organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl cyclo­hex-2-ene-1,4-diyl dicarbonate

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: syed.nawazish@gmail.com

(Received 5 September 2009; accepted 3 October 2009; online 10 October 2009)

In the title mol­ecule, C16H26O6, the central cyclo­hexene ring is in a half-chair conformation. The carbonyl groups are in a trans arrangement with respect to each other and the dihedral angle between the mean planes of the carbonate groups is 10.8 (2)°.

Related literature

For synthetic applications of the title compound, see: Ali, Ghafouri et al. (2008[Ali, S., Ghafouri, S., Yin, Z., Froimowicz, P., Begum, S. & Winnik, M. A. (2008). Eur. Polym. J. 44, 4129-4138.]). For a related structures, see: Ali, Begum et al. (2008[Ali, S., Begum, S., Winnik, M. A. & Lough, A. J. (2008). Acta Cryst. E64, o281.]); Rademeyer et al. (2003[Rademeyer, M., Barkhuizen, D. A. & Maguire, G. E. M. (2003). Acta Cryst. E59, o1650-o1652.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26O6

  • Mr = 314.37

  • Monoclinic, P 21 /c

  • a = 12.6548 (11) Å

  • b = 5.8862 (6) Å

  • c = 23.126 (2) Å

  • β = 103.147 (5)°

  • V = 1677.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.10 × 0.09 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.865, Tmax = 1.00

  • 9313 measured reflections

  • 2893 independent reflections

  • 1407 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.191

  • S = 1.00

  • 2893 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I), is a new synthetic precursor of trans-cyclohex-2-ene-1,4-diol which has been synthesized for plasticizing purposes in order to break the crystallinity of a number of polyformals, and polycarbonates (Ali, Ghafouri et al., 2008). The molecular structure of (I) is shown in Fig. 1. Unlike the crystal structure of trans-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate (Ali, Begum et al., 2008) the central cyclohexene ring is completely ordered.

Related literature top

For synthetic applications of the title compound, see: Ali, Ghafouri et al. (2008). For a related crystal structure, see: Ali, Begum et al. (2008). For a related structure, see: Rademeyer et al. (2003).

Experimental top

A reaction mixture containing trans-cyclohex-2-ene-1,4-diol (0.59 g, 5.18 mmol), di-tert-butyldicarbonate (2.26 g, 10.36 mmol) and N,N-dimethylaminopyridine (DMAP) (0.80 g, 6.57 mmol) was stirred in dry dichloromethane (80 ml) at room temperature in a 250 ml round-bottom flask (see Fig. 2). After 4 h, it was transferred to a separatory funnel (250 ml) and washed with CH3COOH (30 ml x 3, 0.1 M) to remove the excess of DMAP. The lower organic phase was removed and the aqueous phase was washed with dichloromethane (30 ml x 2). All the dichloromethane solutions were combined, washed with deionized water (30 ml x 3), and dried over anhydrous MgSO4. After filtration, the solvent was removed by rotary evaporator. The resulting oily product was dried in vacuum oven at room temperature to obtain di-tert-butyl-cyclohex-2-ene-1,4-diyl dicarbonate (I, 1.14 g, 69.5%). The product was then recrystallized from a mixture of CHCl3: MeOH (1:1) to afford needle-shaped crystals by slow evaporation of the solvent at room temperature. In addition to the X-ray structure determination, the structure was also confirmed by comparing the 1H and 13C NMR data with a related t-Boc protected compound (Rademeyer et al., 2003). 1H NMR (CDCl3, p.p.m., relative to TMS, 400 MHz): 5.98 (2H, br.s, CH=CH), 5.16 (2H, m, CH—O), 2.08 (2H, m, CH2—CH2), 1.80 (2H, m, CH2—CH2), 1.48 (18H, s, CH3); 13C NMR (CDCl3, p.p.m., relative to TMS, 100 MHz): 168.4 (C=O), 129.1 (CH=CH), 71.4 (2H, CH—O), 66.3 (C(CH3)3O), 25.2 (CH2), 28.0 (CH3)

Refinement top

Hydrogen atoms were placed in calculated positions with C—H distances ranging from 0.95 to 1.00 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

The title compound (I), is a new synthetic precursor of trans-cyclohex-2-ene-1,4-diol which has been synthesized for plasticizing purposes in order to break the crystallinity of a number of polyformals, and polycarbonates (Ali, Ghafouri et al., 2008). The molecular structure of (I) is shown in Fig. 1. Unlike the crystal structure of trans-Cyclohex-2-ene-1,4-diyl bis(4-nitrophenyl) dicarbonate (Ali, Begum et al., 2008) the central cyclohexene ring is completely ordered.

For synthetic applications of the title compound, see: Ali, Ghafouri et al. (2008). For a related crystal structure, see: Ali, Begum et al. (2008). For a related structure, see: Rademeyer et al. (2003).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability ellipsoids.
[Figure 2] Fig. 2. Preparation of the title compound.
Di-tert-butyl cyclohex-2-ene-1,4-diyl dicarbonate top
Crystal data top
C16H26O6F(000) = 680
Mr = 314.37Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9313 reflections
a = 12.6548 (11) Åθ = 2.7–25.0°
b = 5.8862 (6) ŵ = 0.09 mm1
c = 23.126 (2) ÅT = 150 K
β = 103.147 (5)°Plate, colourless
V = 1677.5 (3) Å30.10 × 0.09 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2893 independent reflections
Radiation source: fine-focus sealed tube1407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.7°
φ scans and ω scans with κ offsetsh = 1515
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 66
Tmin = 0.865, Tmax = 1.00l = 2727
9313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H26O6V = 1677.5 (3) Å3
Mr = 314.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6548 (11) ŵ = 0.09 mm1
b = 5.8862 (6) ÅT = 150 K
c = 23.126 (2) Å0.10 × 0.09 × 0.02 mm
β = 103.147 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2893 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
1407 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 1.00Rint = 0.101
9313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
2893 reflectionsΔρmin = 0.26 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3871 (2)0.2647 (5)0.54229 (13)0.0663 (10)
O20.28611 (18)0.5049 (4)0.48553 (11)0.0489 (7)
O30.2107 (2)0.2869 (4)0.54593 (11)0.0503 (7)
O40.62164 (19)0.3112 (4)0.70717 (12)0.0558 (8)
O50.72570 (17)0.5487 (4)0.76245 (10)0.0448 (7)
O60.80169 (19)0.2813 (4)0.71320 (11)0.0460 (7)
C10.4089 (3)0.0972 (7)0.59017 (18)0.0585 (12)
H1A0.33860.03730.59680.070*
C20.4714 (4)0.0915 (7)0.57122 (18)0.0634 (13)
H2A0.45020.14430.53140.076*
C30.5543 (4)0.1881 (6)0.60687 (19)0.0620 (12)
H3A0.58730.31420.59240.074*
C40.5991 (3)0.1123 (6)0.66812 (17)0.0494 (11)
H4A0.66780.02590.66990.059*
C50.5203 (3)0.0339 (7)0.69112 (17)0.0589 (12)
H5A0.55840.11100.72800.071*
H5B0.46240.06250.70070.071*
C60.4707 (4)0.2079 (7)0.64578 (17)0.0627 (12)
H6A0.52870.30470.63650.075*
H6B0.42130.30650.66220.075*
C70.2865 (3)0.3486 (6)0.52697 (16)0.0449 (10)
C80.1825 (3)0.6087 (6)0.45306 (15)0.0405 (9)
C90.1263 (3)0.7330 (6)0.49534 (16)0.0555 (12)
H9A0.10440.62340.52230.083*
H9B0.17640.84410.51850.083*
H9C0.06200.81170.47250.083*
C100.1114 (3)0.4266 (6)0.41818 (16)0.0475 (10)
H10A0.09080.31740.44570.071*
H10B0.04590.49640.39380.071*
H10C0.15130.34800.39240.071*
C110.2218 (3)0.7736 (6)0.41206 (17)0.0551 (12)
H11A0.27350.88040.43570.083*
H11B0.25750.68910.38530.083*
H11C0.15980.85770.38860.083*
C120.7258 (3)0.3718 (6)0.72638 (15)0.0387 (9)
C130.8304 (3)0.6424 (6)0.79714 (15)0.0389 (9)
C140.8905 (3)0.4608 (6)0.83795 (16)0.0506 (11)
H14A0.91380.34070.81420.076*
H14B0.84250.39610.86140.076*
H14C0.95430.52780.86460.076*
C150.8964 (3)0.7397 (6)0.75658 (16)0.0441 (10)
H15A0.85390.85620.73120.066*
H15B0.91550.61840.73180.066*
H15C0.96280.80810.78040.066*
C160.7894 (3)0.8280 (6)0.83263 (16)0.0498 (10)
H16A0.74430.93540.80530.075*
H16B0.85130.90860.85720.075*
H16C0.74610.75910.85820.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (15)0.080 (2)0.074 (2)0.0034 (15)0.0022 (14)0.0451 (17)
O20.0407 (14)0.0519 (16)0.0495 (16)0.0001 (12)0.0006 (12)0.0191 (13)
O30.0462 (15)0.0593 (18)0.0468 (18)0.0065 (13)0.0135 (14)0.0159 (13)
O40.0369 (14)0.0573 (17)0.071 (2)0.0031 (13)0.0078 (13)0.0341 (15)
O50.0377 (14)0.0478 (15)0.0467 (16)0.0061 (12)0.0049 (12)0.0142 (13)
O60.0397 (14)0.0440 (15)0.0536 (18)0.0009 (12)0.0090 (13)0.0072 (13)
C10.043 (2)0.067 (3)0.060 (3)0.002 (2)0.000 (2)0.034 (2)
C20.090 (3)0.047 (3)0.043 (3)0.003 (2)0.005 (2)0.002 (2)
C30.098 (3)0.039 (2)0.054 (3)0.014 (2)0.027 (3)0.012 (2)
C40.043 (2)0.052 (2)0.053 (3)0.0016 (19)0.0120 (19)0.022 (2)
C50.073 (3)0.052 (2)0.048 (3)0.011 (2)0.006 (2)0.003 (2)
C60.086 (3)0.057 (3)0.048 (3)0.028 (2)0.022 (2)0.009 (2)
C70.050 (2)0.045 (2)0.035 (2)0.001 (2)0.000 (2)0.0070 (19)
C80.041 (2)0.041 (2)0.035 (2)0.0049 (17)0.0024 (17)0.0031 (17)
C90.065 (3)0.052 (3)0.045 (3)0.007 (2)0.003 (2)0.001 (2)
C100.048 (2)0.051 (2)0.040 (2)0.0012 (19)0.0032 (18)0.0025 (19)
C110.055 (2)0.057 (3)0.048 (3)0.003 (2)0.001 (2)0.015 (2)
C120.039 (2)0.042 (2)0.034 (2)0.0034 (19)0.0052 (18)0.0001 (18)
C130.038 (2)0.039 (2)0.035 (2)0.0065 (17)0.0003 (17)0.0009 (17)
C140.060 (2)0.044 (2)0.043 (2)0.006 (2)0.0008 (19)0.0045 (19)
C150.045 (2)0.042 (2)0.043 (2)0.0025 (18)0.0069 (18)0.0016 (18)
C160.052 (2)0.051 (2)0.043 (2)0.010 (2)0.0044 (19)0.0085 (19)
Geometric parameters (Å, º) top
O1—C71.337 (4)C8—C101.510 (4)
O1—C11.461 (4)C8—C111.518 (5)
O2—C71.328 (4)C8—C91.521 (5)
O2—C81.486 (4)C9—H9A0.9800
O3—C71.197 (4)C9—H9B0.9800
O4—C121.340 (4)C9—H9C0.9800
O4—C41.466 (4)C10—H10A0.9800
O5—C121.334 (4)C10—H10B0.9800
O5—C131.490 (4)C10—H10C0.9800
O6—C121.197 (4)C11—H11A0.9800
C1—C21.486 (6)C11—H11B0.9800
C1—C61.494 (5)C11—H11C0.9800
C1—H1A1.0000C13—C151.504 (5)
C2—C31.307 (5)C13—C141.512 (4)
C2—H2A0.9500C13—C161.527 (5)
C3—C41.470 (5)C14—H14A0.9800
C3—H3A0.9500C14—H14B0.9800
C4—C51.503 (5)C14—H14C0.9800
C4—H4A1.0000C15—H15A0.9800
C5—C61.497 (5)C15—H15B0.9800
C5—H5A0.9900C15—H15C0.9800
C5—H5B0.9900C16—H16A0.9800
C6—H6A0.9900C16—H16B0.9800
C6—H6B0.9900C16—H16C0.9800
C7—O1—C1117.0 (3)C8—C9—H9B109.5
C7—O2—C8120.5 (3)H9A—C9—H9B109.5
C12—O4—C4117.1 (3)C8—C9—H9C109.5
C12—O5—C13119.9 (3)H9A—C9—H9C109.5
O1—C1—C2107.6 (3)H9B—C9—H9C109.5
O1—C1—C6109.2 (3)C8—C10—H10A109.5
C2—C1—C6111.7 (3)C8—C10—H10B109.5
O1—C1—H1A109.4H10A—C10—H10B109.5
C2—C1—H1A109.4C8—C10—H10C109.5
C6—C1—H1A109.4H10A—C10—H10C109.5
C3—C2—C1122.9 (4)H10B—C10—H10C109.5
C3—C2—H2A118.5C8—C11—H11A109.5
C1—C2—H2A118.5C8—C11—H11B109.5
C2—C3—C4123.6 (4)H11A—C11—H11B109.5
C2—C3—H3A118.2C8—C11—H11C109.5
C4—C3—H3A118.2H11A—C11—H11C109.5
O4—C4—C3109.2 (3)H11B—C11—H11C109.5
O4—C4—C5106.9 (3)O6—C12—O5128.4 (3)
C3—C4—C5111.9 (3)O6—C12—O4125.7 (3)
O4—C4—H4A109.6O5—C12—O4106.0 (3)
C3—C4—H4A109.6O5—C13—C15110.9 (3)
C5—C4—H4A109.6O5—C13—C14109.5 (3)
C6—C5—C4110.5 (3)C15—C13—C14112.8 (3)
C6—C5—H5A109.6O5—C13—C16100.6 (3)
C4—C5—H5A109.6C15—C13—C16111.6 (3)
C6—C5—H5B109.6C14—C13—C16110.8 (3)
C4—C5—H5B109.6C13—C14—H14A109.5
H5A—C5—H5B108.1C13—C14—H14B109.5
C1—C6—C5111.0 (3)H14A—C14—H14B109.5
C1—C6—H6A109.4C13—C14—H14C109.5
C5—C6—H6A109.4H14A—C14—H14C109.5
C1—C6—H6B109.4H14B—C14—H14C109.5
C5—C6—H6B109.4C13—C15—H15A109.5
H6A—C6—H6B108.0C13—C15—H15B109.5
O3—C7—O2127.1 (3)H15A—C15—H15B109.5
O3—C7—O1125.8 (3)C13—C15—H15C109.5
O2—C7—O1107.1 (3)H15A—C15—H15C109.5
O2—C8—C10109.2 (3)H15B—C15—H15C109.5
O2—C8—C11101.6 (3)C13—C16—H16A109.5
C10—C8—C11111.1 (3)C13—C16—H16B109.5
O2—C8—C9111.1 (3)H16A—C16—H16B109.5
C10—C8—C9112.1 (3)C13—C16—H16C109.5
C11—C8—C9111.2 (3)H16A—C16—H16C109.5
C8—C9—H9A109.5H16B—C16—H16C109.5

Experimental details

Crystal data
Chemical formulaC16H26O6
Mr314.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.6548 (11), 5.8862 (6), 23.126 (2)
β (°) 103.147 (5)
V3)1677.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.09 × 0.02
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.865, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9313, 2893, 1407
Rint0.101
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.191, 1.00
No. of reflections2893
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge funding from the Higher Education Commission (HEC), Pakistan, Materials and Manufacturing Ontario (MMO), Canada, NSERC Canada and the University of Toronto.

References

First citationAli, S., Begum, S., Winnik, M. A. & Lough, A. J. (2008). Acta Cryst. E64, o281.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAli, S., Ghafouri, S., Yin, Z., Froimowicz, P., Begum, S. & Winnik, M. A. (2008). Eur. Polym. J. 44, 4129–4138.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRademeyer, M., Barkhuizen, D. A. & Maguire, G. E. M. (2003). Acta Cryst. E59, o1650–o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds