metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-carbamimidoyl-2-ethyl­isourea)copper(II) dinitrate

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand, and bDepartment of Chemistry, Prince of Songkla University, Hatyai 90112, Thailand
*Correspondence e-mail: sunchul@kku.ac.th

(Received 1 October 2009; accepted 13 October 2009; online 17 October 2009)

The copper(II) complex, [Cu(C4H10N4O)2](NO3)2 or [Cu(L1e)2](NO3)2, where L1e is 1-carbamimidoyl-2-ethyl­isourea, was obtained from a 1:2 molar ratio of copper(II) nitrate hemipenta­hydrate with 2-cyano­guanidine in ethanol. The crystal structure consists of the centrosymmetric [Cu(L1e)2]2+ cation and two NO3 counter-anions. The cation exhibits four-coordinate bonding of the two N,N-bidentate ligands and the CuII atom through the N-donor atoms, yielding a square-planar CuN4 geometry. Inter­molecular N—H⋯O hydrogen bonds link between the cation and and counter-anion, forming a two-dimentional layered structure extending parallel to ([\overline3]01).

Related literature

For a copper(II) complex containg the same N,N-bidentate 1-carbamimidoyl-2-ethyl­isourea ligand but with the charge balance provided by two chloride and perchlorate anions, see: Begley et al. (1986[Begley, M. J., Hubberstey, P. & Moore, C. H. M. (1986). J. Chem. Res. (S), pp. 172-173. ]); Meenongwa et al. (2009[Meenongwa, A., Chaveerach, U., Wilson, C. & Blake, A. J. (2009). Acta Cryst. E65, m1171.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H10N4O)2](NO3)2

  • Mr = 447.89

  • Monoclinic, P 21 /n

  • a = 5.2547 (6) Å

  • b = 14.0087 (15) Å

  • c = 12.1511 (13) Å

  • β = 96.982 (2)°

  • V = 887.83 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 293 K

  • 0.26 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 1.00

  • 11998 measured reflections

  • 2206 independent reflections

  • 1810 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.05

  • 2206 reflections

  • 125 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 1.932 (4)
Cu1—N1i 1.932 (4)
Cu1—N2 1.967 (4)
Cu1—N2i 1.967 (4)
N1—Cu1—N1i 180.0
N1—Cu1—N2 88.33 (19)
N1i—Cu1—N2 91.67 (19)
N1—Cu1—N2i 91.67 (19)
N1i—Cu1—N2i 88.33 (19)
N2—Cu1—N2i 179.999 (1)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2ii 0.86 2.05 2.904 (7) 170
N2—H2⋯O2iii 0.86 2.18 3.009 (6) 163
N3—H3⋯O4 0.86 2.14 2.979 (6) 165
N4—H45⋯O3 0.86 2.06 2.917 (7) 171
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Herein, we report the structure of [Cu(L1e)2](NO3)2, which was obtained from the similar procedure as previously reported by Meenongwa et al. (2009), but using copper(II) nitrate hemipentahydrate. Structural determination on the title complex reveals a centrosymmetric [Cu(L1e)2]2+ cation and two NO3- counteranions. Fig. 1 shows the [Cu(L1e)2]2+ moiety. The square-planar CuN4 geometry is yielded by the coordination of the two N,N-bidentate ligands (Table 1) with Cu— N bond distances of 1.9313 (16) - 1.9650 (17) Å. Moreover, NO3- anions also contact to the neighboring cationic units by various hydrogen bonds of the type N—H···O (nitrate) to give a two dimentional layered structure (Fig. 2) as observed in the previuos [Cu(L1e)2](ClO4)2 complex.

Related literature top

For a copper(II) complex containg the same N,N-bidentate 1-carbamimidoyl-2-ethylisourea ligand but with the charge balance provided by two chloride and perchlorate anions, see: Begley et al. (1986); Meenongwa et al. (2009).

Experimental top

The initial product of the title complex was obtained from the reaction of 2-cyanoguanidine (0.1682 g, 2 mmol, Aldrich, 99%) with copper(II) nitrate hemipentahydrate (0.2325 g, 1 mmol, Sigma-Aldrich, 98%). The reaction was carried out in ethanol under refluxing condition for 24 h. The reddish-pink precipitate thus formed was isolated by filtration. The red block shaped single crystals were grown by slow vapor phase diffusion of methanol-ethanol solution of this products into toluene medium at room temperature for a week.

Refinement top

The crystal structure refinement was initially performed by direct method to locate the structural model. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined as riding atoms, with N—H = 0.86, CH(methyl) = 0.96 and CH(methylene) = 0.97 Å, and approximation with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H atoms and 1.2 for all others.

Structure description top

Herein, we report the structure of [Cu(L1e)2](NO3)2, which was obtained from the similar procedure as previously reported by Meenongwa et al. (2009), but using copper(II) nitrate hemipentahydrate. Structural determination on the title complex reveals a centrosymmetric [Cu(L1e)2]2+ cation and two NO3- counteranions. Fig. 1 shows the [Cu(L1e)2]2+ moiety. The square-planar CuN4 geometry is yielded by the coordination of the two N,N-bidentate ligands (Table 1) with Cu— N bond distances of 1.9313 (16) - 1.9650 (17) Å. Moreover, NO3- anions also contact to the neighboring cationic units by various hydrogen bonds of the type N—H···O (nitrate) to give a two dimentional layered structure (Fig. 2) as observed in the previuos [Cu(L1e)2](ClO4)2 complex.

For a copper(II) complex containg the same N,N-bidentate 1-carbamimidoyl-2-ethylisourea ligand but with the charge balance provided by two chloride and perchlorate anions, see: Begley et al. (1986); Meenongwa et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. View of the title copper(II) complex, showing the atom numbering of the cationic [Cu(L1e)2]2+ moiety of [Cu(L1e)2](NO3)2. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of [Cu(L1e)2](NO3)2 showing the linking of [Cu(L1e)2]2+ cation and NO3- counteranion along b axis. Hydrogen bonds are presented as a dashed lines.
Bis(1-carbamimidoyl-2-ethylisourea)copper(II) dinitrate top
Crystal data top
[Cu(C4H10N4O)2](NO3)2F(000) = 462
Mr = 447.89Dx = 1.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4098 reflections
a = 5.2547 (6) Åθ = 2.9–27.1°
b = 14.0087 (15) ŵ = 1.29 mm1
c = 12.1511 (13) ÅT = 293 K
β = 96.982 (2)°Block, red
V = 887.83 (17) Å30.26 × 0.16 × 0.11 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
2206 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Frames each covering 0.3 ° in ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 77
Tmin = 0.793, Tmax = 1.00k = 1818
11998 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.2477P]
where P = (Fo2 + 2Fc2)/3
2206 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.73 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(C4H10N4O)2](NO3)2V = 887.83 (17) Å3
Mr = 447.89Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.2547 (6) ŵ = 1.29 mm1
b = 14.0087 (15) ÅT = 293 K
c = 12.1511 (13) Å0.26 × 0.16 × 0.11 mm
β = 96.982 (2)°
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
2206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1810 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 1.00Rint = 0.028
11998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
2206 reflectionsΔρmin = 0.27 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.0348 (3)
N10.3075 (8)0.5323 (3)0.0966 (4)0.0406 (10)
H10.33110.59250.10700.049*
N20.0819 (9)0.3645 (3)0.0282 (4)0.0434 (11)
H20.02400.32410.00500.052*
N30.4651 (8)0.3829 (3)0.1454 (4)0.0408 (10)
H30.58790.35200.18290.049*
O10.3213 (8)0.2382 (3)0.1101 (4)0.0516 (11)
N40.6968 (10)0.5138 (3)0.2062 (5)0.0541 (14)
H440.72220.57440.21070.065*
H450.80840.47510.23910.065*
C10.4823 (10)0.4794 (4)0.1477 (5)0.0378 (11)
C30.1450 (12)0.1670 (3)0.0590 (5)0.0506 (14)
H310.12500.17300.02110.061*
H320.02190.17330.08470.061*
C20.2729 (9)0.3293 (4)0.0898 (4)0.0383 (11)
N50.9978 (9)0.2854 (3)0.3317 (4)0.0479 (11)
O21.1439 (11)0.2388 (4)0.3966 (5)0.090 (2)
C40.2662 (17)0.0734 (4)0.0945 (7)0.075 (2)
H410.42910.06810.06680.113*
H430.15670.02220.06540.113*
H420.29040.07000.17400.113*
O40.8192 (10)0.2461 (4)0.2742 (4)0.0705 (14)
O31.0295 (12)0.3715 (3)0.3254 (5)0.0863 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0290 (5)0.0239 (5)0.0475 (6)0.0021 (3)0.0123 (3)0.0011 (3)
N10.034 (2)0.0256 (19)0.057 (3)0.0008 (17)0.0160 (19)0.0010 (18)
N20.038 (2)0.0252 (19)0.061 (3)0.0003 (17)0.0196 (19)0.0003 (18)
N30.032 (2)0.029 (2)0.055 (3)0.0029 (16)0.0159 (18)0.0043 (18)
O10.048 (2)0.0249 (17)0.075 (3)0.0016 (15)0.0226 (19)0.0038 (17)
N40.041 (3)0.035 (2)0.077 (4)0.0022 (18)0.029 (3)0.002 (2)
C10.032 (2)0.031 (2)0.047 (3)0.0008 (18)0.008 (2)0.0002 (19)
C30.053 (3)0.027 (2)0.066 (4)0.001 (2)0.017 (3)0.001 (2)
C20.035 (2)0.027 (2)0.050 (3)0.0019 (18)0.008 (2)0.0025 (19)
N50.049 (3)0.035 (2)0.056 (3)0.0082 (19)0.011 (2)0.005 (2)
O20.090 (4)0.043 (3)0.119 (5)0.006 (3)0.064 (3)0.012 (3)
C40.084 (5)0.031 (3)0.103 (6)0.004 (3)0.026 (4)0.002 (3)
O40.057 (3)0.059 (3)0.086 (3)0.001 (2)0.029 (2)0.000 (2)
O30.102 (4)0.032 (2)0.117 (5)0.004 (2)0.023 (3)0.015 (3)
Geometric parameters (Å, º) top
Cu1—N11.932 (4)N4—C11.347 (7)
Cu1—N1i1.932 (4)N4—H440.8600
Cu1—N21.967 (4)N4—H450.8600
Cu1—N2i1.967 (4)C3—C41.498 (8)
N1—C11.281 (7)C3—H310.9700
N1—H10.8600C3—H320.9700
N2—C21.276 (6)N5—O31.221 (6)
N2—H20.8600N5—O21.221 (6)
N3—C11.355 (7)N5—O41.230 (6)
N3—C21.369 (6)C4—H410.9600
N3—H30.8600C4—H430.9600
O1—C21.319 (6)C4—H420.9600
O1—C31.449 (6)
N1—Cu1—N1i180.0N1—C1—N3121.7 (5)
N1—Cu1—N288.33 (19)N4—C1—N3114.7 (5)
N1i—Cu1—N291.67 (19)O1—C3—C4104.6 (5)
N1—Cu1—N2i91.67 (19)O1—C3—H31110.8
N1i—Cu1—N2i88.33 (19)C4—C3—H31110.8
N2—Cu1—N2i179.999 (1)O1—C3—H32110.8
C1—N1—Cu1131.1 (4)C4—C3—H32110.8
C1—N1—H1114.5H31—C3—H32108.9
Cu1—N1—H1114.5N2—C2—O1127.1 (5)
C2—N2—Cu1128.0 (4)N2—C2—N3123.9 (4)
C2—N2—H2116.0O1—C2—N3108.9 (4)
Cu1—N2—H2116.0O3—N5—O2119.3 (6)
C1—N3—C2126.9 (4)O3—N5—O4120.5 (5)
C1—N3—H3116.6O2—N5—O4120.3 (5)
C2—N3—H3116.6C3—C4—H41109.5
C2—O1—C3119.2 (4)C3—C4—H43109.5
C1—N4—H44120.0H41—C4—H43109.5
C1—N4—H45120.0C3—C4—H42109.5
H44—N4—H45120.0H41—C4—H42109.5
N1—C1—N4123.7 (5)H43—C4—H42109.5
N2—Cu1—N1—C13.1 (6)C2—O1—C3—C4176.9 (6)
N2i—Cu1—N1—C1176.9 (6)Cu1—N2—C2—O1178.1 (4)
N1—Cu1—N2—C20.4 (5)Cu1—N2—C2—N32.6 (9)
N1i—Cu1—N2—C2179.6 (5)C3—O1—C2—N20.1 (9)
Cu1—N1—C1—N4174.9 (5)C3—O1—C2—N3179.3 (5)
Cu1—N1—C1—N34.2 (9)C1—N3—C2—N22.1 (10)
C2—N3—C1—N11.3 (10)C1—N3—C2—O1178.5 (5)
C2—N3—C1—N4177.9 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.862.052.904 (7)170
N2—H2···O2iii0.862.183.009 (6)163
N3—H3···O40.862.142.979 (6)165
N4—H45···O30.862.062.917 (7)171
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4H10N4O)2](NO3)2
Mr447.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.2547 (6), 14.0087 (15), 12.1511 (13)
β (°) 96.982 (2)
V3)887.83 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.26 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.793, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
11998, 2206, 1810
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.05
No. of reflections2206
No. of parameters125
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Cu1—N11.932 (4)Cu1—N21.967 (4)
Cu1—N1i1.932 (4)Cu1—N2i1.967 (4)
N1—Cu1—N1i180.0N1—Cu1—N2i91.67 (19)
N1—Cu1—N288.33 (19)N1i—Cu1—N2i88.33 (19)
N1i—Cu1—N291.67 (19)N2—Cu1—N2i179.999 (1)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.862.052.904 (7)169.8
N2—H2···O2iii0.862.183.009 (6)162.5
N3—H3···O40.862.142.979 (6)164.9
N4—H45···O30.862.062.917 (7)171.3
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x3/2, y+1/2, z1/2.
 

Acknowledgements

We gratefully thank the Thailand Research Fund (TRF), Khon Kaen University, the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and the Development and Promotion of Science and Technology talent project (DPST) for financial support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBegley, M. J., Hubberstey, P. & Moore, C. H. M. (1986). J. Chem. Res. (S), pp. 172–173.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeenongwa, A., Chaveerach, U., Wilson, C. & Blake, A. J. (2009). Acta Cryst. E65, m1171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds