organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl-myo-inositol monohydrate

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 1 October 2009; accepted 13 October 2009; online 17 October 2009)

The title structure, C13H18O6·H2O, contains two independent 2-benzyl-myo-inositol and water mol­ecules. In the crystal, the mol­ecules are strongly hydrogen bonded into an infinite two dimensional network utilizing all OH protons.

Related literature

For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Khan et al. (2007[Khan, U., Qureshi, R. A., Saeed, S. & Bond, A. D. (2007). Acta Cryst. E63, o530-o532.]); Simperler et al. (2006[Simperler, A., Watt, S. W., Bonnet, P. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 589-600.]); Gibson et al. (2009[Gibson, D., Fröehlich, R. F. G., Caradoc-Davies, T. T., Loomes, K. & Painter, G. F. (2009). Unpublished work.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18O6·H2O

  • Mr = 288.29

  • Monoclinic, P 21 /c

  • a = 7.4616 (3) Å

  • b = 33.7688 (13) Å

  • c = 10.4528 (4) Å

  • β = 90.616 (2)°

  • V = 2633.63 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 121 K

  • 0.75 × 0.72 × 0.31 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.657, Tmax = 0.746

  • 67666 measured reflections

  • 8428 independent reflections

  • 7368 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.08

  • 8428 reflections

  • 385 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1′—H1′O⋯O1Wi 0.84 1.87 2.7052 (11) 175
O1—H1O⋯O6′i 0.84 1.94 2.7768 (10) 171
O2′—H2′O⋯O2Wii 0.84 1.90 2.7267 (12) 166
O2—H2O⋯O3′iii 0.84 2.04 2.7755 (10) 145
O3′—H3′O⋯O4iv 0.84 2.01 2.8420 (10) 174
O3—H3O⋯O2′iv 0.84 2.09 2.9290 (11) 172
O4′—H4′O⋯O6v 0.84 1.91 2.7389 (10) 168
O4—H4O⋯O5′ 0.84 1.87 2.6858 (10) 165
O5′—H5′O⋯O4′iii 0.84 1.86 2.6943 (11) 175
O5—H5O⋯O4ii 0.84 2.57 3.3617 (11) 157
O6′—H6′O⋯O5 0.84 2.13 2.8523 (11) 144
O6—H6O⋯O1′ii 0.84 2.05 2.8831 (10) 173
O1W—H1WB⋯O2 0.85 (2) 1.96 (2) 2.8108 (12) 174.2 (19)
O2W—H2WA⋯O1 0.85 (2) 1.91 (2) 2.7521 (11) 173.3 (18)
O1W—H1WACg1vi 0.82 (2) 2.59 (2) 3.2647 (11) 140.9 (19)
O2W—H2WBCg2i 0.83 (2) 2.59 (2) 3.3335 (11) 149.9 (19)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+2; (v) x, y, z+1; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae, 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The enzyme myo-inositol oxygenase (MIOX) is over expressed in the kidney tissue of patients suffering from type II diabetes mellitus and defects in the metabolism of inositol sugars are also strongly associated with diabetes. Because MIOX is responsible for the first committed step in the catabolism of inositols, we were interested in developing chemical inhibitors of this enzyme. 2-Benzyl-myo-inositol is a candidate substrate-like (enzyme) inhibitor: specifically, inclusion of the equatorial benzyl group was designed to take advantage of a hydrophobic binding pocket identified adjacent to the MIOX active site.

The asymmetric unit of the title compound (I) contains two independent 2-benzyl-myo-inositol molecules and two waters of crystallization. The two molecules (Fig. 1) are essentially identical with chirality designations for carbons 1,2,4, & 6 of of R,S,R, & S and with the non-hydrogen atoms having a r.m.s. bond fit of 0.0043Å & the bond angles an r.m.s. fit of 1.93° (Spek, 2009). There is a slight twist between the two rings; torsion angles φ are C2—C7—C8—C13 - 88.67 (13),-92.34 (12)° for unprimed & primed molecules respectively. The inositol rings are in chair conformations with Cremer & Pople (1975) parameters Q, θ, φ of 0.5601 (10),0.5689 (10) Å, 176.85 (10),172.98 (10)° and 275.6 (19),333.1 (8)° respectively compared with 0.576 (2) Å, 177.9 (2) and 245 (7)° for a "parent" myo-inositol (Khan et al., 2007).

An extensive set of 14 hydrogen bonds involves nearly all available donors and acceptors (Table 1); all the hydrogen donors were located from difference maps, but with only the water hydrogen atomic positions refined with restrained thermal parameters. The two remaining water hydrogen atoms (H1WB & H2WB) are involved in O–H···π interactions with the phenyl rings (Table 1: Cg1,Cg2 are the centres of phenyl rings C8—C13 & C8'-C13' respectively). Overall, the molecules are strongly hydrogen bonded into an infinite two dimensional network with the benzyl groups making van der Waal contacts between the layers (Fig. 2). One antiparallel "double chain" link is observed in the complex system reflecting aspects of myo-inositol packing (Simperler et al., 2006).

Related literature top

For puckering parameters, see: Cremer & Pople (1975). For related structures, see: Khan et al. (2007); Simperler et al. (2006); Gibson et al. (2009)

Experimental top

2-Benzyl-1,3,4,5,6-penta-O-benzyl-myo-inositol (78 mg, 0.11 mmol) (Gibson et al., 2009) was dissolved in THF (5 ml) and palladium hydroxide (20% on carbon, wet, 65 mg) was added; the air was replaced with hydrogen (gasbag, 1 atm) and the mixture was stirred at RT for 1 h. The flask was aerated and left overnight. Next morning the solution was filtered through a pad of filter-aid, rinsed with MeOH and preabsorbed on silica (~0.5 g) and purified by chromatography (9 g silica, CHCl3/MeOH = 3:1 v/v) which gave the product as a white solid. This was recrystallized from MeOH (25 mg, 85%). 1H-NMR (500 MHz, methanol-d4) δ 7.47–7.37 (m, 2H), 7.28–7.22 (m, 2H), 7.21–7.15 (m, 1H), 3.56 (t, J = 9.4 Hz, 2H), 3.05 (s, 2H), 2.99 (d, J = 9.4 Hz, 2H), 2.84 (t, J = 9.4 Hz, 1H); 13C-NMR (126 MHz, methanol-d4) δ 138.4, 131.8, 129.1, 127.4, 77.9, 75.8, 75.4, 72.4, 40.8; HRMS (M+Na)+ C13H18O6Na: calcd 293.1001; found 293.1004; micro anal. for C13H18O6.H2O: C (calcd. 54.16%) 54.64; H (6.99%) 6.97.

Refinement top

All H atoms on the inositol molecules were constrained to their expected geometries [C–H 0.95, 0.99 & 1.00; O–H 0.84 Å] with Uiso = 1.2 Ueq of the parent atom. All water H atoms were located on difference Fourier maps and refined with Uiso = 1.5 Ueq (O).

Structure description top

The enzyme myo-inositol oxygenase (MIOX) is over expressed in the kidney tissue of patients suffering from type II diabetes mellitus and defects in the metabolism of inositol sugars are also strongly associated with diabetes. Because MIOX is responsible for the first committed step in the catabolism of inositols, we were interested in developing chemical inhibitors of this enzyme. 2-Benzyl-myo-inositol is a candidate substrate-like (enzyme) inhibitor: specifically, inclusion of the equatorial benzyl group was designed to take advantage of a hydrophobic binding pocket identified adjacent to the MIOX active site.

The asymmetric unit of the title compound (I) contains two independent 2-benzyl-myo-inositol molecules and two waters of crystallization. The two molecules (Fig. 1) are essentially identical with chirality designations for carbons 1,2,4, & 6 of of R,S,R, & S and with the non-hydrogen atoms having a r.m.s. bond fit of 0.0043Å & the bond angles an r.m.s. fit of 1.93° (Spek, 2009). There is a slight twist between the two rings; torsion angles φ are C2—C7—C8—C13 - 88.67 (13),-92.34 (12)° for unprimed & primed molecules respectively. The inositol rings are in chair conformations with Cremer & Pople (1975) parameters Q, θ, φ of 0.5601 (10),0.5689 (10) Å, 176.85 (10),172.98 (10)° and 275.6 (19),333.1 (8)° respectively compared with 0.576 (2) Å, 177.9 (2) and 245 (7)° for a "parent" myo-inositol (Khan et al., 2007).

An extensive set of 14 hydrogen bonds involves nearly all available donors and acceptors (Table 1); all the hydrogen donors were located from difference maps, but with only the water hydrogen atomic positions refined with restrained thermal parameters. The two remaining water hydrogen atoms (H1WB & H2WB) are involved in O–H···π interactions with the phenyl rings (Table 1: Cg1,Cg2 are the centres of phenyl rings C8—C13 & C8'-C13' respectively). Overall, the molecules are strongly hydrogen bonded into an infinite two dimensional network with the benzyl groups making van der Waal contacts between the layers (Fig. 2). One antiparallel "double chain" link is observed in the complex system reflecting aspects of myo-inositol packing (Simperler et al., 2006).

For puckering parameters, see: Cremer & Pople (1975). For related structures, see: Khan et al. (2007); Simperler et al. (2006); Gibson et al. (2009)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae, 2006) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit contents of (I) (Farrugia, 1997).
[Figure 2] Fig. 2. Packing diagram (Macrae et al., 2006) of (I) viewed down the a axis with some atom labels. Some hydrogen bonds are shown as dashed lines (see text); H atoms not involved in hydrogen bonds are omitted for clarity.
2-Benzyl-myo-inositol monohydrate top
Crystal data top
C13H18O6·H2OF(000) = 1232
Mr = 288.29Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9735 reflections
a = 7.4616 (3) Åθ = 2.4–31.2°
b = 33.7688 (13) ŵ = 0.12 mm1
c = 10.4528 (4) ÅT = 121 K
β = 90.616 (2)°Block, colourless
V = 2633.63 (18) Å30.75 × 0.72 × 0.31 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
8428 independent reflections
Radiation source: fine-focus sealed tube7368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.333 pixels mm-1θmax = 31.3°, θmin = 2.0°
φ and ω scansh = 1010
Absorption correction: multi-scan
(Blessing, 1995)
k = 4848
Tmin = 0.657, Tmax = 0.746l = 1514
67666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0524P)2 + 1.1394P]
where P = (Fo2 + 2Fc2)/3
8428 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H18O6·H2OV = 2633.63 (18) Å3
Mr = 288.29Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.4616 (3) ŵ = 0.12 mm1
b = 33.7688 (13) ÅT = 121 K
c = 10.4528 (4) Å0.75 × 0.72 × 0.31 mm
β = 90.616 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8428 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
7368 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.746Rint = 0.031
67666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.54 e Å3
8428 reflectionsΔρmin = 0.26 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50902 (10)0.38866 (2)0.32399 (7)0.01471 (14)
H1O0.59170.40550.32030.018*
O20.60347 (10)0.41015 (2)0.57055 (7)0.01483 (14)
H2O0.63320.40830.64810.018*
O30.35266 (11)0.39608 (3)0.76876 (7)0.01909 (16)
H3O0.27460.40300.82160.023*
O40.11845 (10)0.46202 (2)0.71154 (7)0.01597 (14)
H4O0.16120.47030.78120.019*
O50.19999 (12)0.50334 (2)0.48900 (8)0.01982 (16)
H5O0.14480.51050.42240.024*
O60.27845 (11)0.45380 (2)0.26950 (7)0.01601 (14)
H6O0.20200.43670.24810.019*
C10.37784 (12)0.40152 (3)0.41306 (8)0.01044 (16)
H10.26380.38710.39330.013*
C20.43530 (12)0.39073 (3)0.55006 (9)0.01108 (16)
C30.29331 (13)0.40579 (3)0.64287 (9)0.01208 (16)
H30.17810.39160.62490.014*
C40.26177 (13)0.45019 (3)0.62932 (9)0.01216 (16)
H40.37350.46480.65390.015*
C50.20777 (13)0.46107 (3)0.49359 (9)0.01271 (17)
H50.08650.44990.47370.015*
C60.34184 (13)0.44575 (3)0.39682 (8)0.01132 (16)
H60.45740.46020.41020.014*
C70.46317 (14)0.34555 (3)0.56367 (10)0.01558 (18)
H7A0.56100.33740.50600.019*
H7B0.50290.33980.65240.019*
C80.30059 (15)0.32061 (3)0.53398 (10)0.01688 (19)
C90.27011 (18)0.30651 (4)0.41014 (12)0.0247 (2)
H90.35230.31280.34440.030*
C100.1205 (2)0.28331 (4)0.38195 (15)0.0364 (3)
H100.10210.27370.29740.044*
C110.0017 (2)0.27418 (4)0.47645 (18)0.0414 (4)
H110.10400.25850.45690.050*
C120.0266 (2)0.28815 (4)0.59964 (16)0.0351 (3)
H120.05690.28210.66480.042*
C130.17685 (17)0.31106 (4)0.62839 (12)0.0240 (2)
H130.19540.32030.71330.029*
O1'0.02235 (10)0.60830 (2)0.78156 (7)0.01499 (14)
H1'O0.01790.61220.70790.018*
O2'0.10251 (10)0.58343 (2)1.02760 (7)0.01449 (14)
H2'O0.18530.59420.98490.017*
O3'0.15758 (10)0.59222 (2)1.22426 (6)0.01522 (14)
H3'O0.07100.57771.24460.018*
O4'0.35488 (10)0.52508 (2)1.15761 (7)0.01644 (15)
H4'O0.31790.50321.18540.020*
O5'0.30650 (11)0.49278 (2)0.90825 (7)0.01634 (15)
H5'O0.41340.48690.89240.020*
O6'0.23721 (11)0.55224 (2)0.71019 (7)0.01714 (15)
H6'O0.19790.53270.66910.021*
C1'0.11963 (12)0.59546 (3)0.86443 (8)0.01071 (16)
H1'0.22840.61180.84650.013*
C2'0.06277 (12)0.60309 (3)1.00248 (8)0.01054 (16)
C3'0.20310 (12)0.58499 (3)1.09446 (8)0.01089 (16)
H3'0.32020.59831.07810.013*
C4'0.22744 (13)0.54078 (3)1.06806 (9)0.01159 (16)
H4'0.11010.52691.07880.014*
C5'0.29354 (13)0.53434 (3)0.93189 (9)0.01157 (16)
H5'0.41400.54690.92200.014*
C6'0.16254 (13)0.55231 (3)0.83577 (8)0.01145 (16)
H6'0.04900.53660.83510.014*
C7'0.03668 (14)0.64794 (3)1.02676 (10)0.01511 (18)
H7'A0.06510.65720.97320.018*
H7'B0.00290.65161.11730.018*
C8'0.19624 (14)0.67385 (3)0.99995 (10)0.01606 (18)
C9'0.22323 (17)0.68948 (3)0.87823 (11)0.0222 (2)
H9'0.14020.68360.81130.027*
C10'0.3703 (2)0.71355 (4)0.85360 (15)0.0336 (3)
H10'0.38700.72410.77030.040*
C11'0.4927 (2)0.72223 (4)0.95047 (18)0.0396 (4)
H11'0.59360.73850.93360.048*
C12'0.4666 (2)0.70707 (4)1.07170 (17)0.0365 (3)
H12'0.54970.71301.13840.044*
C13'0.31951 (17)0.68313 (4)1.09646 (12)0.0249 (2)
H13'0.30280.67301.18020.030*
O1W0.91098 (12)0.37731 (3)0.45945 (8)0.02411 (18)
H1WA0.923 (3)0.3553 (6)0.4917 (19)0.036*
H1WB0.817 (3)0.3882 (6)0.4883 (18)0.036*
O2W0.40295 (12)0.38183 (3)0.07198 (8)0.02373 (18)
H2WA0.429 (3)0.3826 (6)0.1511 (19)0.036*
H2WB0.429 (3)0.3596 (6)0.0440 (18)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0152 (3)0.0176 (3)0.0114 (3)0.0019 (3)0.0024 (2)0.0026 (2)
O20.0117 (3)0.0222 (4)0.0106 (3)0.0032 (3)0.0024 (2)0.0004 (2)
O30.0227 (4)0.0257 (4)0.0089 (3)0.0054 (3)0.0015 (3)0.0026 (3)
O40.0161 (3)0.0180 (4)0.0138 (3)0.0009 (3)0.0039 (2)0.0048 (3)
O50.0290 (4)0.0106 (3)0.0199 (4)0.0039 (3)0.0008 (3)0.0001 (3)
O60.0208 (4)0.0157 (3)0.0114 (3)0.0009 (3)0.0036 (3)0.0036 (2)
C10.0105 (4)0.0115 (4)0.0093 (4)0.0011 (3)0.0002 (3)0.0004 (3)
C20.0104 (4)0.0128 (4)0.0100 (4)0.0004 (3)0.0009 (3)0.0004 (3)
C30.0127 (4)0.0143 (4)0.0093 (4)0.0009 (3)0.0007 (3)0.0009 (3)
C40.0120 (4)0.0128 (4)0.0117 (4)0.0000 (3)0.0020 (3)0.0020 (3)
C50.0142 (4)0.0106 (4)0.0133 (4)0.0010 (3)0.0004 (3)0.0005 (3)
C60.0128 (4)0.0114 (4)0.0097 (4)0.0000 (3)0.0005 (3)0.0007 (3)
C70.0160 (4)0.0140 (4)0.0168 (4)0.0033 (3)0.0009 (3)0.0019 (3)
C80.0198 (5)0.0103 (4)0.0205 (5)0.0029 (3)0.0010 (4)0.0024 (3)
C90.0327 (6)0.0165 (5)0.0249 (5)0.0020 (4)0.0045 (4)0.0022 (4)
C100.0483 (9)0.0182 (6)0.0424 (8)0.0022 (5)0.0191 (6)0.0043 (5)
C110.0362 (8)0.0206 (6)0.0672 (11)0.0098 (5)0.0168 (7)0.0085 (6)
C120.0281 (6)0.0232 (6)0.0541 (9)0.0047 (5)0.0015 (6)0.0147 (6)
C130.0252 (6)0.0179 (5)0.0288 (6)0.0012 (4)0.0028 (4)0.0072 (4)
O1'0.0140 (3)0.0199 (4)0.0110 (3)0.0031 (3)0.0019 (2)0.0028 (2)
O2'0.0097 (3)0.0198 (4)0.0139 (3)0.0019 (3)0.0002 (2)0.0035 (2)
O3'0.0168 (3)0.0196 (4)0.0093 (3)0.0008 (3)0.0001 (2)0.0013 (2)
O4'0.0172 (3)0.0157 (3)0.0163 (3)0.0016 (3)0.0048 (3)0.0046 (3)
O5'0.0170 (4)0.0108 (3)0.0212 (3)0.0024 (3)0.0001 (3)0.0027 (3)
O6'0.0246 (4)0.0159 (3)0.0111 (3)0.0030 (3)0.0038 (3)0.0034 (2)
C1'0.0106 (4)0.0115 (4)0.0100 (4)0.0008 (3)0.0007 (3)0.0004 (3)
C2'0.0094 (4)0.0119 (4)0.0103 (4)0.0001 (3)0.0007 (3)0.0004 (3)
C3'0.0110 (4)0.0120 (4)0.0096 (4)0.0002 (3)0.0006 (3)0.0001 (3)
C4'0.0114 (4)0.0118 (4)0.0115 (4)0.0004 (3)0.0016 (3)0.0014 (3)
C5'0.0116 (4)0.0102 (4)0.0129 (4)0.0007 (3)0.0003 (3)0.0004 (3)
C6'0.0121 (4)0.0121 (4)0.0101 (4)0.0003 (3)0.0001 (3)0.0001 (3)
C7'0.0161 (4)0.0129 (4)0.0163 (4)0.0039 (3)0.0016 (3)0.0010 (3)
C8'0.0190 (5)0.0099 (4)0.0193 (4)0.0026 (3)0.0009 (3)0.0018 (3)
C9'0.0282 (6)0.0156 (5)0.0227 (5)0.0010 (4)0.0026 (4)0.0021 (4)
C10'0.0416 (8)0.0177 (5)0.0417 (7)0.0033 (5)0.0149 (6)0.0036 (5)
C11'0.0317 (7)0.0208 (6)0.0666 (10)0.0102 (5)0.0100 (7)0.0067 (6)
C12'0.0286 (7)0.0259 (6)0.0547 (9)0.0043 (5)0.0089 (6)0.0121 (6)
C13'0.0264 (6)0.0202 (5)0.0278 (6)0.0008 (4)0.0070 (4)0.0047 (4)
O1W0.0194 (4)0.0309 (5)0.0221 (4)0.0063 (3)0.0047 (3)0.0091 (3)
O2W0.0206 (4)0.0337 (5)0.0168 (4)0.0071 (3)0.0031 (3)0.0046 (3)
Geometric parameters (Å, º) top
O1—C11.4259 (11)O2'—C2'1.4275 (11)
O1—H1O0.8400O2'—H2'O0.8400
O2—C21.4299 (12)O3'—C3'1.4233 (11)
O2—H2O0.8400O3'—H3'O0.8400
O3—C31.4222 (11)O4'—C4'1.4291 (11)
O3—H3O0.8400O4'—H4'O0.8400
O4—C41.4358 (12)O5'—C5'1.4284 (12)
O4—H4O0.8400O5'—H5'O0.8400
O5—C51.4293 (12)O6'—C6'1.4315 (11)
O5—H5O0.8400O6'—H6'O0.8400
O6—C61.4336 (11)C1'—C6'1.5223 (13)
O6—H6O0.8400C1'—C2'1.5303 (12)
C1—C61.5268 (13)C1'—H1'1.0000
C1—C21.5343 (12)C2'—C3'1.5403 (13)
C1—H11.0000C2'—C7'1.5481 (14)
C2—C31.5312 (13)C3'—C4'1.5295 (13)
C2—C71.5460 (14)C3'—H3'1.0000
C3—C41.5240 (14)C4'—C5'1.5269 (13)
C3—H31.0000C4'—H4'1.0000
C4—C51.5159 (13)C5'—C6'1.5206 (13)
C4—H41.0000C5'—H5'1.0000
C5—C61.5209 (13)C6'—H6'1.0000
C5—H51.0000C7'—C8'1.5064 (15)
C6—H61.0000C7'—H7'A0.9900
C7—C81.5064 (15)C7'—H7'B0.9900
C7—H7A0.9900C8'—C13'1.3935 (16)
C7—H7B0.9900C8'—C9'1.3941 (15)
C8—C91.3957 (16)C9'—C10'1.3921 (18)
C8—C131.3964 (16)C9'—H9'0.9500
C9—C101.3925 (19)C10'—C11'1.387 (2)
C9—H90.9500C10'—H10'0.9500
C10—C111.386 (3)C11'—C12'1.382 (3)
C10—H100.9500C11'—H11'0.9500
C11—C121.385 (3)C12'—C13'1.390 (2)
C11—H110.9500C12'—H12'0.9500
C12—C131.3921 (19)C13'—H13'0.9500
C12—H120.9500O1W—H1WA0.82 (2)
C13—H130.9500O1W—H1WB0.85 (2)
O1'—C1'1.4286 (11)O2W—H2WA0.85 (2)
O1'—H1'O0.8400O2W—H2WB0.83 (2)
C1—O1—H1O109.5C2'—O2'—H2'O109.5
C2—O2—H2O109.5C3'—O3'—H3'O109.5
C3—O3—H3O109.5C4'—O4'—H4'O109.5
C4—O4—H4O109.5C5'—O5'—H5'O109.5
C5—O5—H5O109.5C6'—O6'—H6'O109.5
C6—O6—H6O109.5O1'—C1'—C6'109.10 (7)
O1—C1—C6110.28 (7)O1'—C1'—C2'108.02 (7)
O1—C1—C2110.50 (7)C6'—C1'—C2'114.06 (8)
C6—C1—C2112.54 (7)O1'—C1'—H1'108.5
O1—C1—H1107.8C6'—C1'—H1'108.5
C6—C1—H1107.8C2'—C1'—H1'108.5
C2—C1—H1107.8O2'—C2'—C1'110.12 (7)
O2—C2—C3111.39 (8)O2'—C2'—C3'106.47 (7)
O2—C2—C1105.48 (7)C1'—C2'—C3'109.16 (7)
C3—C2—C1108.91 (8)O2'—C2'—C7'108.32 (8)
O2—C2—C7108.77 (8)C1'—C2'—C7'110.85 (8)
C3—C2—C7111.27 (8)C3'—C2'—C7'111.82 (8)
C1—C2—C7110.87 (8)O3'—C3'—C4'111.68 (8)
O3—C3—C4111.05 (8)O3'—C3'—C2'111.06 (8)
O3—C3—C2107.39 (8)C4'—C3'—C2'110.85 (7)
C4—C3—C2112.03 (8)O3'—C3'—H3'107.7
O3—C3—H3108.8C4'—C3'—H3'107.7
C4—C3—H3108.8C2'—C3'—H3'107.7
C2—C3—H3108.8O4'—C4'—C5'109.79 (8)
O4—C4—C5107.50 (8)O4'—C4'—C3'108.87 (8)
O4—C4—C3109.47 (8)C5'—C4'—C3'110.32 (7)
C5—C4—C3111.39 (8)O4'—C4'—H4'109.3
O4—C4—H4109.5C5'—C4'—H4'109.3
C5—C4—H4109.5C3'—C4'—H4'109.3
C3—C4—H4109.5O5'—C5'—C6'108.79 (8)
O5—C5—C4106.49 (8)O5'—C5'—C4'108.92 (8)
O5—C5—C6110.13 (8)C6'—C5'—C4'110.32 (8)
C4—C5—C6111.71 (8)O5'—C5'—H5'109.6
O5—C5—H5109.5C6'—C5'—H5'109.6
C4—C5—H5109.5C4'—C5'—H5'109.6
C6—C5—H5109.5O6'—C6'—C5'110.57 (8)
O6—C6—C5109.88 (8)O6'—C6'—C1'105.48 (7)
O6—C6—C1110.16 (7)C5'—C6'—C1'112.77 (8)
C5—C6—C1112.02 (8)O6'—C6'—H6'109.3
O6—C6—H6108.2C5'—C6'—H6'109.3
C5—C6—H6108.2C1'—C6'—H6'109.3
C1—C6—H6108.2C8'—C7'—C2'115.90 (8)
C8—C7—C2115.18 (8)C8'—C7'—H7'A108.3
C8—C7—H7A108.5C2'—C7'—H7'A108.3
C2—C7—H7A108.5C8'—C7'—H7'B108.3
C8—C7—H7B108.5C2'—C7'—H7'B108.3
C2—C7—H7B108.5H7'A—C7'—H7'B107.4
H7A—C7—H7B107.5C13'—C8'—C9'118.36 (11)
C9—C8—C13118.31 (11)C13'—C8'—C7'120.85 (10)
C9—C8—C7120.31 (10)C9'—C8'—C7'120.79 (10)
C13—C8—C7121.38 (10)C10'—C9'—C8'120.78 (12)
C10—C9—C8120.70 (13)C10'—C9'—H9'119.6
C10—C9—H9119.7C8'—C9'—H9'119.6
C8—C9—H9119.7C11'—C10'—C9'120.16 (13)
C11—C10—C9120.40 (14)C11'—C10'—H10'119.9
C11—C10—H10119.8C9'—C10'—H10'119.9
C9—C10—H10119.8C12'—C11'—C10'119.53 (13)
C12—C11—C10119.47 (13)C12'—C11'—H11'120.2
C12—C11—H11120.3C10'—C11'—H11'120.2
C10—C11—H11120.3C11'—C12'—C13'120.35 (13)
C11—C12—C13120.26 (14)C11'—C12'—H12'119.8
C11—C12—H12119.9C13'—C12'—H12'119.8
C13—C12—H12119.9C12'—C13'—C8'120.83 (13)
C12—C13—C8120.86 (13)C12'—C13'—H13'119.6
C12—C13—H13119.6C8'—C13'—H13'119.6
C8—C13—H13119.6H1WA—O1W—H1WB109.3 (18)
C1'—O1'—H1'O109.5H2WA—O2W—H2WB108.5 (18)
O1—C1—C2—O259.12 (9)O1'—C1'—C2'—O2'56.69 (10)
C6—C1—C2—O264.64 (10)C6'—C1'—C2'—O2'64.78 (10)
O1—C1—C2—C3178.79 (8)O1'—C1'—C2'—C3'173.24 (7)
C6—C1—C2—C355.03 (10)C6'—C1'—C2'—C3'51.76 (10)
O1—C1—C2—C758.46 (10)O1'—C1'—C2'—C7'63.16 (10)
C6—C1—C2—C7177.78 (8)C6'—C1'—C2'—C7'175.36 (8)
O2—C2—C3—O362.82 (10)O2'—C2'—C3'—O3'62.52 (10)
C1—C2—C3—O3178.74 (8)C1'—C2'—C3'—O3'178.63 (7)
C7—C2—C3—O358.74 (10)C7'—C2'—C3'—O3'55.61 (10)
O2—C2—C3—C459.37 (10)O2'—C2'—C3'—C4'62.25 (9)
C1—C2—C3—C456.55 (10)C1'—C2'—C3'—C4'56.59 (10)
C7—C2—C3—C4179.06 (8)C7'—C2'—C3'—C4'179.61 (8)
O3—C3—C4—O464.21 (10)O3'—C3'—C4'—O4'54.04 (10)
C2—C3—C4—O4175.71 (7)C2'—C3'—C4'—O4'178.46 (7)
O3—C3—C4—C5177.05 (8)O3'—C3'—C4'—C5'174.57 (7)
C2—C3—C4—C556.96 (10)C2'—C3'—C4'—C5'61.00 (10)
O4—C4—C5—O565.91 (10)O4'—C4'—C5'—O5'62.81 (10)
C3—C4—C5—O5174.17 (8)C3'—C4'—C5'—O5'177.20 (7)
O4—C4—C5—C6173.82 (8)O4'—C4'—C5'—C6'177.84 (8)
C3—C4—C5—C653.90 (11)C3'—C4'—C5'—C6'57.86 (10)
O5—C5—C6—O666.62 (10)O5'—C5'—C6'—O6'70.13 (10)
C4—C5—C6—O6175.27 (8)C4'—C5'—C6'—O6'170.45 (8)
O5—C5—C6—C1170.59 (8)O5'—C5'—C6'—C1'172.04 (8)
C4—C5—C6—C152.47 (11)C4'—C5'—C6'—C1'52.62 (10)
O1—C1—C6—O659.58 (10)O1'—C1'—C6'—O6'67.44 (9)
C2—C1—C6—O6176.54 (7)C2'—C1'—C6'—O6'171.68 (8)
O1—C1—C6—C5177.79 (7)O1'—C1'—C6'—C5'171.78 (7)
C2—C1—C6—C553.91 (10)C2'—C1'—C6'—C5'50.90 (11)
O2—C2—C7—C8175.19 (8)O2'—C2'—C7'—C8'177.69 (8)
C3—C2—C7—C861.74 (11)C1'—C2'—C7'—C8'56.77 (11)
C1—C2—C7—C859.64 (11)C3'—C2'—C7'—C8'65.30 (11)
C2—C7—C8—C991.19 (12)C2'—C7'—C8'—C13'92.33 (12)
C2—C7—C8—C1388.68 (12)C2'—C7'—C8'—C9'88.33 (12)
C13—C8—C9—C100.38 (17)C13'—C8'—C9'—C10'0.40 (17)
C7—C8—C9—C10179.75 (11)C7'—C8'—C9'—C10'179.76 (11)
C8—C9—C10—C110.7 (2)C8'—C9'—C10'—C11'0.1 (2)
C9—C10—C11—C120.4 (2)C9'—C10'—C11'—C12'0.5 (2)
C10—C11—C12—C130.2 (2)C10'—C11'—C12'—C13'0.3 (2)
C11—C12—C13—C80.5 (2)C11'—C12'—C13'—C8'0.2 (2)
C9—C8—C13—C120.21 (17)C9'—C8'—C13'—C12'0.58 (18)
C7—C8—C13—C12179.66 (11)C7'—C8'—C13'—C12'179.94 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1Wi0.841.872.7052 (11)175
O1—H1O···O6i0.841.942.7768 (10)171
O2—H2O···O2Wii0.841.902.7267 (12)166
O2—H2O···O3iii0.842.042.7755 (10)145
O3—H3O···O4iv0.842.012.8420 (10)174
O3—H3O···O2iv0.842.092.9290 (11)172
O4—H4O···O6v0.841.912.7389 (10)168
O4—H4O···O50.841.872.6858 (10)165
O5—H5O···O4iii0.841.862.6943 (11)175
O5—H5O···O4ii0.842.573.3617 (11)157
O6—H6O···O50.842.132.8523 (11)144
O6—H6O···O1ii0.842.052.8831 (10)173
O1W—H1WB···O20.85 (2)1.96 (2)2.8108 (12)174.2 (19)
O2W—H2WA···O10.85 (2)1.91 (2)2.7521 (11)173.3 (18)
O1W—H1WA···Cg1vi0.82 (2)2.59 (2)3.2647 (11)140.9 (19)
O2W—H2WB···Cg2i0.83 (2)2.59 (2)3.3335 (11)149.9 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2; (v) x, y, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H18O6·H2O
Mr288.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)121
a, b, c (Å)7.4616 (3), 33.7688 (13), 10.4528 (4)
β (°) 90.616 (2)
V3)2633.63 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.75 × 0.72 × 0.31
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.657, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
67666, 8428, 7368
Rint0.031
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.08
No. of reflections8428
No. of parameters385
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT and SADABS (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), Mercury (Macrae, 2006) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1'—H1'O···O1Wi0.841.872.7052 (11)175
O1—H1O···O6'i0.841.942.7768 (10)171
O2'—H2'O···O2Wii0.841.902.7267 (12)166
O2—H2O···O3'iii0.842.042.7755 (10)145
O3'—H3'O···O4iv0.842.012.8420 (10)174
O3—H3O···O2'iv0.842.092.9290 (11)172
O4'—H4'O···O6v0.841.912.7389 (10)168
O4—H4O···O5'0.841.872.6858 (10)165
O5'—H5'O···O4'iii0.841.862.6943 (11)175
O5—H5O···O4ii0.842.573.3617 (11)157
O6'—H6'O···O50.842.132.8523 (11)144
O6—H6O···O1'ii0.842.052.8831 (10)173
O1W—H1WB···O20.85 (2)1.96 (2)2.8108 (12)174.2 (19)
O2W—H2WA···O10.85 (2)1.91 (2)2.7521 (11)173.3 (18)
O1W—H1WA···Cg1vi0.82 (2)2.59 (2)3.2647 (11)140.9 (19)
O2W—H2WB···Cg2i0.83 (2)2.59 (2)3.3335 (11)149.9 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2; (v) x, y, z+1; (vi) x+1, y, z.
 

Acknowledgements

This work was supported by the New Zealand Foundation for Research Science and Technology (grant contract No. C08X0701). We thank Drs J. Wikaira and C. Fitchett of the University of Canterbury for their assistance.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGibson, D., Fröehlich, R. F. G., Caradoc-Davies, T. T., Loomes, K. & Painter, G. F. (2009). Unpublished work.  Google Scholar
First citationKhan, U., Qureshi, R. A., Saeed, S. & Bond, A. D. (2007). Acta Cryst. E63, o530–o532.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimperler, A., Watt, S. W., Bonnet, P. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 589–600.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds