metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η5-Cyclo­penta­dien­yl)(propio­nitrile-κN)bis­­(tri­phenyl­phosphine-κP)ruthenium(II) tri­fluoro­methane­sulfonate

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 10 September 2009; accepted 24 September 2009; online 3 October 2009)

The title compound, [Ru(C5H5)(C3H5N)(C18H15P)2]CF3SO3, forms yellow crystals with a distinctly hemimorphic habit. It contains a half-sandwich complex of ruthenium with a three-legged piano-stool geometry, with Ru—P = 2.3585 (4) and 2.3312 (4) Å, and Ru—N = 2.0422 (15) Å as the legs. The CF3SO3 anion is anchored in the crystal lattice by C—H⋯O and C—H⋯F hydrogen bonds, with C⋯F,O distances starting at 3.125 (2) Å.

Related literature

For the application of nitrile-substituted ruthenium–cyclo­penta­dienyl complexes in catalysis, see: Trost et al. (2001[Trost, B. M., Toste, F. D. & Pinkerton, A. B. (2001). Chem. Rev. 101, 2067-2096.]). For the synthesis, chemistry and crystal structures of related ruthenium–cyclo­penta­dienyl complexes, see: Carreón et al. (1997[Carreón, O. Y., Leyva, M. A., Fernández-G., J. M. & Pénicaud, A. (1997). Acta Cryst. C53, 301-302.]); Cordiner et al. (2003[Cordiner, R. L., Corcoran, D., Yufit, D. S., Goeta, A. E., Howard, J. A. K. & Low, P. J. (2003). Dalton Trans. pp. 3541-3549.]); Mauthner et al. (1999[Mauthner, K., Soldouzi, K. M., Mereiter, K., Schmid, R. & Kirchner, K. (1999). Organometallics, 18, 4681-4683.]); Rüba et al. (1999[Rüba, E., Simanko, W., Mauthner, K., Soldouzi, K. M., Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1999). Organometallics, 18, 3843-3850.], 2002[Rüba, E., Mereiter, K., Schmid, R., Sapunov, V. N., Kirchner, K., Schottenberger, H., Calhorda, M. C. & Veiros, L. F. (2002). Chem. Eur. J. 8, 3948-3961.]); Bruce et al. (1982[Bruce, M. I., Hameister, C., Swincer, A. G., Wallis, R. C. & Ittel, S. D. (1982). Inorganic Synthesis, Vol. XXI, pp. 78-84. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C5H5)(C3H5N)(C18H15P)2]CF3SO3

  • Mr = 894.85

  • Monoclinic, P 21

  • a = 9.9991 (4) Å

  • b = 17.2172 (7) Å

  • c = 11.4605 (5) Å

  • β = 92.126 (1)°

  • V = 1971.64 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 123 K

  • 0.31 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.79, Tmax = 0.89

  • 29537 measured reflections

  • 11391 independent reflections

  • 11056 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.02

  • 11391 reflections

  • 505 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5488 Friedel pairs

  • Flack parameter: −0.038 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F1 0.95 2.49 3.125 (2) 125
C3—H3⋯O1i 0.95 2.50 3.154 (3) 126
C7—H7A⋯O3 0.99 2.43 3.346 (3) 153
C28—H28⋯O1i 0.95 2.56 3.328 (2) 138
C44—H44⋯O2 0.95 2.58 3.209 (2) 124
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Half-sandwich complexes based on the cationic fragment [CpRu]+ (Cp = cyclopentadienyl) and complemented by a combination of stabilizing phosphine and labile nitrile ligands are of interest as catalysts in organic chemistry for a variety of useful transformations of unsaturated systems, like C—C bond forming reactions, isomerizations, or C—H activations (Trost et al., 2001). In the context of our research in this area (Rüba et al., 1999, 2002; Mauthner et al., 1999) the title compound was synthesized from [CpRu(PPh3)2Cl] (Ph = phenyl) by halide abstraction with AgCF3SO3 in the presence of propionitrile. As an unconventional but efficient method, technical nitromethane was used as the reaction solvent because it provides good solubility of the reactants, already contains the propionitrile needed for the formation of the title compound, and yields a well crystallized product. Fig. 1 shows the asymmetric unit of the title compound. The cationic ruthenium complex exhibits the well known three-legged piano stool geometry with Cp as the seat and Ru—P1 = 2.3585 (4) Å, Ru—P2 = 2.3312 (4) Å, and Ru—N = 2.0422 (15) Å as the legs. The distance between Ru and the centroid of the π-bonded cyclopentadienyl moiety is 1.8579 (8) Å (ring slippage 0.052 Å) and the mean value of the Ru—C bond distances is 2.216 (19) Å. These dimensions agree well with those of the several related complexes, e.g. [CpRu(PPh3)2(NCCH3)]BF4 (Carreón et al., 1997) or [CpRu(PPh3)2(NCPh)]PF6 (Cordiner et al., 2003). The conformation of the complex in the title compound is irregular and lacks a frequently encountered feature of CpRu(PPh3)2X complexes of having an intramolecular π-π-stacking contact between two phenyl rings opposite to the Cp ring, present for instance in [CpRu(PPh3)2(NCPh)]PF6 (Carreon et al., 1997). A packing diagram of the crystal structure is shown in Fig. 2. Coherence between the complexes and the CF3SO3 anions is provided by C—H···π, C—H···O and C—H···F interactions, the most significant of which are listed in Table 1. Intermolecular π-π-stacking interactions are absent in the structure.

Related literature top

For the application of nitrile-substituted ruthenium–cyclopentadienyl complexes in catalysis, see: Trost et al. (2001). For the synthesis, chemistry and crystal structures of related ruthenium–cyclopentadienyl complexes, see: Carreón et al. (1997); Cordiner et al. (2003); Mauthner et al. (1999); Rüba et al. (1999, 2002); Bruce et al. (1982).

Experimental top

The synthesis of the title compound was carried out by stirring stoichiometric amounts of [CpRu(PPh3)2Cl] (Bruce et al., 1982) and AgCF3SO3 in technical nitromethane at room temperature for several hours. After removing AgCl by filtration through celite, the solution was stored over diethyl ether whereupon well facetted blocky yellow crystals precipitated, showing a distinctly hemimorphic habit with a roof like termination on one side of the b-axis (monoclinic, space group P21) and a flat base on the other.

Refinement top

All H atoms were placed in calculated positions, with Carene—H = 0.95 Å, Calkyl—H = 0.99 Å and Cmethyl—H = 0.98 Å and thereafter treated as riding. Uiso(H) = 1.2Ueq(Carene,Calkyl) and Uiso(H) = 1.5Ueq(Cmethyl) were used.

Structure description top

Half-sandwich complexes based on the cationic fragment [CpRu]+ (Cp = cyclopentadienyl) and complemented by a combination of stabilizing phosphine and labile nitrile ligands are of interest as catalysts in organic chemistry for a variety of useful transformations of unsaturated systems, like C—C bond forming reactions, isomerizations, or C—H activations (Trost et al., 2001). In the context of our research in this area (Rüba et al., 1999, 2002; Mauthner et al., 1999) the title compound was synthesized from [CpRu(PPh3)2Cl] (Ph = phenyl) by halide abstraction with AgCF3SO3 in the presence of propionitrile. As an unconventional but efficient method, technical nitromethane was used as the reaction solvent because it provides good solubility of the reactants, already contains the propionitrile needed for the formation of the title compound, and yields a well crystallized product. Fig. 1 shows the asymmetric unit of the title compound. The cationic ruthenium complex exhibits the well known three-legged piano stool geometry with Cp as the seat and Ru—P1 = 2.3585 (4) Å, Ru—P2 = 2.3312 (4) Å, and Ru—N = 2.0422 (15) Å as the legs. The distance between Ru and the centroid of the π-bonded cyclopentadienyl moiety is 1.8579 (8) Å (ring slippage 0.052 Å) and the mean value of the Ru—C bond distances is 2.216 (19) Å. These dimensions agree well with those of the several related complexes, e.g. [CpRu(PPh3)2(NCCH3)]BF4 (Carreón et al., 1997) or [CpRu(PPh3)2(NCPh)]PF6 (Cordiner et al., 2003). The conformation of the complex in the title compound is irregular and lacks a frequently encountered feature of CpRu(PPh3)2X complexes of having an intramolecular π-π-stacking contact between two phenyl rings opposite to the Cp ring, present for instance in [CpRu(PPh3)2(NCPh)]PF6 (Carreon et al., 1997). A packing diagram of the crystal structure is shown in Fig. 2. Coherence between the complexes and the CF3SO3 anions is provided by C—H···π, C—H···O and C—H···F interactions, the most significant of which are listed in Table 1. Intermolecular π-π-stacking interactions are absent in the structure.

For the application of nitrile-substituted ruthenium–cyclopentadienyl complexes in catalysis, see: Trost et al. (2001). For the synthesis, chemistry and crystal structures of related ruthenium–cyclopentadienyl complexes, see: Carreón et al. (1997); Cordiner et al. (2003); Mauthner et al. (1999); Rüba et al. (1999, 2002); Bruce et al. (1982).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme. Displacement ellipsoids are at the 50% probability level. Arene bonded hydrogen atoms omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. H atoms omitted for clarity.
(η5-Cyclopentadienyl)(propionitrile-κN)bis(triphenylphosphine- κP)ruthenium(II) trifluoromethanesulfonate top
Crystal data top
[Ru(C5H5)(C3H5N)(C18H15P)2]CF3SO3F(000) = 916
Mr = 894.85Dx = 1.507 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9696 reflections
a = 9.9991 (4) Åθ = 2.3–30.0°
b = 17.2172 (7) ŵ = 0.59 mm1
c = 11.4605 (5) ÅT = 123 K
β = 92.126 (1)°Block, yellow
V = 1971.64 (14) Å30.31 × 0.21 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
11391 independent reflections
Radiation source: fine-focus sealed tube11056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.79, Tmax = 0.89k = 2424
29537 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.008
11391 reflectionsΔρmax = 0.83 e Å3
505 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 5488 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.038 (12)
Crystal data top
[Ru(C5H5)(C3H5N)(C18H15P)2]CF3SO3V = 1971.64 (14) Å3
Mr = 894.85Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.9991 (4) ŵ = 0.59 mm1
b = 17.2172 (7) ÅT = 123 K
c = 11.4605 (5) Å0.31 × 0.21 × 0.20 mm
β = 92.126 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
11391 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
11056 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.89Rint = 0.023
29537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.83 e Å3
S = 1.02Δρmin = 0.24 e Å3
11391 reflectionsAbsolute structure: Flack (1983), 5488 Friedel pairs
505 parametersAbsolute structure parameter: 0.038 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.341326 (11)0.249998 (7)0.726654 (9)0.01426 (3)
C10.53032 (17)0.19188 (12)0.67577 (17)0.0228 (4)
H10.53890.16420.60470.027*
C20.49161 (18)0.15963 (12)0.78263 (19)0.0294 (4)
H20.47100.10660.79600.035*
C30.4887 (2)0.22017 (16)0.86681 (18)0.0380 (6)
H30.46430.21510.94580.046*
C40.52913 (19)0.28964 (14)0.8112 (2)0.0350 (5)
H40.53790.33920.84700.042*
C50.55426 (17)0.27207 (11)0.69210 (18)0.0246 (4)
H50.58190.30770.63450.029*
N0.25756 (14)0.23010 (8)0.56417 (13)0.0188 (3)
C60.21203 (17)0.21621 (11)0.47390 (15)0.0219 (3)
C70.1453 (2)0.19964 (15)0.35985 (17)0.0342 (5)
H7A0.20630.21380.29720.041*
H7B0.06440.23250.35070.041*
C80.1054 (2)0.11580 (17)0.3454 (2)0.0469 (6)
H8A0.06170.10830.26830.070*
H8B0.04320.10160.40600.070*
H8C0.18520.08290.35260.070*
P10.15565 (4)0.18985 (3)0.80997 (4)0.01583 (8)
C90.01753 (16)0.15322 (10)0.71392 (15)0.0190 (3)
C100.03505 (17)0.20098 (11)0.62471 (15)0.0210 (3)
H100.00200.25110.61340.025*
C110.14125 (18)0.17569 (13)0.55243 (18)0.0265 (4)
H110.17620.20860.49220.032*
C120.1962 (2)0.10270 (14)0.56792 (19)0.0283 (4)
H120.26620.08470.51650.034*
C130.14818 (19)0.05593 (13)0.65905 (19)0.0292 (4)
H130.18780.00670.67200.035*
C140.04185 (19)0.08125 (11)0.73145 (18)0.0241 (4)
H140.00950.04900.79350.029*
C150.06383 (16)0.24013 (10)0.92283 (14)0.0179 (3)
C160.13777 (18)0.27803 (11)1.01128 (15)0.0219 (3)
H160.23270.27781.01020.026*
C170.0747 (2)0.31616 (12)1.10118 (17)0.0285 (4)
H170.12630.34181.16090.034*
C180.0637 (2)0.31647 (13)1.10291 (18)0.0311 (4)
H180.10730.34211.16430.037*
C190.1390 (2)0.27944 (13)1.01531 (18)0.0294 (4)
H190.23390.28001.01680.035*
C200.07604 (16)0.24154 (12)0.92526 (15)0.0221 (3)
H200.12810.21650.86530.027*
C210.21005 (17)0.10030 (11)0.88407 (16)0.0202 (3)
C220.2503 (2)0.03787 (12)0.81551 (19)0.0263 (4)
H220.24280.04160.73280.032*
C230.3009 (2)0.02938 (12)0.8667 (2)0.0321 (4)
H230.32780.07140.81930.039*
C240.3122 (2)0.03525 (13)0.9867 (2)0.0388 (5)
H240.34750.08131.02170.047*
C250.2728 (3)0.02520 (14)1.0559 (2)0.0397 (5)
H250.28090.02071.13840.048*
C260.2204 (2)0.09356 (12)1.00511 (18)0.0283 (4)
H260.19210.13501.05320.034*
P20.26534 (4)0.37799 (2)0.71997 (4)0.01567 (8)
C270.25610 (17)0.43943 (10)0.84958 (16)0.0183 (3)
C280.32721 (18)0.42172 (11)0.95327 (16)0.0216 (3)
H280.37440.37390.96030.026*
C290.3294 (2)0.47364 (13)1.04651 (17)0.0279 (4)
H290.37780.46101.11690.034*
C300.2619 (2)0.54327 (13)1.03735 (19)0.0309 (4)
H300.26400.57861.10110.037*
C310.1907 (2)0.56177 (12)0.93457 (19)0.0306 (4)
H310.14380.60960.92810.037*
C320.18831 (19)0.51047 (11)0.84190 (17)0.0242 (4)
H320.13980.52360.77180.029*
C330.09830 (17)0.39283 (10)0.65273 (16)0.0189 (3)
C340.07442 (19)0.39834 (12)0.53252 (17)0.0259 (4)
H340.14790.39990.48230.031*
C350.0560 (2)0.40153 (13)0.48482 (19)0.0323 (4)
H350.07100.40500.40260.039*
C360.1634 (2)0.39960 (14)0.5577 (2)0.0342 (5)
H360.25220.40150.52540.041*
C370.14138 (19)0.39498 (12)0.6774 (2)0.0303 (4)
H370.21530.39430.72720.036*
C380.01191 (18)0.39134 (11)0.72506 (17)0.0227 (4)
H380.00220.38780.80730.027*
C390.37796 (17)0.43733 (10)0.63223 (15)0.0183 (3)
C400.44301 (18)0.50304 (11)0.67898 (17)0.0216 (3)
H400.42720.51880.75670.026*
C410.53071 (19)0.54539 (11)0.61214 (19)0.0255 (4)
H410.57560.58920.64520.031*
C420.55316 (18)0.52433 (11)0.49815 (18)0.0248 (4)
H420.61180.55410.45260.030*
C430.48912 (18)0.45894 (11)0.45029 (17)0.0226 (3)
H430.50340.44450.37170.027*
C440.40455 (17)0.41509 (10)0.51753 (16)0.0197 (3)
H440.36420.36950.48560.024*
S0.46664 (5)0.27200 (3)0.20757 (4)0.02305 (9)
O10.53116 (16)0.30544 (10)0.10892 (13)0.0332 (3)
O20.38633 (16)0.32535 (10)0.27204 (14)0.0360 (3)
O30.40770 (16)0.19647 (9)0.18699 (14)0.0347 (3)
C450.60750 (17)0.25111 (16)0.30810 (15)0.0274 (3)
F10.56484 (15)0.22620 (9)0.41086 (11)0.0455 (4)
F20.68724 (15)0.19662 (10)0.26773 (13)0.0459 (4)
F30.68194 (14)0.31414 (8)0.33035 (12)0.0395 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.01224 (5)0.01522 (5)0.01522 (5)0.00110 (5)0.00081 (3)0.00111 (5)
C10.0122 (7)0.0272 (10)0.0290 (9)0.0040 (7)0.0013 (6)0.0069 (8)
C20.0172 (8)0.0293 (10)0.0418 (11)0.0081 (7)0.0006 (7)0.0111 (8)
C30.0190 (8)0.0745 (17)0.0199 (9)0.0123 (9)0.0045 (7)0.0028 (9)
C40.0137 (8)0.0408 (12)0.0495 (13)0.0055 (8)0.0103 (8)0.0256 (10)
C50.0125 (7)0.0238 (9)0.0374 (10)0.0012 (6)0.0008 (6)0.0034 (7)
N0.0171 (6)0.0182 (7)0.0211 (7)0.0005 (5)0.0006 (5)0.0000 (5)
C60.0204 (8)0.0243 (9)0.0209 (8)0.0042 (7)0.0002 (6)0.0002 (7)
C70.0299 (10)0.0531 (14)0.0191 (9)0.0133 (9)0.0054 (7)0.0005 (9)
C80.0344 (12)0.0593 (17)0.0468 (14)0.0084 (11)0.0002 (10)0.0244 (13)
P10.01420 (18)0.01554 (19)0.01770 (19)0.00049 (15)0.00011 (13)0.00047 (15)
C90.0147 (7)0.0207 (8)0.0215 (8)0.0007 (6)0.0004 (6)0.0041 (6)
C100.0151 (7)0.0230 (8)0.0247 (8)0.0001 (6)0.0020 (6)0.0025 (7)
C110.0157 (8)0.0347 (10)0.0289 (9)0.0020 (7)0.0035 (6)0.0034 (8)
C120.0168 (8)0.0367 (11)0.0313 (10)0.0010 (8)0.0022 (7)0.0129 (9)
C130.0221 (9)0.0278 (10)0.0377 (11)0.0060 (7)0.0036 (8)0.0104 (8)
C140.0222 (9)0.0220 (9)0.0281 (9)0.0023 (7)0.0026 (7)0.0019 (7)
C150.0177 (7)0.0156 (9)0.0206 (7)0.0029 (6)0.0033 (5)0.0012 (6)
C160.0212 (8)0.0219 (8)0.0226 (8)0.0021 (6)0.0013 (6)0.0006 (7)
C170.0338 (10)0.0281 (10)0.0235 (9)0.0030 (8)0.0026 (8)0.0056 (7)
C180.0341 (10)0.0311 (10)0.0287 (9)0.0095 (8)0.0103 (8)0.0040 (8)
C190.0219 (9)0.0316 (9)0.0351 (10)0.0058 (7)0.0086 (7)0.0026 (8)
C200.0192 (7)0.0221 (9)0.0253 (7)0.0022 (7)0.0035 (5)0.0008 (7)
C210.0175 (7)0.0165 (8)0.0265 (8)0.0000 (6)0.0005 (6)0.0016 (6)
C220.0248 (9)0.0207 (9)0.0336 (10)0.0026 (7)0.0065 (8)0.0013 (8)
C230.0273 (9)0.0189 (9)0.0502 (12)0.0043 (7)0.0016 (9)0.0026 (9)
C240.0394 (12)0.0218 (10)0.0541 (14)0.0055 (9)0.0135 (10)0.0076 (10)
C250.0531 (15)0.0310 (11)0.0340 (12)0.0062 (11)0.0118 (11)0.0068 (9)
C260.0351 (10)0.0214 (9)0.0280 (10)0.0017 (8)0.0051 (8)0.0001 (7)
P20.01508 (18)0.01485 (18)0.01694 (18)0.00050 (15)0.00126 (14)0.00113 (15)
C270.0177 (7)0.0174 (8)0.0199 (8)0.0006 (6)0.0009 (6)0.0024 (6)
C280.0212 (8)0.0219 (8)0.0217 (8)0.0005 (6)0.0011 (6)0.0021 (6)
C290.0293 (10)0.0345 (11)0.0198 (8)0.0008 (8)0.0007 (7)0.0052 (8)
C300.0295 (10)0.0344 (11)0.0289 (10)0.0022 (8)0.0034 (8)0.0146 (8)
C310.0304 (10)0.0237 (9)0.0377 (11)0.0052 (8)0.0025 (8)0.0106 (8)
C320.0242 (9)0.0213 (9)0.0271 (9)0.0032 (7)0.0017 (7)0.0028 (7)
C330.0165 (7)0.0151 (8)0.0248 (8)0.0006 (6)0.0035 (6)0.0003 (6)
C340.0232 (8)0.0270 (9)0.0269 (9)0.0022 (7)0.0059 (7)0.0048 (7)
C350.0282 (9)0.0326 (11)0.0351 (11)0.0002 (8)0.0133 (8)0.0047 (9)
C360.0182 (9)0.0282 (11)0.0550 (14)0.0020 (8)0.0121 (9)0.0015 (10)
C370.0184 (8)0.0254 (10)0.0468 (12)0.0011 (7)0.0004 (8)0.0048 (9)
C380.0202 (8)0.0187 (9)0.0290 (9)0.0001 (7)0.0011 (7)0.0017 (7)
C390.0166 (7)0.0162 (7)0.0221 (8)0.0010 (6)0.0004 (6)0.0013 (6)
C400.0205 (8)0.0186 (8)0.0258 (8)0.0013 (6)0.0001 (6)0.0030 (6)
C410.0202 (8)0.0193 (9)0.0368 (10)0.0037 (7)0.0012 (7)0.0012 (7)
C420.0207 (8)0.0206 (9)0.0331 (10)0.0018 (7)0.0028 (7)0.0066 (7)
C430.0221 (8)0.0219 (9)0.0242 (9)0.0033 (7)0.0048 (7)0.0014 (7)
C440.0190 (8)0.0168 (8)0.0233 (8)0.0001 (6)0.0005 (6)0.0011 (6)
S0.0246 (2)0.0236 (2)0.02063 (19)0.00254 (16)0.00403 (16)0.00122 (15)
O10.0360 (8)0.0380 (8)0.0252 (7)0.0037 (7)0.0027 (6)0.0067 (6)
O20.0315 (7)0.0410 (9)0.0352 (8)0.0058 (7)0.0030 (6)0.0090 (7)
O30.0391 (8)0.0279 (7)0.0365 (8)0.0110 (7)0.0083 (6)0.0012 (6)
C450.0287 (8)0.0288 (8)0.0243 (7)0.0020 (10)0.0050 (6)0.0039 (10)
F10.0506 (8)0.0623 (10)0.0230 (6)0.0067 (7)0.0065 (5)0.0146 (6)
F20.0417 (7)0.0473 (9)0.0477 (9)0.0181 (7)0.0103 (6)0.0071 (7)
F30.0374 (7)0.0382 (7)0.0417 (7)0.0098 (6)0.0163 (6)0.0013 (6)
Geometric parameters (Å, º) top
Ru—N2.0422 (15)C22—C231.385 (3)
Ru—C42.1901 (19)C22—H220.9500
Ru—C32.2001 (19)C23—C241.379 (4)
Ru—C52.2129 (17)C23—H230.9500
Ru—C12.2348 (17)C24—C251.375 (4)
Ru—C22.2403 (18)C24—H240.9500
Ru—P22.3312 (4)C25—C261.406 (3)
Ru—P12.3585 (4)C25—H250.9500
C1—C21.412 (3)C26—H260.9500
C1—C51.412 (3)P2—C271.8288 (18)
C1—H10.9500P2—C331.8312 (17)
C2—C31.421 (3)P2—C391.8458 (18)
C2—H20.9500C27—C281.396 (3)
C3—C41.421 (4)C27—C321.399 (3)
C3—H30.9500C28—C291.393 (3)
C4—C51.430 (3)C28—H280.9500
C4—H40.9500C29—C301.378 (3)
C5—H50.9500C29—H290.9500
N—C61.140 (2)C30—C311.390 (3)
C6—C71.473 (3)C30—H300.9500
C7—C81.505 (4)C31—C321.381 (3)
C7—H7A0.9900C31—H310.9500
C7—H7B0.9900C32—H320.9500
C8—H8A0.9800C33—C341.393 (3)
C8—H8B0.9800C33—C381.404 (3)
C8—H8C0.9800C34—C351.396 (3)
P1—C151.8312 (17)C34—H340.9500
P1—C211.8331 (18)C35—C361.385 (3)
P1—C91.8451 (17)C35—H350.9500
C9—C141.392 (3)C36—C371.384 (3)
C9—C101.399 (2)C36—H360.9500
C10—C111.392 (2)C37—C381.388 (3)
C10—H100.9500C37—H370.9500
C11—C121.386 (3)C38—H380.9500
C11—H110.9500C39—C401.401 (2)
C12—C131.390 (3)C39—C441.404 (2)
C12—H120.9500C40—C411.392 (3)
C13—C141.394 (3)C40—H400.9500
C13—H130.9500C41—C421.382 (3)
C14—H140.9500C41—H410.9500
C15—C161.394 (2)C42—C431.397 (3)
C15—C201.400 (2)C42—H420.9500
C16—C171.392 (3)C43—C441.388 (3)
C16—H160.9500C43—H430.9500
C17—C181.385 (3)C44—H440.9500
C17—H170.9500S—O21.4418 (16)
C18—C191.387 (3)S—O11.4422 (15)
C18—H180.9500S—O31.4435 (16)
C19—C201.391 (3)S—C451.8221 (17)
C19—H190.9500C45—F21.326 (3)
C20—H200.9500C45—F31.335 (3)
C21—C261.392 (3)C45—F11.338 (2)
C21—C221.399 (3)
N—Ru—C4140.51 (8)C18—C17—C16119.51 (19)
N—Ru—C3150.17 (8)C18—C17—H17120.2
C4—Ru—C337.77 (10)C16—C17—H17120.2
N—Ru—C5103.32 (7)C17—C18—C19120.24 (18)
C4—Ru—C537.89 (8)C17—C18—H18119.9
C3—Ru—C563.12 (8)C19—C18—H18119.9
N—Ru—C190.52 (6)C18—C19—C20120.26 (18)
C4—Ru—C162.32 (7)C18—C19—H19119.9
C3—Ru—C162.35 (8)C20—C19—H19119.9
C5—Ru—C137.03 (8)C19—C20—C15120.18 (17)
N—Ru—C2113.12 (7)C19—C20—H20119.9
C4—Ru—C262.27 (9)C15—C20—H20119.9
C3—Ru—C237.32 (9)C26—C21—C22118.91 (18)
C5—Ru—C262.03 (7)C26—C21—P1122.79 (15)
C1—Ru—C236.78 (7)C22—C21—P1118.20 (15)
N—Ru—P290.37 (4)C23—C22—C21120.8 (2)
C4—Ru—P289.60 (6)C23—C22—H22119.6
C3—Ru—P2116.96 (7)C21—C22—H22119.6
C5—Ru—P298.42 (5)C24—C23—C22119.9 (2)
C1—Ru—P2133.82 (5)C24—C23—H23120.0
C2—Ru—P2151.67 (6)C22—C23—H23120.0
N—Ru—P189.61 (4)C25—C24—C23120.3 (2)
C4—Ru—P1129.24 (7)C25—C24—H24119.9
C3—Ru—P196.78 (6)C23—C24—H24119.9
C5—Ru—P1157.66 (5)C24—C25—C26120.4 (2)
C1—Ru—P1126.52 (6)C24—C25—H25119.8
C2—Ru—P196.25 (5)C26—C25—H25119.8
P2—Ru—P199.661 (15)C21—C26—C25119.7 (2)
C2—C1—C5108.67 (17)C21—C26—H26120.2
C2—C1—Ru71.82 (10)C25—C26—H26120.2
C5—C1—Ru70.64 (10)C27—P2—C33100.86 (8)
C2—C1—H1125.7C27—P2—C3999.93 (8)
C5—C1—H1125.7C33—P2—C39105.01 (8)
Ru—C1—H1123.5C27—P2—Ru123.12 (6)
C1—C2—C3108.27 (19)C33—P2—Ru115.90 (6)
C1—C2—Ru71.40 (10)C39—P2—Ru109.66 (6)
C3—C2—Ru69.80 (11)C28—C27—C32118.34 (17)
C1—C2—H2125.9C28—C27—P2121.71 (14)
C3—C2—H2125.9C32—C27—P2119.57 (14)
Ru—C2—H2124.5C29—C28—C27120.41 (18)
C4—C3—C2107.44 (18)C29—C28—H28119.8
C4—C3—Ru70.73 (11)C27—C28—H28119.8
C2—C3—Ru72.87 (11)C30—C29—C28120.40 (19)
C4—C3—H3126.3C30—C29—H29119.8
C2—C3—H3126.3C28—C29—H29119.8
Ru—C3—H3121.8C29—C30—C31119.85 (18)
C3—C4—C5108.24 (19)C29—C30—H30120.1
C3—C4—Ru71.50 (11)C31—C30—H30120.1
C5—C4—Ru71.92 (10)C32—C31—C30119.93 (19)
C3—C4—H4125.9C32—C31—H31120.0
C5—C4—H4125.9C30—C31—H31120.0
Ru—C4—H4122.4C31—C32—C27121.06 (18)
C1—C5—C4107.36 (18)C31—C32—H32119.5
C1—C5—Ru72.33 (10)C27—C32—H32119.5
C4—C5—Ru70.19 (10)C34—C33—C38118.42 (16)
C1—C5—H5126.3C34—C33—P2123.09 (14)
C4—C5—H5126.3C38—C33—P2118.21 (13)
Ru—C5—H5122.8C33—C34—C35120.89 (19)
C6—N—Ru177.51 (15)C33—C34—H34119.6
N—C6—C7176.6 (2)C35—C34—H34119.6
C6—C7—C8113.1 (2)C36—C35—C34119.8 (2)
C6—C7—H7A109.0C36—C35—H35120.1
C8—C7—H7A109.0C34—C35—H35120.1
C6—C7—H7B109.0C37—C36—C35120.06 (19)
C8—C7—H7B109.0C37—C36—H36120.0
H7A—C7—H7B107.8C35—C36—H36120.0
C7—C8—H8A109.5C36—C37—C38120.3 (2)
C7—C8—H8B109.5C36—C37—H37119.8
H8A—C8—H8B109.5C38—C37—H37119.8
C7—C8—H8C109.5C37—C38—C33120.53 (19)
H8A—C8—H8C109.5C37—C38—H38119.7
H8B—C8—H8C109.5C33—C38—H38119.7
C15—P1—C21102.61 (8)C40—C39—C44118.47 (16)
C15—P1—C9101.49 (8)C40—C39—P2121.50 (14)
C21—P1—C9101.04 (8)C44—C39—P2119.98 (13)
C15—P1—Ru120.08 (6)C41—C40—C39120.36 (17)
C21—P1—Ru109.41 (6)C41—C40—H40119.8
C9—P1—Ru119.45 (6)C39—C40—H40119.8
C14—C9—C10118.55 (16)C42—C41—C40120.70 (18)
C14—C9—P1122.15 (14)C42—C41—H41119.7
C10—C9—P1119.19 (13)C40—C41—H41119.7
C11—C10—C9120.57 (18)C41—C42—C43119.62 (18)
C11—C10—H10119.7C41—C42—H42120.2
C9—C10—H10119.7C43—C42—H42120.2
C12—C11—C10120.31 (19)C44—C43—C42120.00 (18)
C12—C11—H11119.8C44—C43—H43120.0
C10—C11—H11119.8C42—C43—H43120.0
C11—C12—C13119.61 (18)C43—C44—C39120.79 (17)
C11—C12—H12120.2C43—C44—H44119.6
C13—C12—H12120.2C39—C44—H44119.6
C12—C13—C14120.0 (2)O2—S—O1114.91 (10)
C12—C13—H13120.0O2—S—O3115.21 (10)
C14—C13—H13120.0O1—S—O3115.05 (10)
C9—C14—C13120.83 (19)O2—S—C45103.52 (10)
C9—C14—H14119.6O1—S—C45102.52 (9)
C13—C14—H14119.6O3—S—C45103.11 (11)
C16—C15—C20118.72 (16)F2—C45—F3107.67 (16)
C16—C15—P1117.93 (12)F2—C45—F1107.2 (2)
C20—C15—P1123.34 (13)F3—C45—F1106.62 (16)
C17—C16—C15121.08 (17)F2—C45—S112.32 (13)
C17—C16—H16119.5F3—C45—S111.88 (16)
C15—C16—H16119.5F1—C45—S110.84 (12)
N—Ru—C1—C2130.06 (13)C10—C11—C12—C132.5 (3)
C4—Ru—C1—C279.87 (15)C11—C12—C13—C142.5 (3)
C3—Ru—C1—C237.00 (14)C10—C9—C14—C132.4 (3)
C5—Ru—C1—C2118.20 (17)P1—C9—C14—C13178.46 (14)
P2—Ru—C1—C2138.93 (11)C12—C13—C14—C90.0 (3)
P1—Ru—C1—C240.16 (14)C21—P1—C15—C1677.57 (15)
N—Ru—C1—C5111.75 (12)C9—P1—C15—C16178.21 (14)
C4—Ru—C1—C538.32 (13)Ru—P1—C15—C1643.98 (16)
C3—Ru—C1—C581.19 (14)C21—P1—C15—C20101.66 (16)
C2—Ru—C1—C5118.20 (17)C9—P1—C15—C202.57 (17)
P2—Ru—C1—C520.73 (14)Ru—P1—C15—C20136.79 (14)
P1—Ru—C1—C5158.36 (10)C20—C15—C16—C170.5 (3)
C5—C1—C2—C31.0 (2)P1—C15—C16—C17178.74 (15)
Ru—C1—C2—C360.35 (13)C15—C16—C17—C180.0 (3)
C5—C1—C2—Ru61.37 (13)C16—C17—C18—C190.4 (3)
N—Ru—C2—C156.32 (13)C17—C18—C19—C200.2 (3)
C4—Ru—C2—C180.02 (14)C18—C19—C20—C150.4 (3)
C3—Ru—C2—C1118.44 (18)C16—C15—C20—C190.7 (3)
C5—Ru—C2—C136.94 (12)P1—C15—C20—C19178.51 (14)
P2—Ru—C2—C187.45 (16)C15—P1—C21—C2621.73 (18)
P1—Ru—C2—C1148.57 (11)C9—P1—C21—C26126.30 (17)
N—Ru—C2—C3174.76 (12)Ru—P1—C21—C26106.84 (16)
C4—Ru—C2—C338.41 (13)C15—P1—C21—C22162.15 (15)
C5—Ru—C2—C381.50 (14)C9—P1—C21—C2257.57 (16)
C1—Ru—C2—C3118.44 (18)Ru—P1—C21—C2269.29 (15)
P2—Ru—C2—C330.99 (19)C26—C21—C22—C230.7 (3)
P1—Ru—C2—C392.99 (13)P1—C21—C22—C23175.61 (15)
C1—C2—C3—C41.3 (2)C21—C22—C23—C240.1 (3)
Ru—C2—C3—C462.70 (13)C22—C23—C24—C250.4 (4)
C1—C2—C3—Ru61.36 (13)C23—C24—C25—C260.0 (4)
N—Ru—C3—C4106.38 (19)C22—C21—C26—C251.1 (3)
C5—Ru—C3—C437.78 (11)P1—C21—C26—C25175.01 (17)
C1—Ru—C3—C479.63 (12)C24—C25—C26—C210.8 (4)
C2—Ru—C3—C4116.10 (17)N—Ru—P2—C27163.43 (8)
P2—Ru—C3—C447.99 (12)C4—Ru—P2—C2756.06 (10)
P1—Ru—C3—C4152.47 (11)C3—Ru—P2—C2728.99 (10)
N—Ru—C3—C29.7 (2)C5—Ru—P2—C2793.04 (9)
C4—Ru—C3—C2116.10 (17)C1—Ru—P2—C27105.49 (10)
C5—Ru—C3—C278.32 (13)C2—Ru—P2—C2749.49 (14)
C1—Ru—C3—C236.47 (12)P1—Ru—P2—C2773.77 (7)
P2—Ru—C3—C2164.09 (10)N—Ru—P2—C3338.91 (8)
P1—Ru—C3—C291.43 (12)C4—Ru—P2—C33179.42 (9)
C2—C3—C4—C51.2 (2)C3—Ru—P2—C33153.51 (9)
Ru—C3—C4—C562.94 (13)C5—Ru—P2—C33142.44 (8)
C2—C3—C4—Ru64.10 (13)C1—Ru—P2—C33129.99 (9)
N—Ru—C4—C3131.38 (14)C2—Ru—P2—C33174.01 (13)
C5—Ru—C4—C3117.16 (18)P1—Ru—P2—C3350.75 (7)
C1—Ru—C4—C379.71 (13)N—Ru—P2—C3979.71 (7)
C2—Ru—C4—C337.96 (12)C4—Ru—P2—C3960.79 (9)
P2—Ru—C4—C3138.52 (12)C3—Ru—P2—C3987.86 (9)
P1—Ru—C4—C336.34 (14)C5—Ru—P2—C3923.81 (8)
N—Ru—C4—C514.22 (19)C1—Ru—P2—C3911.36 (9)
C3—Ru—C4—C5117.16 (18)C2—Ru—P2—C3967.36 (13)
C1—Ru—C4—C537.45 (12)P1—Ru—P2—C39169.38 (6)
C2—Ru—C4—C579.20 (13)C33—P2—C27—C28149.20 (15)
P2—Ru—C4—C5104.32 (12)C39—P2—C27—C28103.26 (16)
P1—Ru—C4—C5153.50 (10)Ru—P2—C27—C2818.20 (18)
C2—C1—C5—C40.3 (2)C33—P2—C27—C3237.97 (17)
Ru—C1—C5—C461.82 (12)C39—P2—C27—C3269.56 (16)
C2—C1—C5—Ru62.11 (12)Ru—P2—C27—C32168.97 (12)
C3—C4—C5—C10.5 (2)C32—C27—C28—C290.3 (3)
Ru—C4—C5—C163.21 (13)P2—C27—C28—C29173.25 (15)
C3—C4—C5—Ru62.67 (13)C27—C28—C29—C300.3 (3)
N—Ru—C5—C172.64 (12)C28—C29—C30—C310.2 (3)
C4—Ru—C5—C1116.60 (18)C29—C30—C31—C320.2 (3)
C3—Ru—C5—C178.94 (13)C30—C31—C32—C270.3 (3)
C2—Ru—C5—C136.69 (12)C28—C27—C32—C310.4 (3)
P2—Ru—C5—C1165.04 (10)P2—C27—C32—C31173.44 (16)
P1—Ru—C5—C151.2 (2)C27—P2—C33—C34142.10 (16)
N—Ru—C5—C4170.76 (13)C39—P2—C33—C3438.62 (17)
C3—Ru—C5—C437.66 (14)Ru—P2—C33—C3482.54 (16)
C1—Ru—C5—C4116.60 (18)C27—P2—C33—C3843.99 (16)
C2—Ru—C5—C479.90 (14)C39—P2—C33—C38147.47 (14)
P2—Ru—C5—C478.37 (13)Ru—P2—C33—C3891.37 (14)
P1—Ru—C5—C465.4 (2)C38—C33—C34—C350.6 (3)
N—Ru—P1—C15127.55 (7)P2—C33—C34—C35173.26 (16)
C4—Ru—P1—C1560.22 (10)C33—C34—C35—C360.3 (3)
C3—Ru—P1—C1581.66 (9)C34—C35—C36—C370.4 (3)
C5—Ru—P1—C15106.34 (15)C35—C36—C37—C380.7 (3)
C1—Ru—P1—C15142.09 (9)C36—C37—C38—C330.4 (3)
C2—Ru—P1—C15119.23 (9)C34—C33—C38—C370.3 (3)
P2—Ru—P1—C1537.24 (6)P2—C33—C38—C37173.94 (15)
N—Ru—P1—C21114.31 (8)C27—P2—C39—C408.39 (16)
C4—Ru—P1—C2157.92 (10)C33—P2—C39—C40112.57 (15)
C3—Ru—P1—C2136.48 (9)Ru—P2—C39—C40122.27 (13)
C5—Ru—P1—C2111.80 (16)C27—P2—C39—C44174.34 (14)
C1—Ru—P1—C2123.95 (9)C33—P2—C39—C4470.16 (15)
C2—Ru—P1—C211.09 (9)Ru—P2—C39—C4455.00 (15)
P2—Ru—P1—C21155.39 (6)C44—C39—C40—C410.7 (3)
N—Ru—P1—C91.30 (8)P2—C39—C40—C41177.97 (14)
C4—Ru—P1—C9173.53 (10)C39—C40—C41—C421.2 (3)
C3—Ru—P1—C9152.09 (9)C40—C41—C42—C431.3 (3)
C5—Ru—P1—C9127.40 (15)C41—C42—C43—C440.6 (3)
C1—Ru—P1—C991.66 (9)C42—C43—C44—C392.6 (3)
C2—Ru—P1—C9114.52 (9)C40—C39—C44—C432.6 (3)
P2—Ru—P1—C989.01 (7)P2—C39—C44—C43179.92 (14)
C15—P1—C9—C1488.98 (16)O2—S—C45—F2174.08 (17)
C21—P1—C9—C1416.49 (17)O1—S—C45—F266.11 (19)
Ru—P1—C9—C14136.43 (13)O3—S—C45—F253.69 (18)
C15—P1—C9—C1087.08 (15)O2—S—C45—F364.69 (15)
C21—P1—C9—C10167.45 (14)O1—S—C45—F355.12 (16)
Ru—P1—C9—C1047.51 (16)O3—S—C45—F3174.93 (14)
C14—C9—C10—C112.4 (3)O2—S—C45—F154.2 (2)
P1—C9—C10—C11178.57 (14)O1—S—C45—F1173.99 (17)
C9—C10—C11—C120.1 (3)O3—S—C45—F166.21 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F10.952.493.125 (2)125
C3—H3···O1i0.952.503.154 (3)126
C7—H7A···O30.992.433.346 (3)153
C28—H28···O1i0.952.563.328 (2)138
C44—H44···O20.952.583.209 (2)124
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ru(C5H5)(C3H5N)(C18H15P)2]CF3SO3
Mr894.85
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)9.9991 (4), 17.2172 (7), 11.4605 (5)
β (°) 92.126 (1)
V3)1971.64 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.31 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.79, 0.89
No. of measured, independent and
observed [I > 2σ(I)] reflections
29537, 11391, 11056
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.02
No. of reflections11391
No. of parameters505
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.24
Absolute structureFlack (1983), 5488 Friedel pairs
Absolute structure parameter0.038 (12)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SADABS and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F10.952.493.125 (2)124.5
C3—H3···O1i0.952.503.154 (3)125.7
C7—H7A···O30.992.433.346 (3)152.9
C28—H28···O1i0.952.563.328 (2)138.2
C44—H44···O20.952.583.209 (2)124.0
Symmetry code: (i) x, y, z+1.
 

References

First citationBruce, M. I., Hameister, C., Swincer, A. G., Wallis, R. C. & Ittel, S. D. (1982). Inorganic Synthesis, Vol. XXI, pp. 78–84. New York: John Wiley.  Google Scholar
First citationBruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarreón, O. Y., Leyva, M. A., Fernández-G., J. M. & Pénicaud, A. (1997). Acta Cryst. C53, 301–302.  Google Scholar
First citationCordiner, R. L., Corcoran, D., Yufit, D. S., Goeta, A. E., Howard, J. A. K. & Low, P. J. (2003). Dalton Trans. pp. 3541–3549.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMauthner, K., Soldouzi, K. M., Mereiter, K., Schmid, R. & Kirchner, K. (1999). Organometallics, 18, 4681–4683.  Web of Science CSD CrossRef CAS Google Scholar
First citationRüba, E., Mereiter, K., Schmid, R., Sapunov, V. N., Kirchner, K., Schottenberger, H., Calhorda, M. C. & Veiros, L. F. (2002). Chem. Eur. J. 8, 3948–3961.  PubMed Google Scholar
First citationRüba, E., Simanko, W., Mauthner, K., Soldouzi, K. M., Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1999). Organometallics, 18, 3843–3850.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M., Toste, F. D. & Pinkerton, A. B. (2001). Chem. Rev. 101, 2067–2096.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds