organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Azido­eth­oxy-2,3,4,6-tetra-O-acetyl-β-D-glucoside

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
*Correspondence e-mail: yhzhou1966@yahoo.com.cn

(Received 16 July 2009; accepted 30 September 2009; online 3 October 2009)

In the title compound, C16H23N3O10, the galactopyran­oside ring adopts a chair conformation. All the non-H substituents are situated in equatorial positions. There are short intramol­ecular C—H⋯O contacts and an intermolecular C—H⋯O inter­action in the structure.

Related literature

For renewable compounds generated by living organisms that can be turned into useful macromolecular materials, see: Gandini (2008[Gandini, A. (2008). Macromolecules, 41, 9491-9504.]). For industrial applications of lignin, see: Gandini & Belgacem (2002[Gandini, A. & Belgacem, M. N. (2002). J. Polym. Environ. 10, 105-114.]). For attempts to obtain new polyurethanes between lignin and saccharide, see: Hatakeyama & Hatakeyama (2005[Hatakeyama, H. & Hatakeyama, T. (2005). Macromol. Symp. 224, 219-226.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23N3O10

  • Mr = 417.37

  • Orthorhombic, P 21 21 21

  • a = 6.9730 (14) Å

  • b = 14.747 (3) Å

  • c = 19.916 (4) Å

  • V = 2048.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.967, Tmax = 0.989

  • 3276 measured reflections

  • 2152 independent reflections

  • 1428 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.156

  • S = 1.06

  • 2152 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O4 0.98 2.21 2.666 (6) 107
C15—H15A⋯O2 0.98 2.32 2.723 (6) 104
C16—H16A⋯O7 0.98 2.27 2.702 (6) 106
C16—H16A⋯O9 0.98 2.44 2.824 (5) 103
C9—H9B⋯O1i 0.96 2.48 3.402 (6) 160
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The incessant biological activity in living organisms generates a multitude of compounds, including a variety of monomers and polymers such as saccharide, cellulose, hemicellulose, lignin and so on. More and more scientists are exclusively concerned with those renewable compounds that can be turned into useful macromolecular materials (Gandini, 2008). However, most of lignin as a by-product from the paper industry is being discharged into the environment. This causes serious environmental pollution. Also for this reason industrial applications of lignin have attracted a great deal of attention (Gandini & Belgacem, 2002).

In attempt to obtain new polyurethanes between lignin and saccharide (Hatakeyama & Hatakeyama, 2005) and to optimize their properties, the title structure, a new galactopyranoside, 2-azidoethoxy 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, has been synthesized and its structure determined. The galactopyranoside ring adopts a chair conformation. There are present four intramolecular C-H···O interactionss (Tab. 1). Each of them forms four five-membered rings. In the crystal structure, the molecules are linked into chains along the a axis by C—H···O interactions (Fig. 2 and Tab. 1).

Related literature top

For renewable compounds that can be turned into useful macromolecular materials, see: Gandini (2008). For industrial applications of lignin, see: Gandini & Belgacem (2002). For attempts to obtain new polyurethanes between lignin and saccharide, see: Hatakeyama & Hatakeyama (2005).

Experimental top

β-D-glucose pentaacetate (5.0 g, 12.8 mmol) was dissolved in 25 ml of the anhydrous CH2Cl2. 2-azidoethanol (1.9 g, 22.3 mmol) was added to this solution by a syringe. The resulting solution was stirred under argon and cooled to 273 K. BF3.Et2O (2.1 ml, 16.7 mmol) was then added dropwise at 273 K. The mixture was stirred for 1 h at 273 K and then overnight at room temperature. The mixture was diluted with 50 ml CH2Cl2 and washed with cold water and with saturated aqueous NaHCO3 at room temperature, dried over anhydrous sodium sulfate, and concentrated in vacuo to obtain a fawn crude residue that was purified by column chromatography (hexane/EtOAc 2:1) and recrystallization from the solution of hexane/EtOAc (1:1) in order to obtain a pure solid of the title compound. Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation from an ethyl acetate solution of the title compound.

Refinement top

All the H atoms were located in a difference electron density map. Nevertheless, all the hydrogens were placed into the idealized positions and constrained by riding hydrogen approximation. Cmethyl—Hmethyl=0.96; Cmethylene—Hmethylene=0.97; Cmethine—Hmethine=0.98 Å. UisoHmethyl=1.5UeqCmethyl, UisoHmethylene=1.2UeqCmethylene, UisoHmethine=1.2UeqCmethine. All the methyl groups were allowed to rotate freely about their respective C—C bonds during the refinement. Only 1/8 of the reciprocal space has been measured, therefore Friedel pairs for merging were not available.

Structure description top

The incessant biological activity in living organisms generates a multitude of compounds, including a variety of monomers and polymers such as saccharide, cellulose, hemicellulose, lignin and so on. More and more scientists are exclusively concerned with those renewable compounds that can be turned into useful macromolecular materials (Gandini, 2008). However, most of lignin as a by-product from the paper industry is being discharged into the environment. This causes serious environmental pollution. Also for this reason industrial applications of lignin have attracted a great deal of attention (Gandini & Belgacem, 2002).

In attempt to obtain new polyurethanes between lignin and saccharide (Hatakeyama & Hatakeyama, 2005) and to optimize their properties, the title structure, a new galactopyranoside, 2-azidoethoxy 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, has been synthesized and its structure determined. The galactopyranoside ring adopts a chair conformation. There are present four intramolecular C-H···O interactionss (Tab. 1). Each of them forms four five-membered rings. In the crystal structure, the molecules are linked into chains along the a axis by C—H···O interactions (Fig. 2 and Tab. 1).

For renewable compounds that can be turned into useful macromolecular materials, see: Gandini (2008). For industrial applications of lignin, see: Gandini & Belgacem (2002). For attempts to obtain new polyurethanes between lignin and saccharide, see: Hatakeyama & Hatakeyama (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-labelling scheme. The displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title molecules, viewed along the c axis.
1-Azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-glucoside top
Crystal data top
C16H23N3O10F(000) = 880
Mr = 417.37Dx = 1.354 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.9730 (14) Åθ = 9–12°
b = 14.747 (3) ŵ = 0.11 mm1
c = 19.916 (4) ÅT = 293 K
V = 2048.0 (7) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.967, Tmax = 0.989l = 023
3276 measured reflections3 standard reflections every 200 reflections
2152 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.156H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.0427P]
where P = (Fo2 + 2Fc2)/3
2152 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
88 constraints
Crystal data top
C16H23N3O10V = 2048.0 (7) Å3
Mr = 417.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9730 (14) ŵ = 0.11 mm1
b = 14.747 (3) ÅT = 293 K
c = 19.916 (4) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1428 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.967, Tmax = 0.9893 standard reflections every 200 reflections
3276 measured reflections intensity decay: 1%
2152 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
2152 reflectionsΔρmin = 0.20 e Å3
266 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7582 (5)0.6069 (2)0.05712 (18)0.0722 (10)
N11.0447 (9)0.6905 (4)0.1458 (3)0.0961 (17)
N21.0080 (9)0.6436 (4)0.1911 (4)0.0987 (18)
N30.9676 (16)0.6099 (5)0.2393 (4)0.167 (3)
O20.3076 (8)0.2527 (2)0.0360 (2)0.1001 (14)
C11.0868 (10)0.6426 (5)0.0830 (3)0.103 (2)
H1B1.11280.57940.09290.123*
H1C1.20140.66840.06300.123*
O30.2457 (5)0.40003 (19)0.05186 (15)0.0560 (8)
C20.9245 (9)0.6483 (5)0.0333 (3)0.0917 (19)
H2A0.89780.71150.02370.110*
H2B0.96310.61930.00830.110*
O40.4451 (8)0.5373 (3)0.18472 (18)0.0927 (13)
C30.0437 (9)0.2978 (4)0.1058 (3)0.0820 (17)
H3A0.01470.23440.10990.123*
H3B0.06470.32900.08720.123*
H3C0.07240.32230.14930.123*
O50.6040 (5)0.4482 (2)0.11247 (15)0.0626 (9)
C40.2113 (9)0.3097 (3)0.0612 (2)0.0647 (13)
O60.2735 (5)0.40451 (19)0.09523 (15)0.0554 (8)
C50.6697 (10)0.4265 (4)0.2258 (3)0.0854 (18)
H5A0.63390.44650.27000.128*
H5B0.80480.43570.21950.128*
H5C0.64030.36330.22100.128*
O70.0125 (5)0.4706 (3)0.1036 (2)0.0817 (11)
C60.5624 (9)0.4791 (3)0.1751 (3)0.0636 (13)
O80.2457 (7)0.6740 (3)0.23285 (18)0.0903 (13)
C70.0537 (10)0.3357 (4)0.1658 (3)0.0838 (18)
H7A0.07770.33900.17990.126*
H7B0.07600.27890.14360.126*
H7C0.13600.34040.20430.126*
O90.2845 (5)0.63294 (19)0.12588 (15)0.0557 (8)
C80.0953 (7)0.4111 (3)0.1188 (2)0.0541 (11)
O100.5898 (5)0.5863 (2)0.03885 (16)0.0603 (8)
C90.0336 (9)0.7316 (3)0.1504 (3)0.0789 (17)
H9A0.02100.76660.18630.118*
H9B0.07620.77160.11540.118*
H9C0.06140.69090.13290.118*
C100.1978 (8)0.6792 (3)0.1759 (3)0.0626 (13)
C110.4448 (8)0.5767 (3)0.1452 (2)0.0636 (13)
H11A0.55020.61410.16080.076*
H11B0.40760.53620.18130.076*
C120.5050 (7)0.5231 (3)0.0851 (2)0.0525 (11)
H12A0.60270.47910.09870.063*
C130.6755 (7)0.5413 (3)0.0177 (2)0.0570 (12)
H13A0.77140.49700.00280.068*
C140.5181 (7)0.4956 (3)0.0570 (2)0.0520 (11)
H14A0.42900.54150.07400.062*
C150.4101 (7)0.4284 (3)0.0141 (2)0.0509 (11)
H15A0.49180.37610.00390.061*
C160.3439 (6)0.4733 (3)0.0504 (2)0.0492 (11)
H16A0.24030.51610.04030.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.061 (2)0.093 (2)0.063 (2)0.014 (2)0.0038 (19)0.021 (2)
N10.115 (4)0.086 (3)0.087 (4)0.004 (4)0.025 (4)0.003 (3)
N20.098 (4)0.085 (4)0.114 (5)0.005 (3)0.024 (4)0.023 (3)
N30.200 (9)0.142 (6)0.158 (7)0.013 (7)0.005 (8)0.058 (6)
O20.148 (4)0.0562 (19)0.097 (3)0.010 (3)0.026 (3)0.005 (2)
C10.064 (4)0.126 (5)0.117 (6)0.009 (4)0.006 (4)0.040 (5)
O30.0622 (18)0.0532 (16)0.0526 (18)0.0000 (16)0.0079 (16)0.0005 (15)
C20.071 (4)0.127 (5)0.077 (4)0.024 (4)0.013 (4)0.001 (4)
O40.136 (4)0.092 (3)0.050 (2)0.034 (3)0.001 (2)0.016 (2)
C30.088 (4)0.092 (4)0.066 (4)0.022 (3)0.001 (3)0.003 (3)
O50.073 (2)0.075 (2)0.0399 (17)0.0134 (19)0.0103 (18)0.0057 (15)
C40.093 (4)0.054 (3)0.047 (3)0.005 (3)0.004 (3)0.006 (2)
O60.065 (2)0.0550 (16)0.0466 (17)0.0097 (16)0.0055 (17)0.0104 (15)
C50.109 (5)0.097 (4)0.050 (3)0.000 (4)0.011 (3)0.006 (3)
O70.062 (2)0.098 (3)0.085 (3)0.011 (2)0.016 (2)0.014 (2)
C60.077 (3)0.064 (3)0.049 (3)0.002 (3)0.011 (3)0.008 (3)
O80.107 (3)0.118 (3)0.046 (2)0.020 (3)0.003 (2)0.012 (2)
C70.106 (5)0.090 (4)0.055 (3)0.018 (4)0.007 (3)0.013 (3)
O90.062 (2)0.0580 (16)0.0475 (17)0.0098 (16)0.0027 (16)0.0056 (15)
C80.053 (3)0.066 (3)0.044 (3)0.002 (3)0.000 (2)0.002 (2)
O100.0659 (19)0.0599 (17)0.0551 (19)0.0019 (17)0.0010 (18)0.0001 (16)
C90.094 (4)0.072 (3)0.071 (4)0.018 (3)0.011 (3)0.004 (3)
C100.074 (3)0.059 (3)0.054 (3)0.004 (3)0.012 (3)0.003 (3)
C110.072 (3)0.069 (3)0.051 (3)0.002 (3)0.014 (3)0.001 (2)
C120.057 (3)0.053 (2)0.048 (3)0.006 (2)0.002 (2)0.007 (2)
C130.053 (3)0.065 (3)0.054 (3)0.003 (2)0.006 (2)0.009 (2)
C140.055 (3)0.063 (3)0.039 (2)0.008 (2)0.000 (2)0.002 (2)
C150.052 (3)0.055 (2)0.046 (2)0.011 (2)0.005 (2)0.006 (2)
C160.053 (2)0.051 (2)0.043 (3)0.012 (2)0.004 (2)0.010 (2)
Geometric parameters (Å, º) top
O1—C131.373 (5)O7—C81.194 (5)
O1—C21.394 (7)O8—C101.184 (6)
N1—N21.165 (7)C7—C81.482 (6)
N1—C11.467 (7)C7—H7A0.9600
N2—N31.117 (9)C7—H7B0.9600
O2—C41.188 (6)C7—H7C0.9600
C1—C21.505 (9)O9—C101.351 (6)
C1—H1B0.9700O9—C111.445 (6)
C1—H1C0.9700O10—C121.437 (5)
O3—C41.366 (5)O10—C131.437 (5)
O3—C151.433 (5)C9—C101.472 (7)
C2—H2A0.9700C9—H9A0.9600
C2—H2B0.9700C9—H9B0.9600
O4—C61.201 (6)C9—H9C0.9600
C3—C41.478 (8)C11—C121.495 (6)
C3—H3A0.9600C11—H11A0.9700
C3—H3B0.9600C11—H11B0.9700
C3—H3C0.9600C12—C161.509 (6)
O5—C61.360 (6)C12—H12A0.9800
O5—C141.439 (5)C13—C141.507 (7)
O6—C81.332 (6)C13—H13A0.9800
O6—C161.437 (5)C14—C151.509 (6)
C5—C61.476 (8)C14—H14A0.9800
C5—H5A0.9600C15—C161.518 (6)
C5—H5B0.9600C15—H15A0.9800
C5—H5C0.9600C16—H16A0.9800
C13—O1—C2117.6 (4)C12—O10—C13111.9 (3)
N2—N1—C1114.7 (6)C10—C9—H9A109.5
N3—N2—N1170.0 (9)C10—C9—H9B109.5
N1—C1—C2112.5 (6)H9A—C9—H9B109.5
N1—C1—H1B109.1C10—C9—H9C109.5
C2—C1—H1B109.1H9A—C9—H9C109.5
N1—C1—H1C109.1H9B—C9—H9C109.5
C2—C1—H1C109.1O8—C10—O9123.2 (5)
H1B—C1—H1C107.8O8—C10—C9125.8 (5)
C4—O3—C15119.8 (4)O9—C10—C9111.0 (4)
O1—C2—C1112.2 (5)O9—C11—C12107.9 (4)
O1—C2—H2A109.2O9—C11—H11A110.1
C1—C2—H2A109.2C12—C11—H11A110.1
O1—C2—H2B109.2O9—C11—H11B110.1
C1—C2—H2B109.2C12—C11—H11B110.1
H2A—C2—H2B107.9H11A—C11—H11B108.4
C4—C3—H3A109.5O10—C12—C11106.6 (3)
C4—C3—H3B109.5O10—C12—C16109.2 (4)
H3A—C3—H3B109.5C11—C12—C16114.5 (4)
C4—C3—H3C109.5O10—C12—H12A108.8
H3A—C3—H3C109.5C11—C12—H12A108.8
H3B—C3—H3C109.5C16—C12—H12A108.8
C6—O5—C14117.0 (4)O1—C13—O10107.3 (4)
O2—C4—O3122.3 (5)O1—C13—C14108.9 (4)
O2—C4—C3128.1 (5)O10—C13—C14108.1 (4)
O3—C4—C3109.7 (5)O1—C13—H13A110.8
C8—O6—C16119.1 (4)O10—C13—H13A110.8
C6—C5—H5A109.5C14—C13—H13A110.8
C6—C5—H5B109.5O5—C14—C13108.2 (4)
H5A—C5—H5B109.5O5—C14—C15108.9 (3)
C6—C5—H5C109.5C13—C14—C15111.3 (4)
H5A—C5—H5C109.5O5—C14—H14A109.5
H5B—C5—H5C109.5C13—C14—H14A109.5
O4—C6—O5122.0 (5)C15—C14—H14A109.5
O4—C6—C5127.7 (5)O3—C15—C14107.1 (3)
O5—C6—C5110.1 (5)O3—C15—C16109.2 (4)
C8—C7—H7A109.5C14—C15—C16110.1 (3)
C8—C7—H7B109.5O3—C15—H15A110.1
H7A—C7—H7B109.5C14—C15—H15A110.1
C8—C7—H7C109.5C16—C15—H15A110.1
H7A—C7—H7C109.5O6—C16—C12108.3 (3)
H7B—C7—H7C109.5O6—C16—C15108.8 (3)
C10—O9—C11116.1 (4)C12—C16—C15111.9 (4)
O7—C8—O6123.5 (4)O6—C16—H16A109.3
O7—C8—C7126.0 (5)C12—C16—H16A109.3
O6—C8—C7110.5 (5)C15—C16—H16A109.3
C1—N1—N2—N3175 (5)C6—O5—C14—C15125.1 (4)
N2—N1—C1—C2104.9 (7)O1—C13—C14—O565.4 (5)
C13—O1—C2—C1125.6 (6)O10—C13—C14—O5178.3 (3)
N1—C1—C2—O162.8 (8)O1—C13—C14—C15175.0 (4)
C15—O3—C4—O24.1 (7)O10—C13—C14—C1558.7 (5)
C15—O3—C4—C3175.6 (4)C4—O3—C15—C14127.5 (4)
C14—O5—C6—O47.2 (7)C4—O3—C15—C16113.3 (4)
C14—O5—C6—C5176.9 (4)O5—C14—C15—O370.1 (4)
C16—O6—C8—O71.7 (7)C13—C14—C15—O3170.6 (3)
C16—O6—C8—C7177.9 (4)O5—C14—C15—C16171.2 (3)
C11—O9—C10—O81.2 (7)C13—C14—C15—C1652.0 (5)
C11—O9—C10—C9178.3 (4)C8—O6—C16—C12114.6 (4)
C10—O9—C11—C12173.2 (4)C8—O6—C16—C15123.6 (4)
C13—O10—C12—C11172.7 (4)O10—C12—C16—O6174.5 (3)
C13—O10—C12—C1663.1 (5)C11—C12—C16—O666.0 (4)
O9—C11—C12—O1069.9 (5)O10—C12—C16—C1554.6 (4)
O9—C11—C12—C1651.0 (5)C11—C12—C16—C15174.1 (4)
C2—O1—C13—O1072.1 (6)O3—C15—C16—O673.1 (4)
C2—O1—C13—C14171.2 (4)C14—C15—C16—O6169.5 (3)
C12—O10—C13—O1177.7 (3)O3—C15—C16—C12167.2 (3)
C12—O10—C13—C1465.0 (5)C14—C15—C16—C1249.9 (5)
C6—O5—C14—C13113.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O40.982.212.666 (6)107
C15—H15A···O20.982.322.723 (6)104
C16—H16A···O70.982.272.702 (6)106
C16—H16A···O90.982.442.824 (5)103
C9—H9B···O1i0.962.483.402 (6)160
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC16H23N3O10
Mr417.37
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.9730 (14), 14.747 (3), 19.916 (4)
V3)2048.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.967, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3276, 2152, 1428
Rint0.036
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.156, 1.06
No. of reflections2152
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O40.982.212.666 (6)107
C15—H15A···O20.982.322.723 (6)104
C16—H16A···O70.982.272.702 (6)106
C16—H16A···O90.982.442.824 (5)103
C9—H9B···O1i0.962.483.402 (6)160
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

References

First citationBruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGandini, A. (2008). Macromolecules, 41, 9491–9504.  Web of Science CrossRef CAS Google Scholar
First citationGandini, A. & Belgacem, M. N. (2002). J. Polym. Environ. 10, 105–114.  Web of Science CrossRef CAS Google Scholar
First citationHatakeyama, H. & Hatakeyama, T. (2005). Macromol. Symp. 224, 219–226.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds