inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Europium-doped barium bromide iodide

aLife Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, bDepartment of Chemistry, University of California, Berkeley, CA 94720, USA, and cMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*Correspondence e-mail: EDBourret@lbl.gov

(Received 24 July 2009; accepted 8 October 2009; online 17 October 2009)

Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932[Braekken, H. (1932). Z. Kristallogr. 83, 222-282.]). Z. Kristallogr. 83, 222–282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = ±0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

Related literature

For details of crystal growth by the Bridgman technique, see: Robertson (1986[Robertson, J. M. (1986). Crystal Growth of Ceramics: Bridgman-Stockbarger Methods, pp. 963-964. In Encyclopedia of Materials Science and Engin­eering, edited by M. B. Bever. Oxford: Pergamon.]). For structural details of isotypic compounds, see: PbCl2 (Braekken, 1932[Braekken, H. (1932). Z. Kristallogr. 83, 222-282.]); EuBrI (Liao et al., 2004[Liao, W., Liu, X. & Dronskowski, R. (2004). Acta Cryst. E60, i69-i71.]); SrBrI (Hodorowicz & Eick, 1983[Hodorowicz, S. A. & Eick, H. A. (1983). J. Solid State Chem. 46, 313-320.]); and BaBrCl (Hodorowicz et al., 1983[Hodorowicz, S. A., Hodorowicz, E. K. & Eick, H. A. (1983). J. Solid State Chem. 48, 351-356.]). For structural details of PbFCl compounds, see: Liebich & Nicollin (1977[Liebich, B. W. & Nicollin, D. (1977). Acta Cryst. B33, 2790-2794.]). For the structure of compounds with similar compositions by powder diffraction, see Lenus et al. (2002[Lenus, A. J., Sornadurai, D., Rajan, K. G. & Purniah, B. (2002). Powder Diffr. 17, 331-335.]). For the luminescent properties of some Eu2+-activated barium halides, see: Schweizer (2001[Schweizer, S. (2001). Phys. Status Solidi A, 187, 335-393.]); Crawford & Brixner (1991[Crawford, M. K. & Brixner, L. H. (1991). J. Lumin. 48-49, 37-42.]); Selling et al. (2007[Selling, J., Birowosuto, M. D., Dorenbos, P. & Schweizer, S. (2007). J. Appl. Phys. 101, 034901.]); Bourret-Courchesne et al. (2009[Bourret-Courchesne, E. D., Gundiah, G., Hanrahan, S. M., Bizarri, G. & Derenzo, S. E. (2009). In preparation.]).

Experimental

Crystal data
  • Ba0.96Eu0.04BrI

  • Mr = 344.70

  • Orthorhombic, P n m a

  • a = 8.684 (3) Å

  • b = 5.0599 (19) Å

  • c = 10.061 (4) Å

  • V = 442.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 24.97 mm−1

  • T = 153 K

  • 0.14 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.128, Tmax = 0.316

  • 2609 measured reflections

  • 430 independent reflections

  • 370 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.033

  • S = 1.02

  • 430 reflections

  • 21 parameters

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

I1—Ba1i 3.6448 (10)
I1—Ba1ii 3.6448 (10)
I1—Ba1iii 3.7101 (9)
I1—Ba1iv 3.7101 (9)
Ba1—Br1v 3.2643 (10)
Ba1—Br1 3.2643 (10)
Ba1—Br1vi 3.2931 (13)
Ba1—Br1vii 3.3065 (14)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (v) x, y+1, z; (vi) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (vii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Barium mixed halides activated by Eu2+ have been extensively studied as X-ray phosphors (Schweizer, 2001; Crawford & Brixner, 1991) and scintillators for the detection of γ-rays (Selling et al., 2007). The F-based compounds of the form BaFX (X= Cl, Br, I) have a tetragonal, matlockite structure similar to PbFCl (Liebich & Nicollin, 1977). Among the other barium mixed halides, the structure of BaBrCl has been found to be the PbCl2-type (Hodorowicz et al., 1983). Lenus et al. recently solved the structures of BaBrI and BaClI from X-ray powder diffraction data in the space groups P2221 and Pbam respectively (Lenus et al., 2002). We have synthesized single crystals of Ba0.96Eu0.04BrI and present details of the structure. Eu is introduced as a dopant and substitute for Ba. The doping was not expected to change the structure of the parent material BaBrI. However, we determine the structure to have a space group Pnma, similar to that of isomorphous compounds EuBrI (Liao et al., 2004) and SrBrI (Hodorowicz & Eick, 1983), but not the structure published by Lenus et al. for powders of BaBrI (Lenus et al., 2002)

The title compound adopts the orthorhombic PbCl2 structure. All atoms occupy the fourfold special positions (4c) of the space group D162h-Pnma. They lie on the mirror planes, perpendicular to the b axis at y = (±)0.25. Each Ba/Eu cation is coordinated by 9 anions in a tricapped trigonal prismatic arrangement (Fig. 1). The anions are not equidistant from the Ba cation but present in two different positions. The smaller bromide anions occupy one of the anionic positions at distances between 3.26 and 3.30 Å. The larger iodide anions occupy the second anionic position (distances 3.62 - 3.71 Å), giving a completely ordered structure for the anions. The same ordering has been observed in isomorphous compounds EuBrI (Liao et al., 2004) and SrBrI (Hodorowicz & Eick, 1983).

The Eu content of 4% has been determined from the refinement of the structure. The presence of divalent Eu is also confirmed by measuring the emission curve under X-ray excitation. The characteristic 4f65 d1 4f7transition of Eu2+ was observed. A detailed study of the luminescent properties is currently underway and will be presented in a future publication (Bourret-Courchesne et al., 2009).

Related literature top

For details of the synthesis by the Bridgman technique, see: Robertson (1986). For structural details of isomorphous compounds, see: PbCl2 (Braekken, 1932); EuBrI (Liao et al., 2004); SrBrI (Hodorowicz & Eick, 1983); and BaBrCl (Hodorowicz et al., 1983). For structural details of PbFCl compounds, see: Liebich & Nicollin (1977). For the structure of compounds with similar compositions by powder diffraction, see Lenus et al. (2002). For the luminescent properties of some Eu2+-activated barium halides, see Schweizer (2001); Crawford & Brixner (1991); Selling et al. (2007); Bourret-Courchesne et al. (2009).

Experimental top

Single crystals with the composition Ba0.96Eu0.04BrI were grown by the vertical Bridgman techniques. BaBr2, BaI2, EuBr2 and EuI2 were obtained commerically, mixed in the molar ratio 0.48: 0.48: 0.02: 0.02 and sealed in a quartz ampoule under a dynamic vacuum of 1.10 –6 Torr. The sealed ampoule, about 1 cm in diameter, was heated in a 24 zone Mellen furnace to a temperature of 1123 K and directionally cooled to provide a growth rate of 1 mm/hour. The reactants and products are moisture-sensitive and all manipulations were carried out inside an Argon-filled glove box. The crystal obtained is colorless.

Refinement top

The doping of Eu(ii) on the Ba(ii) site was modeled with a fractional Eu atom fixed in the same location and with the same thermal parameters as the Ba(ii) atom. The relative occupancy factor refined to 0.963 (13) Ba, 0.037 (13) Eu.

Structure description top

Barium mixed halides activated by Eu2+ have been extensively studied as X-ray phosphors (Schweizer, 2001; Crawford & Brixner, 1991) and scintillators for the detection of γ-rays (Selling et al., 2007). The F-based compounds of the form BaFX (X= Cl, Br, I) have a tetragonal, matlockite structure similar to PbFCl (Liebich & Nicollin, 1977). Among the other barium mixed halides, the structure of BaBrCl has been found to be the PbCl2-type (Hodorowicz et al., 1983). Lenus et al. recently solved the structures of BaBrI and BaClI from X-ray powder diffraction data in the space groups P2221 and Pbam respectively (Lenus et al., 2002). We have synthesized single crystals of Ba0.96Eu0.04BrI and present details of the structure. Eu is introduced as a dopant and substitute for Ba. The doping was not expected to change the structure of the parent material BaBrI. However, we determine the structure to have a space group Pnma, similar to that of isomorphous compounds EuBrI (Liao et al., 2004) and SrBrI (Hodorowicz & Eick, 1983), but not the structure published by Lenus et al. for powders of BaBrI (Lenus et al., 2002)

The title compound adopts the orthorhombic PbCl2 structure. All atoms occupy the fourfold special positions (4c) of the space group D162h-Pnma. They lie on the mirror planes, perpendicular to the b axis at y = (±)0.25. Each Ba/Eu cation is coordinated by 9 anions in a tricapped trigonal prismatic arrangement (Fig. 1). The anions are not equidistant from the Ba cation but present in two different positions. The smaller bromide anions occupy one of the anionic positions at distances between 3.26 and 3.30 Å. The larger iodide anions occupy the second anionic position (distances 3.62 - 3.71 Å), giving a completely ordered structure for the anions. The same ordering has been observed in isomorphous compounds EuBrI (Liao et al., 2004) and SrBrI (Hodorowicz & Eick, 1983).

The Eu content of 4% has been determined from the refinement of the structure. The presence of divalent Eu is also confirmed by measuring the emission curve under X-ray excitation. The characteristic 4f65 d1 4f7transition of Eu2+ was observed. A detailed study of the luminescent properties is currently underway and will be presented in a future publication (Bourret-Courchesne et al., 2009).

For details of the synthesis by the Bridgman technique, see: Robertson (1986). For structural details of isomorphous compounds, see: PbCl2 (Braekken, 1932); EuBrI (Liao et al., 2004); SrBrI (Hodorowicz & Eick, 1983); and BaBrCl (Hodorowicz et al., 1983). For structural details of PbFCl compounds, see: Liebich & Nicollin (1977). For the structure of compounds with similar compositions by powder diffraction, see Lenus et al. (2002). For the luminescent properties of some Eu2+-activated barium halides, see Schweizer (2001); Crawford & Brixner (1991); Selling et al. (2007); Bourret-Courchesne et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Arrangement of anions around each Ba atom. The displacement ellipsoids are given at 50% probability. The symmetry codes are: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z; (iii) -x + 3/2, -y + 1, z + 1/2; (iv) -x + 3/2, -y, z + 1/2; (v) x, y + 1, z; (vi) -x + 3/2, -y, z - 1/2; (vii) -x + 2, -y, -z; (viii) -x + 3/2, -y + 1, z - 1/2; (ix) x, y - 1, z.
barium europium bromide iodide top
Crystal data top
Ba0.96Eu0.04BrIF(000) = 576.7
Mr = 344.70Dx = 5.179 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1548 reflections
a = 8.684 (3) Åθ = 4.5–25.4°
b = 5.0599 (19) ŵ = 24.97 mm1
c = 10.061 (4) ÅT = 153 K
V = 442.1 (3) Å3Block, colourless
Z = 40.14 × 0.09 × 0.06 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
430 independent reflections
Radiation source: fine-focus sealed tube370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 3.1°
φ and ω scansh = 910
Absorption correction: multi-scan
(Blessing, 1995)
k = 65
Tmin = 0.128, Tmax = 0.316l = 1111
2609 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.033Δρmax = 0.89 e Å3
S = 1.02Δρmin = 0.78 e Å3
430 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 parametersExtinction coefficient: 0.0151 (5)
0 restraints
Crystal data top
Ba0.96Eu0.04BrIV = 442.1 (3) Å3
Mr = 344.70Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.684 (3) ŵ = 24.97 mm1
b = 5.0599 (19) ÅT = 153 K
c = 10.061 (4) Å0.14 × 0.09 × 0.06 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
430 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
370 reflections with I > 2σ(I)
Tmin = 0.128, Tmax = 0.316Rint = 0.027
2609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01521 parameters
wR(F2) = 0.0330 restraints
S = 1.02Δρmax = 0.89 e Å3
430 reflectionsΔρmin = 0.78 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The doping of Eu(ii) on the Ba(ii) site was modeled with a fractional Eu atom fixed in the same location and with the same thermal parameters as the Ba(ii) atom. The relative occupancy factor refined to 0.963 (13) Ba, 0.037 (13) Eu.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.52804 (5)0.25000.16976 (4)0.01285 (18)
Ba10.76955 (4)0.25000.12472 (4)0.01213 (17)0.963 (13)
Eu10.76955 (4)0.25000.12472 (4)0.01213 (17)0.037 (13)
Br10.85573 (8)0.25000.06634 (6)0.0107 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0119 (3)0.0139 (3)0.0128 (2)0.0000.00011 (16)0.000
Ba10.0110 (3)0.0126 (3)0.0128 (2)0.0000.00069 (15)0.000
Eu10.0110 (3)0.0126 (3)0.0128 (2)0.0000.00069 (15)0.000
Br10.0096 (4)0.0119 (5)0.0105 (3)0.0000.0008 (2)0.000
Geometric parameters (Å, º) top
I1—Ba13.6299 (11)Ba1—Br1vii3.3065 (14)
I1—Ba1i3.6448 (10)Ba1—I1i3.6448 (10)
I1—Ba1ii3.6448 (10)Ba1—I1ii3.6448 (10)
I1—Ba1iii3.7101 (9)Ba1—I1vi3.7101 (9)
I1—Ba1iv3.7101 (9)Ba1—I1viii3.7101 (9)
Ba1—Br1v3.2643 (10)Br1—Ba1ix3.2643 (10)
Ba1—Br13.2643 (10)Br1—Ba1iv3.2930 (13)
Ba1—Br1vi3.2931 (13)Br1—Ba1vii3.3065 (14)
Ba1—I1—Ba1i107.950 (19)Br1—Ba1—I1ii140.69 (2)
Ba1—I1—Ba1ii107.950 (19)Br1vi—Ba1—I1ii69.416 (14)
Ba1i—I1—Ba1ii87.92 (3)Br1vii—Ba1—I1ii136.041 (16)
Ba1—I1—Ba1iii100.44 (2)I1—Ba1—I1ii72.051 (19)
Ba1i—I1—Ba1iii151.463 (16)I1i—Ba1—I1ii87.92 (3)
Ba1ii—I1—Ba1iii86.09 (3)Br1v—Ba1—I1vi138.42 (2)
Ba1—I1—Ba1iv100.44 (2)Br1—Ba1—I1vi72.00 (3)
Ba1i—I1—Ba1iv86.09 (3)Br1vi—Ba1—I1vi68.31 (2)
Ba1ii—I1—Ba1iv151.463 (16)Br1vii—Ba1—I1vi68.457 (18)
Ba1iii—I1—Ba1iv85.99 (3)I1—Ba1—I1vi136.767 (14)
Br1v—Ba1—Br1101.62 (3)I1i—Ba1—I1vi78.07 (2)
Br1v—Ba1—Br1vi129.163 (17)I1ii—Ba1—I1vi137.726 (19)
Br1—Ba1—Br1vi129.163 (17)Br1v—Ba1—I1viii72.00 (3)
Br1v—Ba1—Br1vii70.719 (16)Br1—Ba1—I1viii138.42 (2)
Br1—Ba1—Br1vii70.718 (16)Br1vi—Ba1—I1viii68.31 (2)
Br1vi—Ba1—Br1vii119.523 (18)Br1vii—Ba1—I1viii68.457 (18)
Br1v—Ba1—I169.62 (2)I1—Ba1—I1viii136.767 (14)
Br1—Ba1—I169.62 (2)I1i—Ba1—I1viii137.726 (19)
Br1vi—Ba1—I1125.42 (3)I1ii—Ba1—I1viii78.07 (2)
Br1vii—Ba1—I1115.06 (2)I1vi—Ba1—I1viii85.99 (3)
Br1v—Ba1—I1i140.69 (2)Ba1—Br1—Ba1ix101.62 (3)
Br1—Ba1—I1i72.41 (2)Ba1ix—Br1—Ba1iv118.69 (2)
Br1vi—Ba1—I1i69.416 (14)Ba1—Br1—Ba1vii109.282 (16)
Br1vii—Ba1—I1i136.041 (16)Ba1ix—Br1—Ba1vii109.282 (16)
I1—Ba1—I1i72.051 (19)Ba1iv—Br1—Ba1vii99.06 (2)
Br1v—Ba1—I1ii72.41 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+3/2, y+1, z+1/2; (iv) x+3/2, y, z+1/2; (v) x, y+1, z; (vi) x+3/2, y, z1/2; (vii) x+2, y, z; (viii) x+3/2, y+1, z1/2; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formulaBa0.96Eu0.04BrI
Mr344.70
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)153
a, b, c (Å)8.684 (3), 5.0599 (19), 10.061 (4)
V3)442.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)24.97
Crystal size (mm)0.14 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.128, 0.316
No. of measured, independent and
observed [I > 2σ(I)] reflections
2609, 430, 370
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.033, 1.02
No. of reflections430
No. of parameters21
Δρmax, Δρmin (e Å3)0.89, 0.78

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
I1—Ba1i3.6448 (10)Ba1—Br1v3.2643 (10)
I1—Ba1ii3.6448 (10)Ba1—Br13.2643 (10)
I1—Ba1iii3.7101 (9)Ba1—Br1vi3.2931 (13)
I1—Ba1iv3.7101 (9)Ba1—Br1vii3.3065 (14)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+3/2, y+1, z+1/2; (iv) x+3/2, y, z+1/2; (v) x, y+1, z; (vi) x+3/2, y, z1/2; (vii) x+2, y, z.
Selected geometric parameters (Å, °) top
Ba1—I1i3.6448 (10)Ba1—I1ii3.6448 (10)
Ba1—I1vi3.7101 (9)Ba1—I1viii3.7101 (9)
Ba1—Br1vii3.3065 (14)Ba1—Br1v3.2643 (10)
Ba1—Br13.2643 (10)Ba1—Br1vi3.2931 (13)
Br1v—Ba1—Br1101.62 (3)Br1—Ba1—I1ii140.69 (2)
Br1v—Ba1—Br1vi129.163 (17)Br1vi—Ba1—I1ii69.416 (14)
Br1—Ba1—Br1vi129.163 (17)Br1vii—Ba1—I1ii136.041 (16)
Br1v—Ba1—Br1vii70.719 (16)Br1v—Ba1—I1vi.138.42 (2)
Br1—Ba1—Br1vii70.718 (16)Br1—Ba1—I169.62 (2)
Br1vi—Ba1—Br1vii119.523 (18)Br1v—Ba1—I169.62 (2)
I1i—Ba1—I1ii87.92 (3)Br1—Ba1—I1vi72.00 (3)
I1—Ba1—I1vi136.767 (14)Br1vi—Ba1—I1vi68.31 (2)
I1i—Ba1—I1vi78.07 (2)Br1vii—Ba1—I1vi68.457 (18)
I1ii—Ba1—I1vi137.726 (19)Br1vi—Ba1—I1125.42 (3)
.I1—Ba1—I1ii.72.051 (19)Br1vii—Ba1—I1115.06 (2)
Br1—Ba1—I1i72.41 (2)Br1v—Ba1—I1i140.69 (2)
I1—Ba1—I1i72.051 (19)Br1vi—Ba1—I1i69.416 (14)
Br1vii—Ba1—I1i136.041 (16)Br1v—Ba1—I1ii.72.41 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x+3/2, -y+1, z+1/2; (iv) -x+3/2, -y, z+1/2; (v) x, y+1, z; (vi) -x+3/2, -y, z-1/2; (vii) -x+2, -y, -z; (viii) -x+3/2, -y+1, z-1/2; (ix) x, y-1, z.
 

Acknowledgements

This work was supported by the US Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge useful discussions with Dr Stephen E. Derenzo and Dr Gregory Bizarri. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBourret-Courchesne, E. D., Gundiah, G., Hanrahan, S. M., Bizarri, G. & Derenzo, S. E. (2009). In preparation.  Google Scholar
First citationBraekken, H. (1932). Z. Kristallogr. 83, 222–282.  CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrawford, M. K. & Brixner, L. H. (1991). J. Lumin. 4849, 37–42.  CrossRef CAS Web of Science Google Scholar
First citationHodorowicz, S. A. & Eick, H. A. (1983). J. Solid State Chem. 46, 313–320.  CrossRef CAS Web of Science Google Scholar
First citationHodorowicz, S. A., Hodorowicz, E. K. & Eick, H. A. (1983). J. Solid State Chem. 48, 351–356.  CrossRef CAS Web of Science Google Scholar
First citationLenus, A. J., Sornadurai, D., Rajan, K. G. & Purniah, B. (2002). Powder Diffr. 17, 331–335.  Web of Science CrossRef CAS Google Scholar
First citationLiao, W., Liu, X. & Dronskowski, R. (2004). Acta Cryst. E60, i69–i71.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiebich, B. W. & Nicollin, D. (1977). Acta Cryst. B33, 2790–2794.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobertson, J. M. (1986). Crystal Growth of Ceramics: Bridgman–Stockbarger Methods, pp. 963–964. In Encyclopedia of Materials Science and Engin­eering, edited by M. B. Bever. Oxford: Pergamon.  Google Scholar
First citationSchweizer, S. (2001). Phys. Status Solidi A, 187, 335–393.  CrossRef CAS Google Scholar
First citationSelling, J., Birowosuto, M. D., Dorenbos, P. & Schweizer, S. (2007). J. Appl. Phys. 101, 034901.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds