organic compounds
1-Azidoethoxy-2,3,4,6-tetra-O-acetyl-β-D-glucoside
aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
*Correspondence e-mail: yhzhou1966@yahoo.com.cn
In the title compound, C16H23N3O10, the galactopyranoside ring adopts a chair conformation. All the non-H substituents are situated in equatorial positions. There are short intramolecular C—H⋯O contacts and an intermolecular C—H⋯O interaction in the structure.
Related literature
For renewable compounds generated by living organisms that can be turned into useful macromolecular materials, see: Gandini (2008). For industrial applications of lignin, see: Gandini & Belgacem (2002). For attempts to obtain new polyurethanes between lignin and saccharide, see: Hatakeyama & Hatakeyama (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809039737/fb2162sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809039737/fb2162Isup2.hkl
β-D-glucose pentaacetate (5.0 g, 12.8 mmol) was dissolved in 25 ml of the anhydrous CH2Cl2. 2-azidoethanol (1.9 g, 22.3 mmol) was added to this solution by a syringe. The resulting solution was stirred under argon and cooled to 273 K. BF3.Et2O (2.1 ml, 16.7 mmol) was then added dropwise at 273 K. The mixture was stirred for 1 h at 273 K and then overnight at room temperature. The mixture was diluted with 50 ml CH2Cl2 and washed with cold water and with saturated aqueous NaHCO3 at room temperature, dried over anhydrous sodium sulfate, and concentrated in vacuo to obtain a fawn crude residue that was purified by (hexane/EtOAc 2:1) and recrystallization from the solution of hexane/EtOAc (1:1) in order to obtain a pure solid of the title compound. Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation from an ethyl acetate solution of the title compound.
All the H atoms were located in a difference
Nevertheless, all the hydrogens were placed into the idealized positions and constrained by riding hydrogen approximation. Cmethyl—Hmethyl=0.96; Cmethylene—Hmethylene=0.97; Cmethine—Hmethine=0.98 Å. UisoHmethyl=1.5UeqCmethyl, UisoHmethylene=1.2UeqCmethylene, UisoHmethine=1.2UeqCmethine. All the methyl groups were allowed to rotate freely about their respective C—C bonds during the Only 1/8 of the has been measured, therefore Friedel pairs for merging were not available.The incessant biological activity in living organisms generates a multitude of compounds, including a variety of monomers and polymers such as saccharide, cellulose, hemicellulose, lignin and so on. More and more scientists are exclusively concerned with those renewable compounds that can be turned into useful macromolecular materials (Gandini, 2008). However, most of lignin as a by-product from the paper industry is being discharged into the environment. This causes serious environmental pollution. Also for this reason industrial applications of lignin have attracted a great deal of attention (Gandini & Belgacem, 2002).
In attempt to obtain new polyurethanes between lignin and saccharide (Hatakeyama & Hatakeyama, 2005) and to optimize their properties, the title structure, a new galactopyranoside, 2-azidoethoxy 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, has been synthesized and its structure determined. The galactopyranoside ring adopts a chair conformation. There are present four intramolecular C-H···O interactionss (Tab. 1). Each of them forms four five-membered rings. In the the molecules are linked into chains along the a axis by C—H···O interactions (Fig. 2 and Tab. 1).
For renewable compounds that can be turned into useful macromolecular materials, see: Gandini (2008). For industrial applications of lignin, see: Gandini & Belgacem (2002). For attempts to obtain new polyurethanes between lignin and saccharide, see: Hatakeyama & Hatakeyama (2005).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The title molecule with the atom-labelling scheme. The displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. The packing of the title molecules, viewed along the c axis. |
C16H23N3O10 | F(000) = 880 |
Mr = 417.37 | Dx = 1.354 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 6.9730 (14) Å | θ = 9–12° |
b = 14.747 (3) Å | µ = 0.11 mm−1 |
c = 19.916 (4) Å | T = 293 K |
V = 2048.0 (7) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1428 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.036 |
Graphite monochromator | θmax = 25.3°, θmin = 1.7° |
ω/2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→17 |
Tmin = 0.967, Tmax = 0.989 | l = 0→23 |
3276 measured reflections | 3 standard reflections every 200 reflections |
2152 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0842P)2 + 0.0427P] where P = (Fo2 + 2Fc2)/3 |
2152 reflections | (Δ/σ)max < 0.001 |
266 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
88 constraints |
C16H23N3O10 | V = 2048.0 (7) Å3 |
Mr = 417.37 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.9730 (14) Å | µ = 0.11 mm−1 |
b = 14.747 (3) Å | T = 293 K |
c = 19.916 (4) Å | 0.30 × 0.20 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1428 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.036 |
Tmin = 0.967, Tmax = 0.989 | 3 standard reflections every 200 reflections |
3276 measured reflections | intensity decay: 1% |
2152 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.24 e Å−3 |
2152 reflections | Δρmin = −0.20 e Å−3 |
266 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7582 (5) | 0.6069 (2) | 0.05712 (18) | 0.0722 (10) | |
N1 | 1.0447 (9) | 0.6905 (4) | 0.1458 (3) | 0.0961 (17) | |
N2 | 1.0080 (9) | 0.6436 (4) | 0.1911 (4) | 0.0987 (18) | |
N3 | 0.9676 (16) | 0.6099 (5) | 0.2393 (4) | 0.167 (3) | |
O2 | 0.3076 (8) | 0.2527 (2) | 0.0360 (2) | 0.1001 (14) | |
C1 | 1.0868 (10) | 0.6426 (5) | 0.0830 (3) | 0.103 (2) | |
H1B | 1.1128 | 0.5794 | 0.0929 | 0.123* | |
H1C | 1.2014 | 0.6684 | 0.0630 | 0.123* | |
O3 | 0.2457 (5) | 0.40003 (19) | 0.05186 (15) | 0.0560 (8) | |
C2 | 0.9245 (9) | 0.6483 (5) | 0.0333 (3) | 0.0917 (19) | |
H2A | 0.8978 | 0.7115 | 0.0237 | 0.110* | |
H2B | 0.9631 | 0.6193 | −0.0083 | 0.110* | |
O4 | 0.4451 (8) | 0.5373 (3) | 0.18472 (18) | 0.0927 (13) | |
C3 | 0.0437 (9) | 0.2978 (4) | 0.1058 (3) | 0.0820 (17) | |
H3A | 0.0147 | 0.2344 | 0.1099 | 0.123* | |
H3B | −0.0647 | 0.3290 | 0.0872 | 0.123* | |
H3C | 0.0724 | 0.3223 | 0.1493 | 0.123* | |
O5 | 0.6040 (5) | 0.4482 (2) | 0.11247 (15) | 0.0626 (9) | |
C4 | 0.2113 (9) | 0.3097 (3) | 0.0612 (2) | 0.0647 (13) | |
O6 | 0.2735 (5) | 0.40451 (19) | −0.09523 (15) | 0.0554 (8) | |
C5 | 0.6697 (10) | 0.4265 (4) | 0.2258 (3) | 0.0854 (18) | |
H5A | 0.6339 | 0.4465 | 0.2700 | 0.128* | |
H5B | 0.8048 | 0.4357 | 0.2195 | 0.128* | |
H5C | 0.6403 | 0.3633 | 0.2210 | 0.128* | |
O7 | −0.0125 (5) | 0.4706 (3) | −0.1036 (2) | 0.0817 (11) | |
C6 | 0.5624 (9) | 0.4791 (3) | 0.1751 (3) | 0.0636 (13) | |
O8 | 0.2457 (7) | 0.6740 (3) | −0.23285 (18) | 0.0903 (13) | |
C7 | 0.0537 (10) | 0.3357 (4) | −0.1658 (3) | 0.0838 (18) | |
H7A | −0.0777 | 0.3390 | −0.1799 | 0.126* | |
H7B | 0.0760 | 0.2789 | −0.1436 | 0.126* | |
H7C | 0.1360 | 0.3404 | −0.2043 | 0.126* | |
O9 | 0.2845 (5) | 0.63294 (19) | −0.12588 (15) | 0.0557 (8) | |
C8 | 0.0953 (7) | 0.4111 (3) | −0.1188 (2) | 0.0541 (11) | |
O10 | 0.5898 (5) | 0.5863 (2) | −0.03885 (16) | 0.0603 (8) | |
C9 | 0.0336 (9) | 0.7316 (3) | −0.1504 (3) | 0.0789 (17) | |
H9A | −0.0210 | 0.7666 | −0.1863 | 0.118* | |
H9B | 0.0762 | 0.7716 | −0.1154 | 0.118* | |
H9C | −0.0614 | 0.6909 | −0.1329 | 0.118* | |
C10 | 0.1978 (8) | 0.6792 (3) | −0.1759 (3) | 0.0626 (13) | |
C11 | 0.4448 (8) | 0.5767 (3) | −0.1452 (2) | 0.0636 (13) | |
H11A | 0.5502 | 0.6141 | −0.1608 | 0.076* | |
H11B | 0.4076 | 0.5362 | −0.1813 | 0.076* | |
C12 | 0.5050 (7) | 0.5231 (3) | −0.0851 (2) | 0.0525 (11) | |
H12A | 0.6027 | 0.4791 | −0.0987 | 0.063* | |
C13 | 0.6755 (7) | 0.5413 (3) | 0.0177 (2) | 0.0570 (12) | |
H13A | 0.7714 | 0.4970 | 0.0028 | 0.068* | |
C14 | 0.5181 (7) | 0.4956 (3) | 0.0570 (2) | 0.0520 (11) | |
H14A | 0.4290 | 0.5415 | 0.0740 | 0.062* | |
C15 | 0.4101 (7) | 0.4284 (3) | 0.0141 (2) | 0.0509 (11) | |
H15A | 0.4918 | 0.3761 | 0.0039 | 0.061* | |
C16 | 0.3439 (6) | 0.4733 (3) | −0.0504 (2) | 0.0492 (11) | |
H16A | 0.2403 | 0.5161 | −0.0403 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.061 (2) | 0.093 (2) | 0.063 (2) | −0.014 (2) | 0.0038 (19) | −0.021 (2) |
N1 | 0.115 (4) | 0.086 (3) | 0.087 (4) | −0.004 (4) | −0.025 (4) | −0.003 (3) |
N2 | 0.098 (4) | 0.085 (4) | 0.114 (5) | −0.005 (3) | −0.024 (4) | 0.023 (3) |
N3 | 0.200 (9) | 0.142 (6) | 0.158 (7) | 0.013 (7) | −0.005 (8) | 0.058 (6) |
O2 | 0.148 (4) | 0.0562 (19) | 0.097 (3) | 0.010 (3) | 0.026 (3) | 0.005 (2) |
C1 | 0.064 (4) | 0.126 (5) | 0.117 (6) | −0.009 (4) | 0.006 (4) | −0.040 (5) |
O3 | 0.0622 (18) | 0.0532 (16) | 0.0526 (18) | 0.0000 (16) | 0.0079 (16) | −0.0005 (15) |
C2 | 0.071 (4) | 0.127 (5) | 0.077 (4) | −0.024 (4) | 0.013 (4) | 0.001 (4) |
O4 | 0.136 (4) | 0.092 (3) | 0.050 (2) | 0.034 (3) | 0.001 (2) | −0.016 (2) |
C3 | 0.088 (4) | 0.092 (4) | 0.066 (4) | −0.022 (3) | −0.001 (3) | 0.003 (3) |
O5 | 0.073 (2) | 0.075 (2) | 0.0399 (17) | 0.0134 (19) | −0.0103 (18) | −0.0057 (15) |
C4 | 0.093 (4) | 0.054 (3) | 0.047 (3) | −0.005 (3) | −0.004 (3) | 0.006 (2) |
O6 | 0.065 (2) | 0.0550 (16) | 0.0466 (17) | 0.0097 (16) | −0.0055 (17) | −0.0104 (15) |
C5 | 0.109 (5) | 0.097 (4) | 0.050 (3) | 0.000 (4) | −0.011 (3) | 0.006 (3) |
O7 | 0.062 (2) | 0.098 (3) | 0.085 (3) | 0.011 (2) | −0.016 (2) | −0.014 (2) |
C6 | 0.077 (3) | 0.064 (3) | 0.049 (3) | −0.002 (3) | −0.011 (3) | −0.008 (3) |
O8 | 0.107 (3) | 0.118 (3) | 0.046 (2) | 0.020 (3) | 0.003 (2) | 0.012 (2) |
C7 | 0.106 (5) | 0.090 (4) | 0.055 (3) | −0.018 (4) | −0.007 (3) | −0.013 (3) |
O9 | 0.062 (2) | 0.0580 (16) | 0.0475 (17) | 0.0098 (16) | 0.0027 (16) | 0.0056 (15) |
C8 | 0.053 (3) | 0.066 (3) | 0.044 (3) | 0.002 (3) | 0.000 (2) | −0.002 (2) |
O10 | 0.0659 (19) | 0.0599 (17) | 0.0551 (19) | 0.0019 (17) | −0.0010 (18) | 0.0001 (16) |
C9 | 0.094 (4) | 0.072 (3) | 0.071 (4) | 0.018 (3) | −0.011 (3) | 0.004 (3) |
C10 | 0.074 (3) | 0.059 (3) | 0.054 (3) | −0.004 (3) | −0.012 (3) | 0.003 (3) |
C11 | 0.072 (3) | 0.069 (3) | 0.051 (3) | 0.002 (3) | 0.014 (3) | 0.001 (2) |
C12 | 0.057 (3) | 0.053 (2) | 0.048 (3) | 0.006 (2) | 0.002 (2) | −0.007 (2) |
C13 | 0.053 (3) | 0.065 (3) | 0.054 (3) | 0.003 (2) | −0.006 (2) | −0.009 (2) |
C14 | 0.055 (3) | 0.063 (3) | 0.039 (2) | 0.008 (2) | 0.000 (2) | −0.002 (2) |
C15 | 0.052 (3) | 0.055 (2) | 0.046 (2) | 0.011 (2) | −0.005 (2) | −0.006 (2) |
C16 | 0.053 (2) | 0.051 (2) | 0.043 (3) | 0.012 (2) | −0.004 (2) | −0.010 (2) |
O1—C13 | 1.373 (5) | O7—C8 | 1.194 (5) |
O1—C2 | 1.394 (7) | O8—C10 | 1.184 (6) |
N1—N2 | 1.165 (7) | C7—C8 | 1.482 (6) |
N1—C1 | 1.467 (7) | C7—H7A | 0.9600 |
N2—N3 | 1.117 (9) | C7—H7B | 0.9600 |
O2—C4 | 1.188 (6) | C7—H7C | 0.9600 |
C1—C2 | 1.505 (9) | O9—C10 | 1.351 (6) |
C1—H1B | 0.9700 | O9—C11 | 1.445 (6) |
C1—H1C | 0.9700 | O10—C12 | 1.437 (5) |
O3—C4 | 1.366 (5) | O10—C13 | 1.437 (5) |
O3—C15 | 1.433 (5) | C9—C10 | 1.472 (7) |
C2—H2A | 0.9700 | C9—H9A | 0.9600 |
C2—H2B | 0.9700 | C9—H9B | 0.9600 |
O4—C6 | 1.201 (6) | C9—H9C | 0.9600 |
C3—C4 | 1.478 (8) | C11—C12 | 1.495 (6) |
C3—H3A | 0.9600 | C11—H11A | 0.9700 |
C3—H3B | 0.9600 | C11—H11B | 0.9700 |
C3—H3C | 0.9600 | C12—C16 | 1.509 (6) |
O5—C6 | 1.360 (6) | C12—H12A | 0.9800 |
O5—C14 | 1.439 (5) | C13—C14 | 1.507 (7) |
O6—C8 | 1.332 (6) | C13—H13A | 0.9800 |
O6—C16 | 1.437 (5) | C14—C15 | 1.509 (6) |
C5—C6 | 1.476 (8) | C14—H14A | 0.9800 |
C5—H5A | 0.9600 | C15—C16 | 1.518 (6) |
C5—H5B | 0.9600 | C15—H15A | 0.9800 |
C5—H5C | 0.9600 | C16—H16A | 0.9800 |
C13—O1—C2 | 117.6 (4) | C12—O10—C13 | 111.9 (3) |
N2—N1—C1 | 114.7 (6) | C10—C9—H9A | 109.5 |
N3—N2—N1 | 170.0 (9) | C10—C9—H9B | 109.5 |
N1—C1—C2 | 112.5 (6) | H9A—C9—H9B | 109.5 |
N1—C1—H1B | 109.1 | C10—C9—H9C | 109.5 |
C2—C1—H1B | 109.1 | H9A—C9—H9C | 109.5 |
N1—C1—H1C | 109.1 | H9B—C9—H9C | 109.5 |
C2—C1—H1C | 109.1 | O8—C10—O9 | 123.2 (5) |
H1B—C1—H1C | 107.8 | O8—C10—C9 | 125.8 (5) |
C4—O3—C15 | 119.8 (4) | O9—C10—C9 | 111.0 (4) |
O1—C2—C1 | 112.2 (5) | O9—C11—C12 | 107.9 (4) |
O1—C2—H2A | 109.2 | O9—C11—H11A | 110.1 |
C1—C2—H2A | 109.2 | C12—C11—H11A | 110.1 |
O1—C2—H2B | 109.2 | O9—C11—H11B | 110.1 |
C1—C2—H2B | 109.2 | C12—C11—H11B | 110.1 |
H2A—C2—H2B | 107.9 | H11A—C11—H11B | 108.4 |
C4—C3—H3A | 109.5 | O10—C12—C11 | 106.6 (3) |
C4—C3—H3B | 109.5 | O10—C12—C16 | 109.2 (4) |
H3A—C3—H3B | 109.5 | C11—C12—C16 | 114.5 (4) |
C4—C3—H3C | 109.5 | O10—C12—H12A | 108.8 |
H3A—C3—H3C | 109.5 | C11—C12—H12A | 108.8 |
H3B—C3—H3C | 109.5 | C16—C12—H12A | 108.8 |
C6—O5—C14 | 117.0 (4) | O1—C13—O10 | 107.3 (4) |
O2—C4—O3 | 122.3 (5) | O1—C13—C14 | 108.9 (4) |
O2—C4—C3 | 128.1 (5) | O10—C13—C14 | 108.1 (4) |
O3—C4—C3 | 109.7 (5) | O1—C13—H13A | 110.8 |
C8—O6—C16 | 119.1 (4) | O10—C13—H13A | 110.8 |
C6—C5—H5A | 109.5 | C14—C13—H13A | 110.8 |
C6—C5—H5B | 109.5 | O5—C14—C13 | 108.2 (4) |
H5A—C5—H5B | 109.5 | O5—C14—C15 | 108.9 (3) |
C6—C5—H5C | 109.5 | C13—C14—C15 | 111.3 (4) |
H5A—C5—H5C | 109.5 | O5—C14—H14A | 109.5 |
H5B—C5—H5C | 109.5 | C13—C14—H14A | 109.5 |
O4—C6—O5 | 122.0 (5) | C15—C14—H14A | 109.5 |
O4—C6—C5 | 127.7 (5) | O3—C15—C14 | 107.1 (3) |
O5—C6—C5 | 110.1 (5) | O3—C15—C16 | 109.2 (4) |
C8—C7—H7A | 109.5 | C14—C15—C16 | 110.1 (3) |
C8—C7—H7B | 109.5 | O3—C15—H15A | 110.1 |
H7A—C7—H7B | 109.5 | C14—C15—H15A | 110.1 |
C8—C7—H7C | 109.5 | C16—C15—H15A | 110.1 |
H7A—C7—H7C | 109.5 | O6—C16—C12 | 108.3 (3) |
H7B—C7—H7C | 109.5 | O6—C16—C15 | 108.8 (3) |
C10—O9—C11 | 116.1 (4) | C12—C16—C15 | 111.9 (4) |
O7—C8—O6 | 123.5 (4) | O6—C16—H16A | 109.3 |
O7—C8—C7 | 126.0 (5) | C12—C16—H16A | 109.3 |
O6—C8—C7 | 110.5 (5) | C15—C16—H16A | 109.3 |
C1—N1—N2—N3 | −175 (5) | C6—O5—C14—C15 | −125.1 (4) |
N2—N1—C1—C2 | 104.9 (7) | O1—C13—C14—O5 | −65.4 (5) |
C13—O1—C2—C1 | −125.6 (6) | O10—C13—C14—O5 | 178.3 (3) |
N1—C1—C2—O1 | −62.8 (8) | O1—C13—C14—C15 | 175.0 (4) |
C15—O3—C4—O2 | −4.1 (7) | O10—C13—C14—C15 | 58.7 (5) |
C15—O3—C4—C3 | 175.6 (4) | C4—O3—C15—C14 | −127.5 (4) |
C14—O5—C6—O4 | 7.2 (7) | C4—O3—C15—C16 | 113.3 (4) |
C14—O5—C6—C5 | −176.9 (4) | O5—C14—C15—O3 | 70.1 (4) |
C16—O6—C8—O7 | −1.7 (7) | C13—C14—C15—O3 | −170.6 (3) |
C16—O6—C8—C7 | 177.9 (4) | O5—C14—C15—C16 | −171.2 (3) |
C11—O9—C10—O8 | 1.2 (7) | C13—C14—C15—C16 | −52.0 (5) |
C11—O9—C10—C9 | 178.3 (4) | C8—O6—C16—C12 | −114.6 (4) |
C10—O9—C11—C12 | −173.2 (4) | C8—O6—C16—C15 | 123.6 (4) |
C13—O10—C12—C11 | −172.7 (4) | O10—C12—C16—O6 | −174.5 (3) |
C13—O10—C12—C16 | 63.1 (5) | C11—C12—C16—O6 | 66.0 (4) |
O9—C11—C12—O10 | −69.9 (5) | O10—C12—C16—C15 | −54.6 (4) |
O9—C11—C12—C16 | 51.0 (5) | C11—C12—C16—C15 | −174.1 (4) |
C2—O1—C13—O10 | −72.1 (6) | O3—C15—C16—O6 | −73.1 (4) |
C2—O1—C13—C14 | 171.2 (4) | C14—C15—C16—O6 | 169.5 (3) |
C12—O10—C13—O1 | 177.7 (3) | O3—C15—C16—C12 | 167.2 (3) |
C12—O10—C13—C14 | −65.0 (5) | C14—C15—C16—C12 | 49.9 (5) |
C6—O5—C14—C13 | 113.7 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O4 | 0.98 | 2.21 | 2.666 (6) | 107 |
C15—H15A···O2 | 0.98 | 2.32 | 2.723 (6) | 104 |
C16—H16A···O7 | 0.98 | 2.27 | 2.702 (6) | 106 |
C16—H16A···O9 | 0.98 | 2.44 | 2.824 (5) | 103 |
C9—H9B···O1i | 0.96 | 2.48 | 3.402 (6) | 160 |
Symmetry code: (i) x−1/2, −y+3/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H23N3O10 |
Mr | 417.37 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 6.9730 (14), 14.747 (3), 19.916 (4) |
V (Å3) | 2048.0 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.967, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3276, 2152, 1428 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.156, 1.06 |
No. of reflections | 2152 |
No. of parameters | 266 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.20 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O4 | 0.98 | 2.21 | 2.666 (6) | 107 |
C15—H15A···O2 | 0.98 | 2.32 | 2.723 (6) | 104 |
C16—H16A···O7 | 0.98 | 2.27 | 2.702 (6) | 106 |
C16—H16A···O9 | 0.98 | 2.44 | 2.824 (5) | 103 |
C9—H9B···O1i | 0.96 | 2.48 | 3.402 (6) | 160 |
Symmetry code: (i) x−1/2, −y+3/2, −z. |
Acknowledgements
This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).
References
Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gandini, A. (2008). Macromolecules, 41, 9491–9504. Web of Science CrossRef CAS Google Scholar
Gandini, A. & Belgacem, M. N. (2002). J. Polym. Environ. 10, 105–114. Web of Science CrossRef CAS Google Scholar
Hatakeyama, H. & Hatakeyama, T. (2005). Macromol. Symp. 224, 219–226. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The incessant biological activity in living organisms generates a multitude of compounds, including a variety of monomers and polymers such as saccharide, cellulose, hemicellulose, lignin and so on. More and more scientists are exclusively concerned with those renewable compounds that can be turned into useful macromolecular materials (Gandini, 2008). However, most of lignin as a by-product from the paper industry is being discharged into the environment. This causes serious environmental pollution. Also for this reason industrial applications of lignin have attracted a great deal of attention (Gandini & Belgacem, 2002).
In attempt to obtain new polyurethanes between lignin and saccharide (Hatakeyama & Hatakeyama, 2005) and to optimize their properties, the title structure, a new galactopyranoside, 2-azidoethoxy 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, has been synthesized and its structure determined. The galactopyranoside ring adopts a chair conformation. There are present four intramolecular C-H···O interactionss (Tab. 1). Each of them forms four five-membered rings. In the crystal structure, the molecules are linked into chains along the a axis by C—H···O interactions (Fig. 2 and Tab. 1).