organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-N′-[(2Z)-butan-2-yl­­idene]-5-meth­oxy­benzohydrazide

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 26 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, C12H15BrN2O2, the dihedral angle between the benzene ring and the mean plane of the amide grouping is 77.7 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur, and the packing is further supported by C—H⋯O and C—H⋯Br inter­actions and weak ππ ring stacking inter­actions.

Related literature

Hydrazides and their corresponding Schiff bases are useful precursors in the synthesis of several heterocyclic systems, see: Narayana et al. (2005[Narayana, B., Ashalatha, B. V., Vijayaraj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638-4644.]; 2005a[Narayana, B., Vijayaraj, K. K., Ashalatha, B. V. & Suchetha Kumari, N. (2005a). Pharmazie, 338, 373-377.]). For the biological activity of substituted hydrazides, see: Cajocorius et al. (1977[Cajocorius, J., Cojocarius, Z. & Niester, C. (1977). Rev. Chim. 28, 15-18.]). Hydrazides are inter­mediates in the production of many pharmaceutically important compounds, see: Liu et al. (2006[Liu, F., Stephen, A. G., Adainson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165-5168.]). For related structures, see: Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.]); Hou (2009[Hou, J.-L. (2009). Acta Cryst. E65, o851.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o883.]); Sarojini et al. (2007a[Sarojini, B. K., Mustafa, K., Narayana, B., Yathirajan, H. S. & Bolte, M. (2007a). Acta Cryst. E63, o4419.],b[Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.],c[Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007c). Acta Cryst. E63, o3862-o3863.],d[Sarojini, B. K., Yathirajan, H. S., Sunil, K., Narayana, B. & Bolte, M. (2007d). Acta Cryst. E63, o3487.]). For the MOPAC AM1 calculations, see: Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15BrN2O2

  • Mr = 299.17

  • Monoclinic, P 21 /c

  • a = 8.0942 (1) Å

  • b = 14.2475 (2) Å

  • c = 11.2974 (2) Å

  • β = 91.1519 (13)°

  • V = 1302.58 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.25 mm−1

  • T = 200 K

  • 0.56 × 0.47 × 0.35 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.452, Tmax = 1.000

  • 7962 measured reflections

  • 2577 independent reflections

  • 2484 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.07

  • 2577 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O2i 0.98 2.60 3.561 (4) 166
C10—H10A⋯Brii 0.98 3.07 3.949 (5) 151
C10—H10A⋯O2iii 0.98 2.55 3.231 (4) 127
C11—H11A⋯O1iv 0.99 2.55 3.373 (4) 141
N1—H1A⋯O2iii 0.88 2.07 2.932 (3) 165
Symmetry codes: (i) -x, -y+2, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazides and the corresponding Schiff bases are useful precursors in the synthesis of several heterocyclic systems (Narayana et al. 2005; 2005a). Some substituted hydrazides are reported to exhibit carcinostatic activity against several types of tumors (Cajocorius et al. 1977) and also possess antimicrobial activity. It is also used as an intermediate in many pharmaceutically important compounds (Liu et al. 2006). In continuation with our studies on the structures of hydrazides and their Schiff bases (Sarojini et al. 2007a, 2007b, 2007c, 2007d; Butcher et al. 2007) a new Schiff base, (I), C12H15BrN2O2, has been synthesized and its crystal structure is now reported.

In the title compound, C12H15BrN2O2, (Fig. 1), the 2-bromo and 5-methoxy groups are in the plane of the benzene ring. The dihedral angle between the mean planes of the carbonyl group (–C6—C8(O2)—N1—N2-) and benzene ring is 77.7 (8)°. The C1—C6—C8—O2 and C1—C6—C8—N1 torsion angles (-101.1 (3)° & -103.7 (3)°) support this observation. Crystal packing is supported by a collection of intermediate N1—H1A—O2 (-x,-y + 2,-z + 1) intermolecular interactions (see Table 1) which produces a cooperative network of infinite O—H···O—H···O—H chains arranged diagonally along the (101) plane of the unit cell (Fig. 2). In addition, weak intermolecular C10—H10A···O2 (-x,-y + 2,-z + 1), C11—H11A···O1 (-x + 1, y - 1/2,-z + 1/2), C7—H7B···O2 (-x,-y + 2,-z) and C10—H10A···Br (x,-y + 3/2,z1/2) interactions (Table 1) along with Cg1···Cg1 π-π ring stacking interactions at 3.869 (1)Å (2 - x,1 - y,1 - z; slippage = 1.43 (2) Å, where Cg1 = C1—C6), collectively, slightly influence crystal packing in this crystalline environment.

After a MOPAC AM1 computational calculation (Schmidt, 2007), the dihedral angle between the mean planes of the carbonyl group (–C6—C8(O2)—N1—N2-) and benzene ring becomes 84.0 (8)°, significantly greater that the 77.7 (8)° seen in the crystal. This supports the observation of a collective action of the intermediate and weak hydrogen bond interactions along with weak intermolecular π-π stacking interactions which influence crystal packing stability.

Related literature top

Hydrazides and the corresponding Schiff bases are useful precursors in the synthesis of several heterocyclic systems, see: Narayana et al. (2005; 2005a). For the biological activity of substituted hydrazides, see: Cajocorius et al. (1977). Hydrazides are intermediates in the production of many pharmaceutically important compounds, see: Liu et al. (2006). For related structures, see: Butcher et al. (2007); Hou (2009); Li & Ban (2009); Sarojini et al. (2007a,b,c,d). For the MOPAC AM1 computational calculation, see: Schmidt & Polik (2007).

Experimental top

A mixture of 2-bromo-5-methoxybenzohydrazide (2.45 g, 0.01 mol) and ethyl methyl ketone(1.44 g, 0.02 mol) in 20 ml of ethanol containing a drop of dilute sulfuric acid was refluxed for about 2 h (Scheme 2). On cooling, the solid separated was filtered and recrystallized from ethyl methyl ketone. M.P.: 385 K. Analysis for C12H15BrN2O2: Found (Calculated): C: 48.14 (48.18); H: 5.02 (5.05%); N: 9.31 (9.36%).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.88, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2–1.5 Ueq(C,N).

Structure description top

Hydrazides and the corresponding Schiff bases are useful precursors in the synthesis of several heterocyclic systems (Narayana et al. 2005; 2005a). Some substituted hydrazides are reported to exhibit carcinostatic activity against several types of tumors (Cajocorius et al. 1977) and also possess antimicrobial activity. It is also used as an intermediate in many pharmaceutically important compounds (Liu et al. 2006). In continuation with our studies on the structures of hydrazides and their Schiff bases (Sarojini et al. 2007a, 2007b, 2007c, 2007d; Butcher et al. 2007) a new Schiff base, (I), C12H15BrN2O2, has been synthesized and its crystal structure is now reported.

In the title compound, C12H15BrN2O2, (Fig. 1), the 2-bromo and 5-methoxy groups are in the plane of the benzene ring. The dihedral angle between the mean planes of the carbonyl group (–C6—C8(O2)—N1—N2-) and benzene ring is 77.7 (8)°. The C1—C6—C8—O2 and C1—C6—C8—N1 torsion angles (-101.1 (3)° & -103.7 (3)°) support this observation. Crystal packing is supported by a collection of intermediate N1—H1A—O2 (-x,-y + 2,-z + 1) intermolecular interactions (see Table 1) which produces a cooperative network of infinite O—H···O—H···O—H chains arranged diagonally along the (101) plane of the unit cell (Fig. 2). In addition, weak intermolecular C10—H10A···O2 (-x,-y + 2,-z + 1), C11—H11A···O1 (-x + 1, y - 1/2,-z + 1/2), C7—H7B···O2 (-x,-y + 2,-z) and C10—H10A···Br (x,-y + 3/2,z1/2) interactions (Table 1) along with Cg1···Cg1 π-π ring stacking interactions at 3.869 (1)Å (2 - x,1 - y,1 - z; slippage = 1.43 (2) Å, where Cg1 = C1—C6), collectively, slightly influence crystal packing in this crystalline environment.

After a MOPAC AM1 computational calculation (Schmidt, 2007), the dihedral angle between the mean planes of the carbonyl group (–C6—C8(O2)—N1—N2-) and benzene ring becomes 84.0 (8)°, significantly greater that the 77.7 (8)° seen in the crystal. This supports the observation of a collective action of the intermediate and weak hydrogen bond interactions along with weak intermolecular π-π stacking interactions which influence crystal packing stability.

Hydrazides and the corresponding Schiff bases are useful precursors in the synthesis of several heterocyclic systems, see: Narayana et al. (2005; 2005a). For the biological activity of substituted hydrazides, see: Cajocorius et al. (1977). Hydrazides are intermediates in the production of many pharmaceutically important compounds, see: Liu et al. (2006). For related structures, see: Butcher et al. (2007); Hou (2009); Li & Ban (2009); Sarojini et al. (2007a,b,c,d). For the MOPAC AM1 computational calculation, see: Schmidt & Polik (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C12H15BrN2O2 showing atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, (I), viewed down the b axis. Dashed lines indicate intermediate intermolecular N—H···O and C—H···O interactions which produces a network of infinite O—H···O—H···O—H chains arranged diagonally along the (101) plane of the unit cell.
2-Bromo-N'-[(2Z)-butan-2-ylidene]-5-methoxybenzohydrazide top
Crystal data top
C12H15BrN2O2F(000) = 608
Mr = 299.17Dx = 1.526 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 8517 reflections
a = 8.0942 (1) Åθ = 5.0–73.4°
b = 14.2475 (2) ŵ = 4.25 mm1
c = 11.2974 (2) ÅT = 200 K
β = 91.1519 (13)°Chunk, colorless
V = 1302.58 (3) Å30.56 × 0.47 × 0.35 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2577 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 73.6°, θmin = 5.0°
φ and ω scansh = 109
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1617
Tmin = 0.452, Tmax = 1.000l = 913
7962 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.7115P]
where P = (Fo2 + 2Fc2)/3
2577 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
C12H15BrN2O2V = 1302.58 (3) Å3
Mr = 299.17Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.0942 (1) ŵ = 4.25 mm1
b = 14.2475 (2) ÅT = 200 K
c = 11.2974 (2) Å0.56 × 0.47 × 0.35 mm
β = 91.1519 (13)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2577 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2484 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 1.000Rint = 0.023
7962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.07Δρmax = 0.73 e Å3
2577 reflectionsΔρmin = 1.07 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.00062 (5)0.75926 (3)0.23886 (3)0.05362 (18)
O10.3113 (3)1.07458 (17)0.03054 (18)0.0478 (6)
O20.0433 (2)1.01275 (15)0.35066 (16)0.0358 (5)
N10.1775 (3)0.93324 (16)0.42004 (18)0.0306 (5)
H1A0.15500.94650.49410.037*
N20.3148 (3)0.87860 (17)0.39363 (19)0.0318 (5)
C10.0954 (3)0.85866 (18)0.1528 (2)0.0305 (5)
C20.1316 (4)0.8445 (2)0.0351 (2)0.0361 (6)
H2A0.10730.78580.00120.043*
C30.2033 (3)0.9154 (2)0.0303 (2)0.0316 (6)
H3A0.22850.90560.11110.038*
C40.2379 (3)1.00067 (19)0.0234 (2)0.0294 (5)
C50.1981 (3)1.01479 (18)0.1415 (2)0.0285 (5)
H5A0.21951.07390.17750.034*
C60.1282 (3)0.94403 (17)0.2066 (2)0.0244 (5)
C70.3619 (4)1.0618 (3)0.1501 (3)0.0525 (9)
H7A0.42021.11810.17660.079*
H7B0.26441.05120.20120.079*
H7C0.43571.00750.15440.079*
C80.0802 (3)0.96538 (18)0.3318 (2)0.0258 (5)
C90.4048 (3)0.8504 (2)0.4794 (2)0.0357 (6)
C100.3829 (5)0.8738 (3)0.6083 (3)0.0624 (12)
H10A0.26760.86320.62950.094*
H10B0.41180.93970.62210.094*
H10C0.45510.83360.65700.094*
C110.5478 (4)0.7880 (3)0.4479 (3)0.0485 (8)
H11A0.53080.72530.48350.058*
H11B0.54860.78000.36090.058*
C120.7109 (5)0.8246 (4)0.4882 (5)0.0764 (13)
H12A0.79690.77860.47020.115*
H12B0.70970.83570.57380.115*
H12C0.73390.88370.44720.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0949 (4)0.0345 (2)0.0315 (2)0.01786 (16)0.00182 (18)0.00284 (12)
O10.0666 (14)0.0508 (13)0.0261 (11)0.0214 (11)0.0079 (9)0.0005 (9)
O20.0396 (10)0.0467 (12)0.0210 (9)0.0198 (8)0.0009 (7)0.0063 (8)
N10.0373 (11)0.0386 (12)0.0159 (10)0.0145 (9)0.0007 (8)0.0042 (8)
N20.0371 (11)0.0346 (12)0.0238 (11)0.0125 (9)0.0026 (9)0.0023 (9)
C10.0452 (14)0.0245 (12)0.0219 (12)0.0002 (10)0.0004 (10)0.0003 (10)
C20.0576 (17)0.0292 (13)0.0212 (13)0.0033 (12)0.0032 (11)0.0081 (10)
C30.0397 (13)0.0395 (15)0.0157 (11)0.0066 (11)0.0019 (9)0.0066 (10)
C40.0322 (12)0.0352 (14)0.0206 (12)0.0005 (10)0.0021 (10)0.0007 (10)
C50.0342 (12)0.0283 (12)0.0230 (12)0.0015 (10)0.0020 (9)0.0070 (10)
C60.0281 (11)0.0275 (12)0.0175 (11)0.0092 (9)0.0018 (8)0.0033 (9)
C70.0564 (19)0.076 (2)0.0250 (15)0.0218 (17)0.0066 (13)0.0033 (15)
C80.0327 (12)0.0255 (12)0.0192 (11)0.0047 (9)0.0004 (9)0.0039 (9)
C90.0391 (14)0.0418 (15)0.0263 (13)0.0132 (12)0.0014 (10)0.0018 (11)
C100.060 (2)0.104 (3)0.0233 (15)0.040 (2)0.0041 (14)0.0002 (17)
C110.0513 (18)0.0549 (19)0.0393 (17)0.0250 (15)0.0012 (13)0.0036 (15)
C120.050 (2)0.100 (4)0.079 (3)0.016 (2)0.004 (2)0.004 (3)
Geometric parameters (Å, º) top
Br—C11.894 (3)C5—H5A0.9500
O1—C41.359 (3)C6—C81.506 (3)
O1—C71.431 (4)C7—H7A0.9800
O2—C81.228 (3)C7—H7B0.9800
N1—C81.338 (3)C7—H7C0.9800
N1—N21.394 (3)C9—C101.507 (4)
N1—H1A0.8800C9—C111.508 (4)
N2—C91.266 (4)C10—H10A0.9800
C1—C21.382 (4)C10—H10B0.9800
C1—C61.383 (3)C10—H10C0.9800
C2—C31.386 (4)C11—C121.482 (6)
C2—H2A0.9500C11—H11A0.9900
C3—C41.383 (4)C11—H11B0.9900
C3—H3A0.9500C12—H12A0.9800
C4—C51.393 (4)C12—H12B0.9800
C5—C61.376 (4)C12—H12C0.9800
C4—O1—C7117.4 (2)H7A—C7—H7C109.5
C8—N1—N2119.4 (2)H7B—C7—H7C109.5
C8—N1—H1A120.3O2—C8—N1121.9 (2)
N2—N1—H1A120.3O2—C8—C6120.0 (2)
C9—N2—N1117.5 (2)N1—C8—C6118.2 (2)
C2—C1—C6120.6 (2)N2—C9—C10126.3 (3)
C2—C1—Br118.8 (2)N2—C9—C11116.0 (3)
C6—C1—Br120.59 (19)C10—C9—C11117.6 (3)
C1—C2—C3120.3 (2)C9—C10—H10A109.5
C1—C2—H2A119.9C9—C10—H10B109.5
C3—C2—H2A119.9H10A—C10—H10B109.5
C4—C3—C2119.4 (2)C9—C10—H10C109.5
C4—C3—H3A120.3H10A—C10—H10C109.5
C2—C3—H3A120.3H10B—C10—H10C109.5
O1—C4—C3124.8 (2)C12—C11—C9113.8 (3)
O1—C4—C5115.4 (2)C12—C11—H11A108.8
C3—C4—C5119.8 (2)C9—C11—H11A108.8
C6—C5—C4120.8 (2)C12—C11—H11B108.8
C6—C5—H5A119.6C9—C11—H11B108.8
C4—C5—H5A119.6H11A—C11—H11B107.7
C5—C6—C1119.1 (2)C11—C12—H12A109.5
C5—C6—C8118.1 (2)C11—C12—H12B109.5
C1—C6—C8122.7 (2)H12A—C12—H12B109.5
O1—C7—H7A109.5C11—C12—H12C109.5
O1—C7—H7B109.5H12A—C12—H12C109.5
H7A—C7—H7B109.5H12B—C12—H12C109.5
O1—C7—H7C109.5
C8—N1—N2—C9179.2 (3)Br—C1—C6—C5179.97 (19)
C6—C1—C2—C30.8 (4)C2—C1—C6—C8175.6 (2)
Br—C1—C2—C3179.4 (2)Br—C1—C6—C84.2 (3)
C1—C2—C3—C40.2 (4)N2—N1—C8—O2179.0 (3)
C7—O1—C4—C32.5 (4)N2—N1—C8—C62.5 (4)
C7—O1—C4—C5177.0 (3)C5—C6—C8—O274.8 (3)
C2—C3—C4—O1178.4 (3)C1—C6—C8—O2101.1 (3)
C2—C3—C4—C51.0 (4)C5—C6—C8—N1103.7 (3)
O1—C4—C5—C6177.9 (2)C1—C6—C8—N180.4 (3)
C3—C4—C5—C61.6 (4)N1—N2—C9—C103.0 (5)
C4—C5—C6—C10.9 (4)N1—N2—C9—C11177.4 (3)
C4—C5—C6—C8177.0 (2)N2—C9—C11—C12122.5 (4)
C2—C1—C6—C50.3 (4)C10—C9—C11—C1257.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.982.603.561 (4)166
C10—H10A···Brii0.983.073.949 (5)151
C10—H10A···O2iii0.982.553.231 (4)127
C11—H11A···O1iv0.992.553.373 (4)141
N1—H1A···O2iii0.882.072.932 (3)165
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z+1/2; (iii) x, y+2, z+1; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H15BrN2O2
Mr299.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.0942 (1), 14.2475 (2), 11.2974 (2)
β (°) 91.1519 (13)
V3)1302.58 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.25
Crystal size (mm)0.56 × 0.47 × 0.35
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.452, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7962, 2577, 2484
Rint0.023
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.07
No. of reflections2577
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 1.07

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.982.603.561 (4)166.4
C10—H10A···Brii0.983.073.949 (5)150.7
C10—H10A···O2iii0.982.553.231 (4)126.8
C11—H11A···O1iv0.992.553.373 (4)140.5
N1—H1A···O2iii0.882.072.932 (3)165.2
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z+1/2; (iii) x, y+2, z+1; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

LPS thanks the University of Mysore for use of their research facilities under the MPhil programme in Chemistry for the year 2008–2009. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationButcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCajocorius, J., Cojocarius, Z. & Niester, C. (1977). Rev. Chim. 28, 15–18.  Google Scholar
First citationHou, J.-L. (2009). Acta Cryst. E65, o851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F., Stephen, A. G., Adainson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165–5168.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Ashalatha, B. V., Vijayaraj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem. 13, 4638–4644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Vijayaraj, K. K., Ashalatha, B. V. & Suchetha Kumari, N. (2005a). Pharmazie, 338, 373–377.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSarojini, B. K., Mustafa, K., Narayana, B., Yathirajan, H. S. & Bolte, M. (2007a). Acta Cryst. E63, o4419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007c). Acta Cryst. E63, o3862–o3863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Sunil, K., Narayana, B. & Bolte, M. (2007d). Acta Cryst. E63, o3487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds