 1.779 Å. No meaningful interactions between independent complexes are observed in the crystal packing, the Cl···H-C distances ranging from 2.753 to 2.947 Å.

For the synthesis of the P(OMe)3 analogue (η6-p-cymene){bis(trichlorostannyl-κSn)}(trimethylphosphite-κP)ruthenium(II), see: Hodson & Simpson (2004). For the structures of other trichlorostannyl arene ruthenium derivatives, see: Cordero et al. (2008); Korp & Bernal (1981); Alvarez et al. (1994); Therrien et al. (2009).

Computing details top

Data collection: EXPOSE (Stoe, 2000); cell refinement: CELL (Stoe, 2000); data reduction: INTEGRATE (Stoe, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (η6-p-cymene){bis(trichlorostannyl-κSn)}- (triethylphosphite-κP)ruthenium(II). Displacement ellipsoids are drawn at the 50% probability level.
(η6-p-Cymene){bis(trichlorostannyl-κSn)} (triethylphosphite-κP)ruthenium(II) top
Crystal data top
[RuSn2(C10H14)Cl6(C6H15O3P)]F(000) = 1640
Mr = 851.51Dx = 2.060 Mg m3
Orthorhombic, Pc21bMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2bc -2cCell parameters from 28214 reflections
a = 8.8928 (4) Åθ = 1.3–25.6°
b = 16.2936 (6) ŵ = 3.01 mm1
c = 18.9520 (11) ÅT = 173 K
V = 2746.1 (2) Å3Block, orange
Z = 40.17 × 0.15 × 0.08 mm
Data collection top
STOE IPDS
diffractometer
4889 independent reflections
Radiation source: fine-focus sealed tube4558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0.81 pixels mm-1θmax = 25.2°, θmin = 2.2°
φ oscillation scansh = 1010
Absorption correction: part of the refinement model (ΔF)
Walker & Stuart, 1983
k = 1919
Tmin = 0.616, Tmax = 0.886l = 2222
26284 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.014H-atom parameters constrained
wR(F2) = 0.024 w = 1/[σ2(Fo2) + (0.0108P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.002
4889 reflectionsΔρmax = 0.30 e Å3
268 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 2326 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.031 (11)
Crystal data top
[RuSn2(C10H14)Cl6(C6H15O3P)]V = 2746.1 (2) Å3
Mr = 851.51Z = 4
Orthorhombic, Pc21bMo Kα radiation
a = 8.8928 (4) ŵ = 3.01 mm1
b = 16.2936 (6) ÅT = 173 K
c = 18.9520 (11) Å0.17 × 0.15 × 0.08 mm
Data collection top
STOE IPDS
diffractometer
4889 independent reflections
Absorption correction: part of the refinement model (ΔF)
Walker & Stuart, 1983
4558 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.886Rint = 0.031
26284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.014H-atom parameters constrained
wR(F2) = 0.024Δρmax = 0.30 e Å3
S = 0.89Δρmin = 0.26 e Å3
4889 reflectionsAbsolute structure: Flack (1983), 2326 Friedel pairs
268 parametersAbsolute structure parameter: 0.031 (11)
1 restraint
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, φ oscillation scans 0 - 200°, step Δφ = 1.2°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4369 (3)0.18963 (16)0.16104 (15)0.0213 (6)
C20.5192 (3)0.15987 (16)0.21998 (16)0.0215 (7)
H20.57800.11300.21480.026*
C30.5144 (3)0.19905 (16)0.28568 (16)0.0235 (7)
H30.57050.17830.32300.028*
C40.4245 (3)0.27025 (15)0.29587 (15)0.0246 (6)
C50.3507 (3)0.30259 (17)0.23696 (16)0.0248 (7)
H50.29590.35090.24160.030*
C60.3579 (3)0.26348 (17)0.17084 (16)0.0239 (7)
H60.30890.28720.13260.029*
C70.4264 (4)0.13923 (18)0.09405 (16)0.0297 (7)
H70.52210.11030.08780.036*
C80.3037 (4)0.0751 (2)0.1061 (2)0.0446 (9)
H8A0.32800.04290.14700.067*
H8B0.29690.03990.06560.067*
H8C0.20900.10210.11330.067*
C90.3967 (4)0.1888 (2)0.02797 (17)0.0429 (9)
H9A0.29870.21330.03080.064*
H9B0.40140.15350.01250.064*
H9C0.47130.23110.02370.064*
C100.4063 (4)0.30860 (18)0.36759 (16)0.0366 (8)
H10A0.39430.36690.36260.055*
H10B0.49380.29740.39560.055*
H10C0.31910.28600.39030.055*
C110.8662 (5)0.1675 (3)0.0268 (2)0.0730 (15)
H11A0.91620.21350.00440.088*
H11B0.94200.13490.05070.088*
C120.7944 (6)0.1187 (3)0.0257 (2)0.0658 (13)
H12A0.75930.06850.00480.099*
H12B0.86480.10630.06250.099*
H12C0.71070.14830.04500.099*
C210.9359 (3)0.15199 (17)0.21738 (17)0.0309 (7)
H21A0.93120.10430.18690.037*
H21B0.84480.15350.24550.037*
C221.0695 (3)0.14577 (18)0.26462 (17)0.0325 (7)
H22A1.15870.13950.23660.049*
H22B1.05840.09910.29510.049*
H22C1.07740.19470.29260.049*
C311.0134 (3)0.3573 (3)0.07419 (19)0.0437 (8)
H31A1.05850.30660.05770.052*
H31B1.07630.37950.11140.052*
C321.0025 (5)0.4164 (2)0.0157 (2)0.0662 (13)
H32A0.94320.39320.02160.099*
H32B1.10150.42860.00160.099*
H32C0.95580.46590.03220.099*
Cl10.84138 (10)0.27207 (5)0.38910 (4)0.0376 (2)
Cl21.01393 (8)0.41297 (5)0.26911 (5)0.0376 (2)
Cl30.68442 (9)0.47149 (4)0.35712 (4)0.03178 (17)
Cl40.74952 (9)0.53595 (4)0.14312 (5)0.03448 (18)
Cl50.36171 (9)0.50447 (5)0.17470 (5)0.03609 (19)
Cl60.52068 (10)0.42482 (6)0.01852 (4)0.0458 (2)
O10.7587 (2)0.19798 (12)0.07832 (11)0.0317 (5)
O20.9464 (2)0.22647 (11)0.17462 (10)0.0241 (4)
O30.8625 (2)0.34124 (12)0.10127 (10)0.0284 (5)
P10.79832 (8)0.26190 (4)0.13825 (4)0.02059 (16)
Ru10.59449 (2)0.290061 (12)0.205038 (11)0.01667 (5)
Sn10.775835 (19)0.357677 (11)0.292932 (10)0.02028 (4)
Sn20.57536 (2)0.427118 (11)0.139400 (9)0.02059 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0156 (14)0.0210 (15)0.0272 (16)0.0021 (12)0.0001 (13)0.0017 (12)
C20.0201 (15)0.0139 (14)0.0306 (19)0.0004 (11)0.0004 (13)0.0023 (12)
C30.0260 (16)0.0221 (15)0.0224 (17)0.0048 (12)0.0017 (14)0.0062 (14)
C40.0224 (15)0.0224 (16)0.0292 (16)0.0051 (12)0.0087 (14)0.0015 (12)
C50.0150 (14)0.0216 (16)0.0378 (17)0.0000 (12)0.0064 (12)0.0023 (13)
C60.0146 (14)0.0235 (16)0.0337 (18)0.0006 (12)0.0033 (13)0.0025 (13)
C70.0255 (17)0.0334 (17)0.0302 (18)0.0005 (14)0.0040 (14)0.0062 (13)
C80.0368 (19)0.046 (2)0.051 (2)0.0132 (16)0.0022 (18)0.0195 (19)
C90.052 (2)0.048 (2)0.0291 (19)0.0073 (18)0.0113 (17)0.0041 (15)
C100.0404 (19)0.0359 (19)0.0334 (18)0.0027 (15)0.0139 (16)0.0040 (14)
C110.036 (2)0.110 (4)0.073 (3)0.001 (2)0.016 (2)0.063 (3)
C120.085 (4)0.072 (3)0.041 (3)0.031 (2)0.001 (2)0.020 (2)
C210.0260 (17)0.0215 (15)0.045 (2)0.0014 (13)0.0013 (15)0.0075 (13)
C220.0243 (17)0.0323 (16)0.0409 (19)0.0047 (14)0.0020 (15)0.0071 (14)
C310.0286 (17)0.054 (2)0.0482 (19)0.0020 (18)0.0162 (15)0.0070 (19)
C320.079 (3)0.039 (2)0.080 (3)0.006 (2)0.052 (2)0.014 (2)
Cl10.0505 (5)0.0333 (5)0.0291 (4)0.0047 (4)0.0129 (4)0.0055 (3)
Cl20.0212 (4)0.0391 (5)0.0525 (5)0.0038 (3)0.0032 (3)0.0062 (4)
Cl30.0368 (4)0.0253 (4)0.0333 (4)0.0046 (3)0.0050 (4)0.0061 (3)
Cl40.0323 (4)0.0228 (4)0.0483 (5)0.0040 (3)0.0031 (4)0.0032 (3)
Cl50.0298 (4)0.0277 (4)0.0508 (5)0.0096 (3)0.0034 (4)0.0030 (4)
Cl60.0752 (6)0.0395 (4)0.0226 (4)0.0001 (5)0.0111 (4)0.0019 (4)
O10.0262 (12)0.0389 (12)0.0301 (12)0.0032 (9)0.0032 (10)0.0136 (9)
O20.0196 (11)0.0235 (10)0.0292 (11)0.0023 (9)0.0018 (8)0.0016 (9)
O30.0219 (10)0.0313 (12)0.0319 (11)0.0030 (9)0.0075 (9)0.0068 (9)
P10.0188 (4)0.0223 (4)0.0207 (4)0.0027 (3)0.0016 (3)0.0012 (3)
Ru10.01642 (11)0.01575 (10)0.01784 (11)0.00187 (9)0.00057 (9)0.00037 (10)
Sn10.02014 (9)0.02031 (9)0.02040 (9)0.00166 (9)0.00160 (8)0.00163 (10)
Sn20.02466 (10)0.01701 (8)0.02010 (9)0.00180 (9)0.00106 (9)0.00119 (9)
Geometric parameters (Å, º) top
C1—C61.406 (4)C11—H11A0.9700
C1—C21.421 (4)C11—H11B0.9700
C1—C71.515 (4)C12—H12A0.9600
C1—Ru12.310 (3)C12—H12B0.9600
C2—C31.400 (4)C12—H12C0.9600
C2—Ru12.242 (3)C21—O21.462 (3)
C2—H20.9300C21—C221.491 (4)
C3—C41.422 (4)C21—H21A0.9700
C3—Ru12.246 (3)C21—H21B0.9700
C3—H30.9300C22—H22A0.9600
C4—C51.398 (4)C22—H22B0.9600
C4—C101.505 (4)C22—H22C0.9600
C4—Ru12.314 (3)C31—O31.461 (3)
C5—C61.407 (4)C31—C321.471 (5)
C5—Ru12.260 (3)C31—H31A0.9700
C5—H50.9300C31—H31B0.9700
C6—Ru12.244 (3)C32—H32A0.9600
C6—H60.9300C32—H32B0.9600
C7—C91.513 (4)C32—H32C0.9600
C7—C81.528 (5)Cl1—Sn12.3679 (8)
C7—H70.9800Cl2—Sn12.3449 (8)
C8—H8A0.9600Cl3—Sn12.3621 (7)
C8—H8B0.9600Cl4—Sn22.3555 (8)
C8—H8C0.9600Cl5—Sn22.3761 (8)
C9—H9A0.9600Cl6—Sn22.3422 (7)
C9—H9B0.9600O1—P11.581 (2)
C9—H9C0.9600O2—P11.595 (2)
C10—H10A0.9600O3—P11.577 (2)
C10—H10B0.9600P1—Ru12.2579 (8)
C10—H10C0.9600Ru1—Sn22.5619 (3)
C11—C121.424 (5)Ru1—Sn12.5669 (3)
C11—O11.454 (4)
C6—C1—C2116.5 (3)H21A—C21—H21B108.2
C6—C1—C7122.9 (3)C21—C22—H22A109.5
C2—C1—C7120.4 (3)C21—C22—H22B109.5
C6—C1—Ru169.48 (16)H22A—C22—H22B109.5
C2—C1—Ru169.24 (15)C21—C22—H22C109.5
C7—C1—Ru1136.4 (2)H22A—C22—H22C109.5
C3—C2—C1121.8 (3)H22B—C22—H22C109.5
C3—C2—Ru171.95 (15)O3—C31—C32108.7 (3)
C1—C2—Ru174.43 (16)O3—C31—H31A109.9
C3—C2—H2119.1C32—C31—H31A109.9
C1—C2—H2119.1O3—C31—H31B109.9
Ru1—C2—H2126.5C32—C31—H31B109.9
C2—C3—C4120.7 (3)H31A—C31—H31B108.3
C2—C3—Ru171.70 (15)C31—C32—H32A109.5
C4—C3—Ru174.46 (16)C31—C32—H32B109.5
C2—C3—H3119.7H32A—C32—H32B109.5
C4—C3—H3119.7C31—C32—H32C109.5
Ru1—C3—H3126.0H32A—C32—H32C109.5
C5—C4—C3117.6 (3)H32B—C32—H32C109.5
C5—C4—C10121.0 (3)C11—O1—P1124.1 (2)
C3—C4—C10121.5 (3)C21—O2—P1119.14 (17)
C5—C4—Ru170.11 (15)C31—O3—P1129.4 (2)
C3—C4—Ru169.24 (15)O3—P1—O1107.53 (12)
C10—C4—Ru1133.19 (19)O3—P1—O2100.96 (10)
C4—C5—C6121.3 (3)O1—P1—O2104.84 (11)
C4—C5—Ru174.31 (16)O3—P1—Ru1111.89 (8)
C6—C5—Ru171.18 (16)O1—P1—Ru1110.96 (8)
C4—C5—H5119.4O2—P1—Ru1119.63 (8)
C6—C5—H5119.4C2—Ru1—C664.79 (10)
Ru1—C5—H5127.2C2—Ru1—C336.35 (9)
C1—C6—C5121.9 (3)C6—Ru1—C376.80 (11)
C1—C6—Ru174.60 (17)C2—Ru1—P196.78 (8)
C5—C6—Ru172.41 (16)C6—Ru1—P1123.48 (8)
C1—C6—H6119.1C3—Ru1—P1120.14 (8)
C5—C6—H6119.1C2—Ru1—C576.43 (10)
Ru1—C6—H6125.8C6—Ru1—C536.41 (10)
C9—C7—C1114.5 (3)C3—Ru1—C564.73 (10)
C9—C7—C8111.3 (3)P1—Ru1—C5159.80 (8)
C1—C7—C8106.9 (3)C2—Ru1—C136.34 (10)
C9—C7—H7108.0C6—Ru1—C135.93 (10)
C1—C7—H7108.0C3—Ru1—C165.51 (11)
C8—C7—H7108.0P1—Ru1—C198.08 (7)
C7—C8—H8A109.5C5—Ru1—C165.09 (10)
C7—C8—H8B109.5C2—Ru1—C465.10 (10)
H8A—C8—H8B109.5C6—Ru1—C464.86 (10)
C7—C8—H8C109.5C3—Ru1—C436.30 (10)
H8A—C8—H8C109.5P1—Ru1—C4155.96 (7)
H8B—C8—H8C109.5C5—Ru1—C435.58 (10)
C7—C9—H9A109.5C1—Ru1—C476.90 (10)
C7—C9—H9B109.5C2—Ru1—Sn2150.01 (8)
H9A—C9—H9B109.5C6—Ru1—Sn288.03 (7)
C7—C9—H9C109.5C3—Ru1—Sn2152.26 (7)
H9A—C9—H9C109.5P1—Ru1—Sn287.608 (19)
H9B—C9—H9C109.5C5—Ru1—Sn289.28 (7)
C4—C10—H10A109.5C1—Ru1—Sn2113.70 (7)
C4—C10—H10B109.5C4—Ru1—Sn2116.07 (6)
H10A—C10—H10B109.5C2—Ru1—Sn1120.77 (8)
C4—C10—H10C109.5C6—Ru1—Sn1149.24 (8)
H10A—C10—H10C109.5C3—Ru1—Sn192.35 (8)
H10B—C10—H10C109.5P1—Ru1—Sn186.94 (2)
C12—C11—O1111.4 (3)C5—Ru1—Sn1112.96 (8)
C12—C11—H11A109.3C1—Ru1—Sn1156.83 (7)
O1—C11—H11A109.3C4—Ru1—Sn189.29 (7)
C12—C11—H11B109.3Sn2—Ru1—Sn189.009 (9)
O1—C11—H11B109.3Cl2—Sn1—Cl396.22 (3)
H11A—C11—H11B108.0Cl2—Sn1—Cl198.76 (3)
C11—C12—H12A109.5Cl3—Sn1—Cl198.67 (3)
C11—C12—H12B109.5Cl2—Sn1—Ru1127.39 (2)
H12A—C12—H12B109.5Cl3—Sn1—Ru1117.06 (2)
C11—C12—H12C109.5Cl1—Sn1—Ru1113.66 (2)
H12A—C12—H12C109.5Cl6—Sn2—Cl4100.24 (3)
H12B—C12—H12C109.5Cl6—Sn2—Cl596.77 (3)
O2—C21—C22109.8 (2)Cl4—Sn2—Cl596.78 (3)
O2—C21—H21A109.7Cl6—Sn2—Ru1118.34 (3)
C22—C21—H21A109.7Cl4—Sn2—Ru1126.73 (2)
O2—C21—H21B109.7Cl5—Sn2—Ru1112.26 (2)
C22—C21—H21B109.7
C6—C1—C2—C33.9 (4)O1—P1—Ru1—Sn1166.88 (9)
C7—C1—C2—C3171.0 (3)O2—P1—Ru1—Sn144.64 (9)
Ru1—C1—C2—C356.5 (2)C4—C5—Ru1—C265.99 (16)
C6—C1—C2—Ru152.6 (2)C6—C5—Ru1—C265.73 (17)
C7—C1—C2—Ru1132.5 (3)C4—C5—Ru1—C6131.7 (2)
C1—C2—C3—C40.7 (4)C4—C5—Ru1—C329.33 (15)
Ru1—C2—C3—C458.4 (2)C6—C5—Ru1—C3102.39 (18)
C1—C2—C3—Ru157.7 (3)C4—C5—Ru1—P1138.28 (19)
C2—C3—C4—C54.5 (4)C6—C5—Ru1—P16.6 (3)
Ru1—C3—C4—C552.5 (2)C4—C5—Ru1—C1102.70 (17)
C2—C3—C4—C10174.2 (3)C6—C5—Ru1—C129.02 (16)
Ru1—C3—C4—C10128.8 (3)C6—C5—Ru1—C4131.7 (2)
C2—C3—C4—Ru157.0 (2)C4—C5—Ru1—Sn2140.62 (15)
C3—C4—C5—C63.6 (4)C6—C5—Ru1—Sn287.66 (16)
C10—C4—C5—C6175.1 (3)C4—C5—Ru1—Sn152.00 (16)
Ru1—C4—C5—C655.8 (2)C6—C5—Ru1—Sn1176.28 (14)
C3—C4—C5—Ru152.1 (2)C6—C1—Ru1—C2130.6 (3)
C10—C4—C5—Ru1129.2 (2)C7—C1—Ru1—C2112.7 (4)
C2—C1—C6—C54.8 (4)C2—C1—Ru1—C6130.6 (3)
C7—C1—C6—C5170.0 (3)C7—C1—Ru1—C6116.7 (4)
Ru1—C1—C6—C557.3 (2)C6—C1—Ru1—C3101.59 (19)
C2—C1—C6—Ru152.5 (2)C2—C1—Ru1—C329.03 (17)
C7—C1—C6—Ru1132.7 (3)C7—C1—Ru1—C3141.7 (3)
C4—C5—C6—C11.1 (4)C6—C1—Ru1—P1138.91 (17)
Ru1—C5—C6—C158.3 (3)C2—C1—Ru1—P190.47 (17)
C4—C5—C6—Ru157.2 (2)C7—C1—Ru1—P122.2 (3)
C6—C1—C7—C930.2 (4)C6—C1—Ru1—C529.39 (17)
C2—C1—C7—C9155.2 (3)C2—C1—Ru1—C5101.24 (19)
Ru1—C1—C7—C964.1 (4)C7—C1—Ru1—C5146.1 (3)
C6—C1—C7—C893.6 (4)C6—C1—Ru1—C465.03 (18)
C2—C1—C7—C881.0 (3)C2—C1—Ru1—C465.59 (18)
Ru1—C1—C7—C8172.1 (2)C7—C1—Ru1—C4178.3 (3)
C12—C11—O1—P1172.8 (3)C6—C1—Ru1—Sn247.97 (18)
C22—C21—O2—P1161.1 (2)C2—C1—Ru1—Sn2178.59 (15)
C32—C31—O3—P1151.6 (3)C7—C1—Ru1—Sn268.7 (3)
C31—O3—P1—O180.5 (3)C6—C1—Ru1—Sn1119.9 (2)
C31—O3—P1—O229.0 (3)C2—C1—Ru1—Sn110.8 (3)
C31—O3—P1—Ru1157.4 (2)C7—C1—Ru1—Sn1123.5 (3)
C11—O1—P1—O357.4 (3)C5—C4—Ru1—C2101.78 (18)
C11—O1—P1—O249.4 (3)C3—C4—Ru1—C229.78 (17)
C11—O1—P1—Ru1179.9 (3)C10—C4—Ru1—C2144.0 (3)
C21—O2—P1—O3178.3 (2)C5—C4—Ru1—C629.30 (16)
C21—O2—P1—O170.1 (2)C3—C4—Ru1—C6102.27 (18)
C21—O2—P1—Ru155.1 (2)C10—C4—Ru1—C6143.5 (3)
C3—C2—Ru1—C6102.3 (2)C5—C4—Ru1—C3131.6 (2)
C1—C2—Ru1—C629.49 (17)C10—C4—Ru1—C3114.2 (4)
C1—C2—Ru1—C3131.8 (3)C5—C4—Ru1—P1145.66 (16)
C3—C2—Ru1—P1133.74 (17)C3—C4—Ru1—P114.1 (3)
C1—C2—Ru1—P194.43 (16)C10—C4—Ru1—P1100.1 (3)
C3—C2—Ru1—C565.61 (19)C3—C4—Ru1—C5131.6 (2)
C1—C2—Ru1—C566.22 (18)C10—C4—Ru1—C5114.2 (3)
C3—C2—Ru1—C1131.8 (3)C5—C4—Ru1—C165.28 (16)
C3—C2—Ru1—C429.75 (18)C3—C4—Ru1—C166.29 (17)
C1—C2—Ru1—C4102.09 (19)C10—C4—Ru1—C1179.5 (3)
C3—C2—Ru1—Sn2129.25 (16)C5—C4—Ru1—Sn244.93 (17)
C1—C2—Ru1—Sn22.6 (3)C3—C4—Ru1—Sn2176.50 (14)
C3—C2—Ru1—Sn143.3 (2)C10—C4—Ru1—Sn269.3 (3)
C1—C2—Ru1—Sn1175.09 (14)C5—C4—Ru1—Sn1133.48 (15)
C1—C6—Ru1—C229.81 (17)C3—C4—Ru1—Sn194.95 (16)
C5—C6—Ru1—C2101.62 (19)C10—C4—Ru1—Sn119.2 (3)
C1—C6—Ru1—C366.31 (18)C2—Ru1—Sn1—Cl2120.51 (9)
C5—C6—Ru1—C365.12 (17)C6—Ru1—Sn1—Cl2147.70 (15)
C1—C6—Ru1—P151.28 (19)C3—Ru1—Sn1—Cl2144.50 (8)
C5—C6—Ru1—P1177.29 (13)P1—Ru1—Sn1—Cl224.44 (3)
C1—C6—Ru1—C5131.4 (3)C5—Ru1—Sn1—Cl2152.02 (8)
C5—C6—Ru1—C1131.4 (3)C1—Ru1—Sn1—Cl2127.92 (18)
C1—C6—Ru1—C4102.77 (19)C4—Ru1—Sn1—Cl2179.31 (7)
C5—C6—Ru1—C428.66 (16)Sn2—Ru1—Sn1—Cl263.22 (3)
C1—C6—Ru1—Sn2137.11 (17)C2—Ru1—Sn1—Cl3116.57 (9)
C5—C6—Ru1—Sn291.46 (16)C6—Ru1—Sn1—Cl324.78 (15)
C1—C6—Ru1—Sn1138.14 (15)C3—Ru1—Sn1—Cl392.58 (8)
C5—C6—Ru1—Sn16.7 (3)P1—Ru1—Sn1—Cl3147.36 (3)
C4—C3—Ru1—C2130.5 (3)C5—Ru1—Sn1—Cl329.10 (8)
C2—C3—Ru1—C665.21 (19)C1—Ru1—Sn1—Cl3109.16 (18)
C4—C3—Ru1—C665.32 (17)C4—Ru1—Sn1—Cl356.39 (7)
C2—C3—Ru1—P156.1 (2)Sn2—Ru1—Sn1—Cl359.70 (2)
C4—C3—Ru1—P1173.41 (14)C2—Ru1—Sn1—Cl12.45 (9)
C2—C3—Ru1—C5101.8 (2)C6—Ru1—Sn1—Cl189.34 (15)
C4—C3—Ru1—C528.77 (16)C3—Ru1—Sn1—Cl121.54 (8)
C2—C3—Ru1—C129.02 (18)P1—Ru1—Sn1—Cl198.52 (3)
C4—C3—Ru1—C1101.51 (18)C5—Ru1—Sn1—Cl185.02 (8)
C2—C3—Ru1—C4130.5 (3)C1—Ru1—Sn1—Cl14.96 (18)
C2—C3—Ru1—Sn2123.76 (18)C4—Ru1—Sn1—Cl157.73 (7)
C4—C3—Ru1—Sn26.8 (3)Sn2—Ru1—Sn1—Cl1173.82 (2)
C2—C3—Ru1—Sn1143.89 (17)C2—Ru1—Sn2—Cl633.98 (16)
C4—C3—Ru1—Sn185.58 (16)C6—Ru1—Sn2—Cl658.17 (8)
O3—P1—Ru1—C2166.35 (11)C3—Ru1—Sn2—Cl6114.37 (17)
O1—P1—Ru1—C246.25 (12)P1—Ru1—Sn2—Cl665.47 (3)
O2—P1—Ru1—C275.99 (11)C5—Ru1—Sn2—Cl694.56 (8)
O3—P1—Ru1—C6102.18 (12)C1—Ru1—Sn2—Cl632.31 (8)
O1—P1—Ru1—C617.93 (13)C4—Ru1—Sn2—Cl6118.83 (8)
O2—P1—Ru1—C6140.17 (12)Sn1—Ru1—Sn2—Cl6152.45 (3)
O3—P1—Ru1—C3163.96 (12)C2—Ru1—Sn2—Cl4164.87 (15)
O1—P1—Ru1—C375.93 (13)C6—Ru1—Sn2—Cl4170.95 (8)
O2—P1—Ru1—C346.31 (13)C3—Ru1—Sn2—Cl4114.74 (17)
O3—P1—Ru1—C597.5 (2)P1—Ru1—Sn2—Cl465.42 (3)
O1—P1—Ru1—C522.6 (2)C5—Ru1—Sn2—Cl4134.55 (8)
O2—P1—Ru1—C5144.8 (2)C1—Ru1—Sn2—Cl4163.20 (8)
O3—P1—Ru1—C1129.72 (11)C4—Ru1—Sn2—Cl4110.28 (8)
O1—P1—Ru1—C19.61 (12)Sn1—Ru1—Sn2—Cl421.56 (3)
O2—P1—Ru1—C1112.63 (11)C2—Ru1—Sn2—Cl577.46 (15)
O3—P1—Ru1—C4154.36 (19)C6—Ru1—Sn2—Cl553.27 (8)
O1—P1—Ru1—C485.5 (2)C3—Ru1—Sn2—Cl52.94 (17)
O2—P1—Ru1—C436.7 (2)P1—Ru1—Sn2—Cl5176.91 (3)
O3—P1—Ru1—Sn216.12 (8)C5—Ru1—Sn2—Cl516.87 (8)
O1—P1—Ru1—Sn2103.99 (9)C1—Ru1—Sn2—Cl579.13 (8)
O2—P1—Ru1—Sn2133.78 (9)C4—Ru1—Sn2—Cl57.39 (8)
O3—P1—Ru1—Sn173.01 (9)Sn1—Ru1—Sn2—Cl596.11 (2)

Experimental details

Crystal data
Chemical formula[RuSn2(C10H14)Cl6(C6H15O3P)]
Mr851.51
Crystal system, space groupOrthorhombic, Pc21b
Temperature (K)173
a, b, c (Å)8.8928 (4), 16.2936 (6), 18.9520 (11)
V3)2746.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.01
Crystal size (mm)0.17 × 0.15 × 0.08
Data collection
DiffractometerSTOE IPDS
Absorption correctionPart of the refinement model (ΔF)
Walker & Stuart, 1983
Tmin, Tmax0.616, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
26284, 4889, 4558
Rint0.031
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.024, 0.89
No. of reflections4889
No. of parameters268
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26
Absolute structureFlack (1983), 2326 Friedel pairs
Absolute structure parameter0.031 (11)

Computer programs: EXPOSE (Stoe, 2000), CELL (Stoe, 2000), INTEGRATE (Stoe, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP (Farrugia, 1997).

 

Acknowledgements

This work was supported by the Swiss National Science Foundation (grant No 200021–111795).

References

First citationAlvarez, B., Miguel, D., Pérez-Martínez, J. A. & Riera, V. (1994). J. Organomet. Chem. 474, 143–147.  CrossRef CAS Web of Science Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHodson, E. & Simpson, S. J. (2004). Polyhedron, 23, 2695–2707.  Web of Science CSD CrossRef CAS Google Scholar
First citationKorp, J. D. & Bernal, I. (1981). Inorg. Chem. 20, 4065–4069.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2000). EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTherrien, B., Thai, T.-T., Freudenreich, J., Süss-Fink, G., Shapovalov, S. S., Pasynskii, A. A. & Plasseraud, L. (2009). J. Organomet. Chem. In the press.  Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds