organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-[4-Hydr­­oxy-3-(hy­droxy­meth­yl)but­yl]guanine monohydrate

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenzfgxnu@yahoo.com

(Received 1 September 2009; accepted 23 October 2009; online 28 October 2009)

In the mol­ecular structure of the title compound, also named penciclovir monohydrate, C10H15N5O3·H2O, the 4-hydr­oxy-3-hydroxy­methyl­but-1-yl group is connected to guanine through an N atom of the imidazole ring. Water mol­ecules stabilize the mol­ecular packing by forming O—H⋯O hydrogen bonds. A three-dimensional network is generated via inter­molecular N—H⋯N, N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonding.

Related literature

For the synthesis and biological properies of penciclovir, see: Harnden & Jarvest (1985a[Harnden, M. R. & Jarvest, R. L. (1985a). Tetrahedron Lett. 26, 4265-4268.],b[Harnden, M. R. & Jarvest, R. L. (1985b). Eur. Patent 0141927A.]); Hodge et al.(1989[Hodge, R. A. V., Sutton, D., Boyd, M., Harnden, M. R. & Jarvest, R. L. (1989). Antimicrob. Agents Chemother. 33, 1765-1773.]); Boyd et al. (1987[Boyd, M. R., Bacon, T. H., Sutton, D. & Cole, M. (1987). Antimicrob. Agents Chemother. 31, 1238-1242.]). For the medicinal applications of penciclovir, see: Abdel-Hag et al. (2006[Abdel-Hag, N., Chearskul, P., Al-Tatari, H. & Asmar, B. (2006). Indian J. Pediatr. 73, 313-321.]); Andrei et al. (2004[Andrei, G., DeClercq, E. & Snoeck, R. (2004). Antiviral Res. 61, 181-187.]); Schmid-Wendtner & Korting (2004[Schmid-Wendtner, M. H. & Korting, H. C. (2004). Skin Pharmacol. Physiol. 17, 214-218.]); Smith et al. (2001[Smith, R. L., Morroni, J. & Wilcox, C. L. (2001). Antiviral Res. 52, 19-24.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15N5O3·H2O

  • Mr = 271.29

  • Orthorhombic, P n a 21

  • a = 8.2020 (16) Å

  • b = 13.889 (3) Å

  • c = 11.001 (2) Å

  • V = 1253.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.54 × 0.45 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.994

  • 6830 measured reflections

  • 1193 independent reflections

  • 1084 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.118

  • S = 1.06

  • 1193 reflections

  • 186 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.82 1.90 2.719 (3) 175
O3—H3A⋯N3ii 0.82 2.24 3.052 (3) 169
N4—H4⋯N2iii 0.96 (3) 1.86 (3) 2.816 (3) 176 (3)
O4—H4A⋯O2iv 0.86 (3) 1.93 (3) 2.787 (3) 178 (3)
O4—H4B⋯O1v 0.84 (3) 2.11 (5) 2.842 (3) 146 (3)
N5—H5A⋯O2i 0.86 2.15 2.898 (3) 146
N5—H5B⋯O1iii 0.86 2.11 2.931 (3) 159
Symmetry codes: (i) [-x, -y, z-{\script{1\over 2}}]; (ii) [-x, -y, z+{\script{1\over 2}}]; (iii) [-x, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine (I), known as penciclovir, is very effective for the treatment of herpes simplex virus, varicella zoster virus, Epstein–Barr virus, hepatitis virus and cytomegalovirus (Abdel-Hag et al., 2006; Andrei et al., 2004; Schmid-Wendtner and Korting, 2004; Smith et al., 2001). The crystal lattice is built from molecules of (I) and waters of crystallization (Fig. 1). The guanine ring in (I) is coplanar wherein the C—N bond distances range from 1.312 (4) to 1.395 (5) Å. Three dimensional network is generated via N—H···N, N—H···O (2.816 (3)–2.931 (3) Å,), O—H···N(3.052 (3) Å), and O—H···O(2.719 (3)–2.842 (3) Å) hydrogen bonds from water and penciclovir molecules (Fig.2).

Related literature top

For the synthesis and biological properies of penciclovir, see: Harnden & Jarvest (1985a,b); Hodge et al.(1989); Boyd et al. (1987). For the medicinal applications of penciclovir, see: Abdel-Hag et al. (2006); Andrei et al. (2004); Schmid-Wendtner & Korting (2004); Smith et al. (2001). AUTHORS: Provide figure captions (including probability level for ellipsoid plot).

Experimental top

0.2 mmol ZnCl2 dissolved in 5 ml ethanol was added into 10 ml water containing 0.3 mmol pencicolvir. The mixture was stirred at room temperature for 5 h. The resulting solution was filtered. The filtrate was allowed to stay at ambient temperature for three weeks. Colourless block crystals were thus obtained. Yeild: 50%.

Refinement top

The water H and N(4) bound H were found from a difference Fourier map and refined freely. Other H atoms were treated as riding, with C—H distances of 0.97 and 0.98 Å,N—H distances of 0.86 Å, these hydroxyl O—H distances of 0.82Å and were refined as riding with Uiso(H) = 1.2Ueq (C, N and O). Since the Flack value is 0(2) even after inverting the structure, the title compound is weak anomalous scatterer and therefore, Flack is meaningless.

Structure description top

9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine (I), known as penciclovir, is very effective for the treatment of herpes simplex virus, varicella zoster virus, Epstein–Barr virus, hepatitis virus and cytomegalovirus (Abdel-Hag et al., 2006; Andrei et al., 2004; Schmid-Wendtner and Korting, 2004; Smith et al., 2001). The crystal lattice is built from molecules of (I) and waters of crystallization (Fig. 1). The guanine ring in (I) is coplanar wherein the C—N bond distances range from 1.312 (4) to 1.395 (5) Å. Three dimensional network is generated via N—H···N, N—H···O (2.816 (3)–2.931 (3) Å,), O—H···N(3.052 (3) Å), and O—H···O(2.719 (3)–2.842 (3) Å) hydrogen bonds from water and penciclovir molecules (Fig.2).

For the synthesis and biological properies of penciclovir, see: Harnden & Jarvest (1985a,b); Hodge et al.(1989); Boyd et al. (1987). For the medicinal applications of penciclovir, see: Abdel-Hag et al. (2006); Andrei et al. (2004); Schmid-Wendtner & Korting (2004); Smith et al. (2001). AUTHORS: Provide figure captions (including probability level for ellipsoid plot).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I),showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Three-dimensional structure of (I) along [001] direction. Hydrogen bonds are shown as dashed lines.
9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine monohydrate top
Crystal data top
C10H15N5O3·H2OF(000) = 576
Mr = 271.29Dx = 1.438 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1193 reflections
a = 8.2020 (16) Åθ = 3.4–25.2°
b = 13.889 (3) ŵ = 0.11 mm1
c = 11.001 (2) ÅT = 293 K
V = 1253.2 (4) Å3Block, colorless
Z = 40.54 × 0.45 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1193 independent reflections
Radiation source: fine-focus sealed tube1084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 25.2°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 89
Tmin = 0.957, Tmax = 0.994k = 1616
6830 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
1193 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.15 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
C10H15N5O3·H2OV = 1253.2 (4) Å3
Mr = 271.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.2020 (16) ŵ = 0.11 mm1
b = 13.889 (3) ÅT = 293 K
c = 11.001 (2) Å0.54 × 0.45 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1084 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.994Rint = 0.075
6830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0504 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.15 e Å3
1193 reflectionsΔρmin = 0.31 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0269 (5)0.4750 (3)0.0559 (4)0.0321 (9)
C20.0398 (5)0.3455 (3)0.0873 (4)0.0354 (9)
C30.0027 (5)0.3211 (3)0.3070 (4)0.0374 (10)
H30.00180.30370.38860.045*
C40.0242 (5)0.3102 (2)0.1084 (4)0.0311 (9)
C50.0189 (5)0.0152 (3)0.2010 (4)0.0375 (9)
H50.07410.01760.14520.045*
C60.0126 (5)0.4027 (3)0.1448 (4)0.0323 (9)
C70.0735 (5)0.1556 (3)0.2279 (4)0.0396 (10)
H7A0.15670.13900.16890.048*
H7B0.11850.14480.30830.048*
C80.0713 (5)0.0901 (3)0.2102 (5)0.0383 (9)
H8A0.14580.09770.27800.046*
H8B0.12860.10840.13660.046*
C90.0360 (6)0.0601 (3)0.3195 (5)0.0537 (13)
H9A0.11900.01970.35630.064*
H9B0.08410.12260.30320.064*
C100.1551 (5)0.0729 (3)0.1431 (4)0.0424 (11)
H10A0.18370.04350.06600.051*
H10B0.25040.06990.19520.051*
N10.0334 (4)0.2576 (2)0.2150 (3)0.0352 (8)
N20.0253 (4)0.4092 (2)0.2691 (3)0.0356 (8)
N30.0498 (4)0.2759 (2)0.0038 (3)0.0354 (8)
N40.0054 (4)0.4399 (2)0.0607 (4)0.0359 (8)
N50.0645 (5)0.3259 (3)0.2040 (4)0.0506 (10)
H5A0.08710.26800.22630.061*
H5B0.05790.37100.25730.061*
O10.0604 (4)0.56135 (18)0.0709 (3)0.0396 (7)
O20.1144 (4)0.17160 (18)0.1226 (3)0.0485 (8)
H20.02190.17520.09480.073*
O30.0950 (6)0.0711 (3)0.4012 (4)0.0760 (12)
H3A0.08780.12340.43540.114*
O40.1827 (4)0.1915 (2)0.5157 (4)0.0518 (8)
H40.017 (7)0.489 (4)0.119 (6)0.068 (17)*
H4A0.243 (6)0.234 (3)0.549 (5)0.069 (17)*
H4B0.222 (9)0.1362 (19)0.527 (8)0.14 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (2)0.029 (2)0.031 (2)0.0005 (16)0.0003 (17)0.0003 (17)
C20.045 (2)0.031 (2)0.031 (2)0.0021 (16)0.0000 (18)0.0032 (19)
C30.050 (2)0.032 (2)0.030 (2)0.0036 (17)0.0007 (19)0.0023 (18)
C40.040 (2)0.0252 (18)0.028 (2)0.0044 (15)0.0008 (18)0.0019 (17)
C50.043 (2)0.031 (2)0.039 (3)0.0014 (16)0.000 (2)0.003 (2)
C60.041 (2)0.0264 (18)0.029 (2)0.0027 (15)0.0015 (17)0.0031 (17)
C70.051 (2)0.0270 (19)0.041 (3)0.0016 (17)0.0036 (19)0.0063 (19)
C80.041 (2)0.0288 (19)0.045 (3)0.0016 (16)0.003 (2)0.0041 (19)
C90.059 (3)0.042 (3)0.060 (4)0.004 (2)0.014 (3)0.006 (2)
C100.050 (2)0.033 (2)0.045 (3)0.0005 (17)0.008 (2)0.0043 (19)
N10.053 (2)0.0217 (14)0.031 (2)0.0013 (13)0.0017 (18)0.0038 (15)
N20.0508 (19)0.0308 (16)0.025 (2)0.0009 (15)0.0000 (16)0.0018 (15)
N30.0492 (19)0.0296 (17)0.028 (2)0.0021 (15)0.0012 (15)0.0013 (15)
N40.053 (2)0.0274 (17)0.028 (2)0.0031 (14)0.0004 (16)0.0017 (15)
N50.088 (3)0.0347 (18)0.029 (2)0.0071 (18)0.005 (2)0.0013 (16)
O10.0618 (18)0.0260 (13)0.0311 (18)0.0097 (13)0.0054 (13)0.0011 (12)
O20.0553 (17)0.0275 (13)0.063 (2)0.0027 (12)0.0003 (17)0.0004 (15)
O30.109 (3)0.066 (2)0.053 (3)0.018 (2)0.018 (2)0.0180 (19)
O40.0547 (18)0.0418 (17)0.059 (2)0.0001 (16)0.0074 (17)0.0026 (16)
Geometric parameters (Å, º) top
C1—O11.241 (5)C7—C81.508 (6)
C1—N41.397 (6)C7—H7A0.9700
C1—C61.407 (6)C7—H7B0.9700
C2—N51.329 (6)C8—H8A0.9700
C2—N31.336 (5)C8—H8B0.9700
C2—N41.372 (5)C9—O31.410 (6)
C3—N21.312 (5)C9—H9A0.9700
C3—N11.366 (6)C9—H9B0.9700
C3—H30.9300C10—O21.429 (5)
C4—N31.340 (5)C10—H10A0.9700
C4—C61.379 (5)C10—H10B0.9700
C4—N11.383 (5)N4—H40.94 (6)
C5—C91.514 (7)N5—H5A0.8600
C5—C101.515 (6)N5—H5B0.8600
C5—C81.528 (5)O2—H20.8200
C5—H50.9800O3—H3A0.8200
C6—N21.375 (5)O4—H4A0.85 (5)
C7—N11.461 (5)O4—H4B0.84 (2)
O1—C1—N4120.1 (4)C7—C8—H8B109.3
O1—C1—C6128.0 (4)C5—C8—H8B109.3
N4—C1—C6111.9 (3)H8A—C8—H8B108.0
N5—C2—N3120.4 (4)O3—C9—C5111.5 (4)
N5—C2—N4115.7 (4)O3—C9—H9A109.3
N3—C2—N4123.9 (4)C5—C9—H9A109.3
N2—C3—N1113.5 (4)O3—C9—H9B109.3
N2—C3—H3123.2C5—C9—H9B109.3
N1—C3—H3123.2H9A—C9—H9B108.0
N3—C4—C6129.3 (4)O2—C10—C5113.7 (3)
N3—C4—N1125.8 (3)O2—C10—H10A108.8
C6—C4—N1104.9 (4)C5—C10—H10A108.8
C9—C5—C10111.3 (3)O2—C10—H10B108.8
C9—C5—C8114.9 (4)C5—C10—H10B108.8
C10—C5—C8109.1 (3)H10A—C10—H10B107.7
C9—C5—H5107.0C3—N1—C4106.1 (3)
C10—C5—H5107.0C3—N1—C7126.6 (4)
C8—C5—H5107.0C4—N1—C7127.3 (4)
N2—C6—C4111.5 (4)C3—N2—C6104.0 (4)
N2—C6—C1129.7 (4)C2—N3—C4111.5 (3)
C4—C6—C1118.8 (4)C2—N4—C1124.6 (4)
N1—C7—C8113.3 (3)C2—N4—H4122 (4)
N1—C7—H7A108.9C1—N4—H4113 (4)
C8—C7—H7A108.9C2—N5—H5A120.0
N1—C7—H7B108.9C2—N5—H5B120.0
C8—C7—H7B108.9H5A—N5—H5B120.0
H7A—C7—H7B107.7C10—O2—H2109.5
C7—C8—C5111.4 (3)C9—O3—H3A109.5
C7—C8—H8A109.3H4A—O4—H4B110 (3)
C5—C8—H8A109.3
N3—C4—C6—N2178.4 (4)N3—C4—N1—C3178.5 (4)
N1—C4—C6—N20.4 (4)C6—C4—N1—C30.3 (4)
N3—C4—C6—C10.1 (6)N3—C4—N1—C70.5 (6)
N1—C4—C6—C1178.6 (3)C6—C4—N1—C7178.3 (3)
O1—C1—C6—N22.8 (7)C8—C7—N1—C398.2 (5)
N4—C1—C6—N2175.9 (4)C8—C7—N1—C484.2 (5)
O1—C1—C6—C4179.3 (4)N1—C3—N2—C60.2 (5)
N4—C1—C6—C42.0 (5)C4—C6—N2—C30.3 (5)
N1—C7—C8—C5169.4 (4)C1—C6—N2—C3178.4 (4)
C9—C5—C8—C772.7 (5)N5—C2—N3—C4178.8 (4)
C10—C5—C8—C7161.5 (4)N4—C2—N3—C40.8 (5)
C10—C5—C9—O356.0 (5)C6—C4—N3—C21.6 (6)
C8—C5—C9—O368.6 (5)N1—C4—N3—C2176.9 (4)
C9—C5—C10—O256.1 (5)N5—C2—N4—C1178.9 (4)
C8—C5—C10—O2176.0 (4)N3—C2—N4—C11.4 (6)
N2—C3—N1—C40.1 (4)O1—C1—N4—C2178.4 (4)
N2—C3—N1—C7178.1 (3)C6—C1—N4—C22.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.902.719 (3)175
O3—H3A···N3ii0.822.243.052 (3)169
N4—H4···N2iii0.96 (3)1.86 (3)2.816 (3)176 (3)
O4—H4A···O2iv0.86 (3)1.93 (3)2.787 (3)178 (3)
O4—H4B···O1v0.84 (3)2.11 (5)2.842 (3)146 (3)
N5—H5A···O2i0.862.152.898 (3)146
N5—H5B···O1iii0.862.112.931 (3)159
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H15N5O3·H2O
Mr271.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)8.2020 (16), 13.889 (3), 11.001 (2)
V3)1253.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.54 × 0.45 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.957, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
6830, 1193, 1084
Rint0.075
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 1.06
No. of reflections1193
No. of parameters186
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.31

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.820001.900002.719 (3)175
O3—H3A···N3ii0.820002.240003.052 (3)169
N4—H4···N2iii0.96 (3)1.86 (3)2.816 (3)176 (3)
O4—H4A···O2iv0.86 (3)1.93 (3)2.787 (3)178 (3)
O4—H4B···O1v0.84 (3)2.11 (5)2.842 (3)146 (3)
N5—H5A···O2i0.860002.150002.898 (3)146
N5—H5B···O1iii0.860002.110002.931 (3)159
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20861002), the 973 Plan of China (2009CB526503) and the Open Foundation of the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) for financial support.

References

First citationAbdel-Hag, N., Chearskul, P., Al-Tatari, H. & Asmar, B. (2006). Indian J. Pediatr. 73, 313–321.  PubMed Google Scholar
First citationAndrei, G., DeClercq, E. & Snoeck, R. (2004). Antiviral Res. 61, 181–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoyd, M. R., Bacon, T. H., Sutton, D. & Cole, M. (1987). Antimicrob. Agents Chemother. 31, 1238–1242.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarnden, M. R. & Jarvest, R. L. (1985a). Tetrahedron Lett. 26, 4265–4268.  CrossRef CAS Web of Science Google Scholar
First citationHarnden, M. R. & Jarvest, R. L. (1985b). Eur. Patent 0141927A.  Google Scholar
First citationHodge, R. A. V., Sutton, D., Boyd, M., Harnden, M. R. & Jarvest, R. L. (1989). Antimicrob. Agents Chemother. 33, 1765–1773.  CAS PubMed Google Scholar
First citationSchmid-Wendtner, M. H. & Korting, H. C. (2004). Skin Pharmacol. Physiol. 17, 214–218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, R. L., Morroni, J. & Wilcox, C. L. (2001). Antiviral Res. 52, 19–24.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds