metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{4′-[(2,3,5,6,8,9,11,12-octa­hydro-1,4,7,10,13-benzo­penta­oxa­cyclo­penta­decin-15-yl)meth­­oxy]-2,2′:6′,2′′-terpyridine}cadmium(II) bis­­(hexa­fluorido­phosphate) trihydrate: a powder study

aA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky prospect 31, 119991 Moscow GSP-1, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru

(Received 3 September 2009; accepted 7 October 2009; online 10 October 2009)

The asymmetric unit of the title compound, [Cd(C30H31N3O6)2](PF6)2·3H2O, contains one half-cation with the CdII center situated on a twofold rotational axis, one hexa­fluoridophosphate anion and two uncoordinated water mol­ecules, one of which is also situated on a twofold rotational axis. The cations are associated into columns along the a axis through ππ inter­actions between the pyridine and benzene rings, with a centroid–centroid distance of 3.72 (5) Å. Inter­molecular O—H⋯O, C—H⋯O and C—H⋯F hydrogen bonds consolidate the crystal packing.

Related literature

For the crystal structures of related complexes with the 4′-(4′′′-benzo-15-crown-5)-meth­yloxy-2,2′:6′,2′′-terpyridine ligand, see: Tsivadze et al. (2008[Tsivadze, A. Yu., Baulin, V. E., Grigoriev, M. S., Logacheva, N. M. & Shnipov, A. V. (2008). Russ. J. Inorg. Chem. 53, 1712-1717.]); Logacheva et al. (2009[Logacheva, N. M., Baulin, V. E., Tsivadze, A. Y., Pyatova, E. N., Ivanova, I. S., Velikodny, Y. A. & Chernyshev, V. V. (2009). Dalton Trans. pp. 2482-2489.]). For details of the indexing algorithm, see: Visser (1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C30H31N3O6)2](PF6)2·3H2O

  • Mr = 1515.54

  • Orthorhombic, P c c n

  • a = 12.720 (3) Å

  • b = 21.101 (3) Å

  • c = 24.795 (5) Å

  • V = 6655 (2) Å3

  • Z = 4

  • Cu Kα1 radiation

  • μ = 3.98 mm−1

  • T = 295 K

  • Specimen shape: flat sheet

  • 15 × 1 × 1 mm

  • Specimen prepared at 101 kPa

  • Specimen prepared at 295 K

  • Particle morphology: no specific habit, colourless

Data collection
  • Guinier camera G670 diffractometer

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Specimen mounted in transmission mode

  • Scan method: continuous

  • 2θmin = 4.0, 2θmax = 80.0°

  • Increment in 2θ = 0.01°

Refinement
  • Rp = 0.020

  • Rwp = 0.024

  • Rexp = 0.015

  • RB = 0.061

  • S = 1.67

  • Wavelength of incident radiation: 1.54059 Å

  • Profile function: split-type pseudo-Voigt (Toraya, 1986[Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.])

  • 2031 reflections

  • 184 parameters

  • 197 restraints

  • H-atom parameters not refined

  • Preferred orientation correction: none

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2W 0.85 2.08 2.91 (6) 165
C3—H3⋯F15i 0.93 2.44 3.21 (7) 140
C4—H4⋯O1Wii 0.93 2.23 3.17 (4) 178
C4—H4⋯O1Wiii 0.93 2.23 3.17 (4) 178
C7—H7⋯O1Wii 0.93 2.28 3.20 (7) 175
C7—H7⋯O1Wiii 0.93 2.28 3.20 (7) 175
C12—H12⋯F13iv 0.93 2.44 3.10 (7) 128
C15—H15⋯O4iv 0.93 2.51 3.23 (8) 135
C22—H22⋯O5v 0.93 2.60 3.31 (10) 133
C23—H23B⋯F15vi 0.97 2.36 3.23 (8) 149
C30—H30B⋯F11ii 0.97 2.46 3.23 (8) 137
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z]; (iv) -x+2, -y, -z+1; (v) -x+3, -y, -z+1; (vi) [x+{\script{1\over 2}}, -y, -z+{\script{1\over 2}}].

Data collection: Huber G640 (Huber, 2002[Huber (2002). G670 Imaging Plate Guinier Camera software. Huber Diffraktionstechnik GmbH. Rimsting, Germany.]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]); data reduction: Huber G640 (Huber, 2002[Huber (2002). G670 Imaging Plate Guinier Camera software. Huber Diffraktionstechnik GmbH. Rimsting, Germany.]); method used to solve structure: simulated annealing (Zhukov et al., 2001[Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5-9.]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In continuation of our study of complexes with a hybrid ligand 4'-(4'''-benzo-15-crown-5)-methyloxy-2,2':6',2''-terpyridine (L) (Tsivadze et al., 2008; Logacheva et al., 2009) we present here the title compound (I), which is isostructural with the analogue Co and Zn complexes (Logacheva et al., 2009).

In the cation of (I) (Fig. 1), the coordinating Cd—N bond lengths are 2.34 (3), 2.39 (6) and 2.42 (6) Å, respectively. The cations are associated into columns along axis a through π-π interactions between the pyridine and benzene rings with the centroid-to-centroid distance of 3.72 (5) Å. Intermolecular O—H···O, C—H···O and C—H···F hydrogen bonds (Table 1) consolidate the crystal packing.

The electronic absorption spectra in the visible and UV regions of acetonitrile solution of (I) (Fig. 2) were recorded on a Varian Cary-100 spectrophotometer in rectangular quartz cells with a path length of 10 mm.

Related literature top

For the crystal structures of related complexes with the 4'-(4'''-benzo-15-crown-5)-methyloxy-2,2':6',2''-terpyridine ligand, see: Tsivadze et al. (2008); Logacheva et al. (2009). For details of the indexing algorithm, see: Visser (1969).

Experimental top

Acetonitrile (Reagent ACS), methanol (for HPLC), ethanol (anhydrous), NH4PF6 (99%) were purchased from commercial supplier (Acros Organics). Cd(CH3COO)2.2H2O of high-purity grade was domestically produced. 4'-(4'''-Benzo-15-crown-5)-methyloxy-2,2':6',2''-terpyridine (L) was synthesized as described by Tsivadze et al. (2008).

[CdL2](PF6)2.3H2O: to a stirred solution of Cd(CH3COO)2.2H2O (95.7 mg, 0.1890 mmol) in methanol (15 ml) was added 40 ml of L (190.0 mg, 0.3759 mmol) in methanol. The mixture was stirred for 2 h and then NH4PF6 (1.23 g, 7.558 mmol) in 20 ml me thanol was added. Upon addition of ammonium hexafluoridophosphate a colourless solid was obtained that was then filtred, washed with methanol and diethyl ether, and dried. Subsequent recrystallization from mixture of EtOH: CH3CN (3: 1) gave (I) as colourless fine crystalline powder. Yield: 295.8 mg (56.4%). Anal. Calcd for C60H68F12CdN6O15P2: C, 47.55; H, 4.52; N, 5.55. Found: C, 47.18; H, 4.69; N, 5.26.

1H NMR spectra were recorded on a Bruker Avance-600 spectrometer operating at 600 MHz with internal deuterium lock at room temperature. The residual proton signal from DMSO-d6 (2.50 p.p.m.) was used as the internal reference for measuring 1H NMR chemical shifts. 1H NMR (600 MHz, DMSO-d6), δ, p.p.m.: 3.56–3.68 (m, 16H, c, c', d, d'), 3.79–3.86 (m, 8H, b, b'), 4.04–4.16 (m, 8H, a, a'), 5.49 (s, 4H, –CH2-benzyl), 7.04 (d Jβ-γ = 7.88 Hz, 2H, γ), 7.16 (dd unres., 2H, β), 7.22 (d unres., 2H, α), 7.45–7.71 (m, 4H, 5,5''), 8.05–8.35 (m, 8H, 6,6'',4,4''), 8.51 (s br., 4H, 3',5'), 8.71–8.97 (m, 4H, 3,3'').

Refinement top

During the exposure, the specimen was spun in its plane to improve particle statistics. The orthorhombic unit-cell dimensions were determined with the indexing program ITO (Visser, 1969), M20=34, using the first 35 peak positions. The structure of (I) was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in details elsewhere (Logacheva et al., 2009) by the subsequent bond-restrained Rietveld refinement with the program MRIA (Zlokazov & Chernyshev, 1992). Six Uiso parameters were refined - one for Cd, overall Uiso for non-H atoms from L, one for P, overall Uiso for six F atoms and two parameters for two water' O atoms. All H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 3.

Structure description top

In continuation of our study of complexes with a hybrid ligand 4'-(4'''-benzo-15-crown-5)-methyloxy-2,2':6',2''-terpyridine (L) (Tsivadze et al., 2008; Logacheva et al., 2009) we present here the title compound (I), which is isostructural with the analogue Co and Zn complexes (Logacheva et al., 2009).

In the cation of (I) (Fig. 1), the coordinating Cd—N bond lengths are 2.34 (3), 2.39 (6) and 2.42 (6) Å, respectively. The cations are associated into columns along axis a through π-π interactions between the pyridine and benzene rings with the centroid-to-centroid distance of 3.72 (5) Å. Intermolecular O—H···O, C—H···O and C—H···F hydrogen bonds (Table 1) consolidate the crystal packing.

The electronic absorption spectra in the visible and UV regions of acetonitrile solution of (I) (Fig. 2) were recorded on a Varian Cary-100 spectrophotometer in rectangular quartz cells with a path length of 10 mm.

For the crystal structures of related complexes with the 4'-(4'''-benzo-15-crown-5)-methyloxy-2,2':6',2''-terpyridine ligand, see: Tsivadze et al. (2008); Logacheva et al. (2009). For details of the indexing algorithm, see: Visser (1969).

Computing details top

Data collection: Huber G640 (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: Huber G640 (Huber, 2002); program(s) used to solve structure: Simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in (I) with the atomic numbering and 40% displacement spheres. Unlabelled atoms are related with the labeled ones by symmetry operation (3/2 - x, 1/2 - x, z). H atoms omitted for clarity.
[Figure 2] Fig. 2. The UV-Vis spectrum of the [CdL2].2(PF6).3H2O in acetonitrile.
[Figure 3] Fig. 3. The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile.
Bis{4'-[(2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13-benzopentaoxacyclopentadecin- 15-yl)methoxy]-2,2':6',2''-terpyridine}cadmium(II) bis(hexafluoridophosphate) trihydrate top
Crystal data top
[Cd(C30H31N3O6)2](PF6)2·3H2OF(000) = 3104
Mr = 1515.54Dx = 1.513 Mg m3
Orthorhombic, PccnCu Kα1 radiation, λ = 1.54059 Å
Hall symbol: -P 2ab 2acµ = 3.98 mm1
a = 12.720 (3) ÅT = 295 K
b = 21.101 (3) ÅParticle morphology: no specific habit
c = 24.795 (5) Åcolourless
V = 6655 (2) Å3flat_sheet, 15 × 1 mm
Z = 4Specimen preparation: Prepared at 295 K and 101 kPa
Data collection top
Guinier camera G670
diffractometer
Data collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111) monochromator2θmin = 4.00°, 2θmax = 80.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera
Refinement top
Refinement on Inet184 parameters
Least-squares matrix: full with fixed elements per cycle197 restraints
Rp = 0.02045 constraints
Rwp = 0.024H-atom parameters not refined
Rexp = 0.015Weighting scheme based on measured s.u.'s
RBragg = 0.061(Δ/σ)max = 0.004
7601 data pointsBackground function: Chebyshev polynomial up to the 5th order
Profile function: split-type pseudo-Voigt (Toraya, 1986)Preferred orientation correction: none
Crystal data top
[Cd(C30H31N3O6)2](PF6)2·3H2OV = 6655 (2) Å3
Mr = 1515.54Z = 4
Orthorhombic, PccnCu Kα1 radiation, λ = 1.54059 Å
a = 12.720 (3) ŵ = 3.98 mm1
b = 21.101 (3) ÅT = 295 K
c = 24.795 (5) Åflat_sheet, 15 × 1 mm
Data collection top
Guinier camera G670
diffractometer
Scan method: continuous
Specimen mounting: thin layer in the specimen holder of the camera2θmin = 4.00°, 2θmax = 80.00°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.0207601 data points
Rwp = 0.024184 parameters
Rexp = 0.015197 restraints
RBragg = 0.061H-atom parameters not refined
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.75000.25000.4194 (14)0.058 (5)*
O11.200 (2)0.111 (2)0.408 (3)0.076 (6)*
O21.459 (2)0.076 (2)0.327 (3)0.076 (6)*
O31.369 (2)0.199 (3)0.328 (3)0.076 (6)*
O41.460 (2)0.257 (3)0.426 (3)0.076 (6)*
O51.6125 (19)0.161 (2)0.470 (3)0.076 (6)*
O61.606 (2)0.056 (2)0.395 (3)0.076 (6)*
N10.859 (2)0.304 (2)0.355 (3)0.076 (6)*
N20.917 (2)0.204 (3)0.416 (3)0.076 (6)*
N30.761 (2)0.166 (2)0.484 (3)0.076 (6)*
C10.826 (2)0.354 (3)0.325 (3)0.076 (6)*
H10.75900.36980.33090.091*
C20.887 (2)0.382 (3)0.285 (3)0.076 (6)*
H20.86340.41730.26640.091*
C30.986 (3)0.356 (3)0.274 (3)0.076 (6)*
H31.02740.37180.24640.091*
C41.021 (2)0.305 (3)0.305 (3)0.076 (6)*
H41.08780.28790.29960.091*
C50.955 (2)0.278 (3)0.344 (3)0.076 (6)*
C60.989 (2)0.225 (3)0.380 (3)0.076 (6)*
C71.087 (3)0.195 (3)0.373 (3)0.076 (6)*
H71.13370.20800.34710.091*
C81.111 (2)0.143 (3)0.407 (4)0.076 (6)*
C91.036 (2)0.125 (3)0.447 (3)0.076 (6)*
H91.05240.09280.47160.091*
C100.940 (3)0.154 (3)0.449 (3)0.076 (6)*
C110.854 (2)0.135 (3)0.487 (4)0.076 (6)*
C120.866 (3)0.082 (3)0.522 (3)0.076 (6)*
H120.92820.05890.52080.091*
C130.786 (2)0.066 (3)0.556 (3)0.076 (6)*
H130.79390.03230.58010.091*
C140.692 (2)0.100 (3)0.555 (3)0.076 (6)*
H140.63600.08970.57740.091*
C150.683 (3)0.149 (3)0.518 (4)0.076 (6)*
H150.62060.17220.51660.091*
C161.289 (3)0.129 (3)0.371 (3)0.076 (6)*
H16A1.31370.17130.38010.091*
H16B1.26470.12910.33420.091*
C171.375 (2)0.081 (3)0.379 (3)0.076 (6)*
C181.374 (2)0.025 (3)0.348 (3)0.076 (6)*
H181.32130.01900.32240.091*
C191.450 (2)0.021 (4)0.356 (4)0.076 (6)*
C201.533 (2)0.011 (3)0.394 (4)0.076 (6)*
C211.534 (3)0.045 (3)0.424 (3)0.076 (6)*
H211.58540.05080.45000.091*
C221.456 (3)0.091 (3)0.416 (3)0.076 (6)*
H221.45790.12870.43560.091*
C231.374 (3)0.094 (3)0.293 (3)0.076 (6)*
H23A1.30700.08690.31060.091*
H23B1.37500.06990.25960.091*
C241.386 (2)0.163 (3)0.280 (3)0.076 (6)*
H24A1.33600.17590.25290.091*
H24B1.45640.17140.26670.091*
C251.425 (3)0.259 (3)0.328 (3)0.076 (6)*
H25A1.49820.25140.31970.091*
H25B1.39570.28590.29990.091*
C261.413 (2)0.289 (3)0.383 (3)0.076 (6)*
H26A1.33820.29380.39050.091*
H26B1.44230.33160.38110.091*
C271.575 (3)0.263 (3)0.426 (3)0.076 (6)*
H27A1.60590.24540.39390.091*
H27B1.59570.30710.42990.091*
C281.604 (2)0.224 (3)0.477 (4)0.076 (6)*
H28A1.55100.23190.50450.091*
H28B1.67030.23980.49080.091*
C291.700 (3)0.133 (4)0.445 (4)0.076 (6)*
H29A1.71120.15110.40970.091*
H29B1.76290.13980.46670.091*
C301.675 (3)0.061 (3)0.441 (4)0.076 (6)*
H30A1.63980.04640.47340.091*
H30B1.73840.03670.43570.091*
P10.9384 (18)0.020 (2)0.343 (2)0.106 (11)*
F110.8318 (18)0.013 (2)0.360 (2)0.183 (12)*
F121.0448 (17)0.052 (2)0.3259 (19)0.183 (12)*
F130.9814 (18)0.012 (2)0.402 (2)0.183 (12)*
F140.984 (2)0.046 (2)0.327 (2)0.183 (12)*
F150.8942 (17)0.029 (2)0.284 (2)0.183 (12)*
F160.8922 (18)0.086 (2)0.359 (2)0.183 (12)*
O1W0.25000.25000.287 (2)0.120 (12)*
H1W0.24800.22000.26410.180*
O2W0.2037 (18)0.154 (2)0.206 (3)0.106 (12)*
H2W10.15450.14110.18580.159*
H2W20.24130.12350.21710.159*
Geometric parameters (Å, º) top
Cd—N12.42 (6)C13—C141.39 (6)
Cd—N22.34 (3)C14—C151.39 (10)
Cd—N32.39 (6)C16—C171.51 (7)
Cd—N1i2.42 (6)C17—C181.41 (9)
Cd—N2i2.34 (3)C17—C221.40 (8)
Cd—N3i2.39 (6)C18—C191.38 (8)
P1—F151.58 (7)C19—C201.43 (10)
P1—F161.56 (6)C20—C211.38 (10)
P1—F121.57 (4)C21—C221.39 (7)
P1—F131.57 (7)C23—C241.50 (9)
P1—F111.58 (4)C25—C261.51 (10)
P1—F141.56 (6)C27—C281.55 (11)
O1—C161.50 (8)C29—C301.56 (10)
O1—C81.32 (5)C1—H10.93
O2—C231.42 (7)C2—H20.93
O2—C191.37 (10)C3—H30.93
O3—C241.43 (10)C4—H40.93
O3—C251.45 (8)C7—H70.93
O4—C261.40 (9)C9—H90.93
O4—C271.47 (5)C12—H120.93
O5—C291.40 (7)C13—H130.93
O5—C281.34 (8)C14—H140.93
O6—C201.34 (6)C15—H150.93
O6—C301.44 (10)C16—H16B0.97
O1W—H1W0.85C16—H16A0.97
O2W—H2W20.85C18—H180.93
O2W—H2W10.85C21—H210.93
N1—C51.36 (5)C22—H220.93
N1—C11.34 (8)C23—H23A0.97
N2—C61.35 (8)C23—H23B0.97
N2—C101.37 (9)C24—H24B0.97
N3—C151.35 (8)C24—H24A0.97
N3—C111.35 (5)C25—H25A0.97
C1—C21.39 (9)C25—H25B0.97
C2—C31.40 (5)C26—H26A0.97
C3—C41.40 (9)C26—H26B0.97
C4—C51.40 (8)C27—H27B0.97
C5—C61.49 (9)C27—H27A0.97
C6—C71.42 (6)C28—H28B0.97
C7—C81.40 (10)C28—H28A0.97
C8—C91.43 (9)C29—H29A0.97
C9—C101.37 (5)C29—H29B0.97
C10—C111.50 (9)C30—H30B0.97
C11—C121.41 (10)C30—H30A0.97
C12—C131.38 (8)
N1—Cd—N269.5 (17)C19—C20—C21119 (5)
N1—Cd—N3139.8 (11)C20—C21—C22121 (6)
N1—Cd—N1i96 (2)C17—C22—C21120 (6)
N1—Cd—N2i107.5 (19)O2—C23—C24108 (4)
N1—Cd—N3i97.7 (18)O3—C24—C23109 (6)
N2—Cd—N370.3 (17)O3—C25—C26109 (5)
N1i—Cd—N2107.5 (19)O4—C26—C25117 (5)
N2—Cd—N2i176 (3)O4—C27—C28101 (5)
N2—Cd—N3i112.6 (18)O5—C28—C27116 (7)
N1i—Cd—N397.7 (18)O5—C29—C30106 (4)
N2i—Cd—N3112.6 (18)O6—C30—C29104 (6)
N3—Cd—N3i96 (2)N1—C1—H1119.02
N1i—Cd—N2i69.5 (18)C2—C1—H1118.21
N1i—Cd—N3i139.8 (11)C3—C2—H2120.64
N2i—Cd—N3i70.3 (17)C1—C2—H2121.06
F13—P1—F15179 (3)C2—C3—H3120.96
F13—P1—F1689 (3)C4—C3—H3120.23
F14—P1—F1590 (3)C5—C4—H4119.17
F14—P1—F16180 (4)C3—C4—H4120.66
F15—P1—F1690 (3)C6—C7—H7120.20
F11—P1—F12179 (4)C8—C7—H7121.61
F11—P1—F1390 (3)C8—C9—H9119.78
F11—P1—F1490 (3)C10—C9—H9120.01
F11—P1—F1590 (3)C11—C12—H12120.36
F11—P1—F1690 (2)C13—C12—H12120.20
F12—P1—F1390 (3)C12—C13—H13120.62
F12—P1—F1490 (2)C14—C13—H13119.68
F12—P1—F1590 (3)C13—C14—H14121.76
F12—P1—F1691 (3)C15—C14—H14120.43
F13—P1—F1491 (3)N3—C15—H15117.54
C8—O1—C16120 (6)C14—C15—H15119.07
C19—O2—C23118 (4)O1—C16—H16A109.92
C24—O3—C25113 (5)O1—C16—H16B110.65
C26—O4—C27113 (5)C17—C16—H16A109.67
C28—O5—C29122 (5)H16A—C16—H16B108.72
C20—O6—C30119 (7)C17—C16—H16B110.61
H1W—O1W—H1Wii96C17—C18—H18119.46
H2W1—O2W—H2W2111C19—C18—H18120.31
Cd—N1—C5117 (4)C22—C21—H21120.53
Cd—N1—C1123 (3)C20—C21—H21118.82
C1—N1—C5120 (5)C17—C22—H22119.39
C6—N2—C10120 (4)C21—C22—H22120.13
Cd—N2—C6120 (4)O2—C23—H23B110.81
Cd—N2—C10120 (3)O2—C23—H23A111.11
C11—N3—C15119 (6)H23A—C23—H23B108.32
Cd—N3—C11116 (5)C24—C23—H23A109.67
Cd—N3—C15125 (3)C24—C23—H23B108.88
N1—C1—C2123 (4)O3—C24—H24A109.30
C1—C2—C3118 (6)C23—C24—H24B110.14
C2—C3—C4119 (5)O3—C24—H24B109.01
C3—C4—C5120 (4)C23—C24—H24A110.90
C4—C5—C6123 (3)H24A—C24—H24B108.67
N1—C5—C4120 (6)O3—C25—H25B109.47
N1—C5—C6117 (5)C26—C25—H25A110.35
C5—C6—C7122 (5)C26—C25—H25B111.70
N2—C6—C5116 (3)H25A—C25—H25B107.65
N2—C6—C7122 (6)O3—C25—H25A108.83
C6—C7—C8118 (5)O4—C26—H26A108.81
O1—C8—C9115 (7)O4—C26—H26B108.62
O1—C8—C7126 (6)C25—C26—H26B107.92
C7—C8—C9118 (4)H26A—C26—H26B106.66
C8—C9—C10120 (6)C25—C26—H26A107.84
N2—C10—C9121 (5)O4—C27—H27A111.94
C9—C10—C11124 (6)C28—C27—H27A111.83
N2—C10—C11115 (4)C28—C27—H27B111.22
N3—C11—C12121 (5)O4—C27—H27B110.64
N3—C11—C10118 (7)H27A—C27—H27B109.95
C10—C11—C12121 (4)C27—C28—H28A108.37
C11—C12—C13119 (4)C27—C28—H28B108.17
C12—C13—C14120 (6)H28A—C28—H28B107.24
C13—C14—C15118 (5)O5—C28—H28B108.40
N3—C15—C14123 (4)O5—C28—H28A108.38
O1—C16—C17107 (5)C30—C29—H29A111.02
C16—C17—C18119 (5)O5—C29—H29A110.53
C16—C17—C22122 (6)O5—C29—H29B110.18
C18—C17—C22119 (5)H29A—C29—H29B108.73
C17—C18—C19120 (6)C30—C29—H29B110.29
O2—C19—C18125 (7)O6—C30—H30B111.22
C18—C19—C20120 (7)O6—C30—H30A110.53
O2—C19—C20115 (5)H30A—C30—H30B109.26
O6—C20—C19114 (7)C29—C30—H30A110.60
O6—C20—C21127 (6)C29—C30—H30B110.91
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2W0.852.082.91 (6)165
C3—H3···F15iii0.932.443.21 (7)140
C4—H4···O1Wiv0.932.233.17 (4)178
C4—H4···O1Wi0.932.233.17 (4)178
C7—H7···O1Wiv0.932.283.20 (7)175
C7—H7···O1Wi0.932.283.20 (7)175
C12—H12···F13v0.932.443.10 (7)128
C15—H15···O4v0.932.513.23 (8)135
C22—H22···O5vi0.932.603.31 (10)133
C23—H23B···F15vii0.972.363.23 (8)149
C30—H30B···F11iv0.972.463.23 (8)137
Symmetry codes: (i) x+3/2, y+1/2, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+2, y, z+1; (vi) x+3, y, z+1; (vii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C30H31N3O6)2](PF6)2·3H2O
Mr1515.54
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)295
a, b, c (Å)12.720 (3), 21.101 (3), 24.795 (5)
V3)6655 (2)
Z4
Radiation typeCu Kα1, λ = 1.54059 Å
µ (mm1)3.98
Specimen shape, size (mm)Flat_sheet, 15 × 1
Data collection
DiffractometerGuinier camera G670
Specimen mountingThin layer in the specimen holder of the camera
Data collection modeTransmission
Scan methodContinuous
2θ values (°)2θmin = 4.00 2θmax = 80.00 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.020, Rwp = 0.024, Rexp = 0.015, RBragg = 0.061, χ2 = 2.785
No. of parameters184
No. of restraints197
H-atom treatmentH-atom parameters not refined

Computer programs: Huber G640 (Huber, 2002), Simulated annealing (Zhukov et al., 2001), PLATON (Spek, 2009), MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2W0.852.082.91 (6)165
C3—H3···F15i0.932.443.21 (7)140
C4—H4···O1Wii0.932.233.17 (4)178
C4—H4···O1Wiii0.932.233.17 (4)178
C7—H7···O1Wii0.932.283.20 (7)175
C7—H7···O1Wiii0.932.283.20 (7)175
C12—H12···F13iv0.932.443.10 (7)128
C15—H15···O4iv0.932.513.23 (8)135
C22—H22···O5v0.932.603.31 (10)133
C23—H23B···F15vi0.972.363.23 (8)149
C30—H30B···F11ii0.972.463.23 (8)137
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z; (iv) x+2, y, z+1; (v) x+3, y, z+1; (vi) x+1/2, y, z+1/2.
 

References

First citationHuber (2002). G670 Imaging Plate Guinier Camera software. Huber Diffraktionstechnik GmbH. Rimsting, Germany.  Google Scholar
First citationLogacheva, N. M., Baulin, V. E., Tsivadze, A. Y., Pyatova, E. N., Ivanova, I. S., Velikodny, Y. A. & Chernyshev, V. V. (2009). Dalton Trans. pp. 2482–2489.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTsivadze, A. Yu., Baulin, V. E., Grigoriev, M. S., Logacheva, N. M. & Shnipov, A. V. (2008). Russ. J. Inorg. Chem. 53, 1712–1717.  Web of Science CrossRef Google Scholar
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds