metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(benzoato-κO)(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)copper(II)

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, Henan, People's Republic of China
*Correspondence e-mail: xiyandong@yeah.net

(Received 11 September 2009; accepted 27 September 2009; online 3 October 2009)

In the crystal structure of the title compound, [Cu(C7H5O2)2(C12H12N2)(H2O)], the CuII ion is penta­coordinated in a distorted square-pyramidal geometry by two O atoms of two benzoate anions and two N atoms of a 5,5′-dimethyl-2,2′-bipyridine ligand occupying the basal plane, and a water O atom located at the apical site. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure. The crystal studied was a racemic twin, as suggested by the Flack parameter of 0.584 (14).

Related literature

For related structures, see: Zhao & Bai (2009[Zhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866.]); Schubert, Eschbaumer et al. (1999[Schubert, U. S., Eschbaumer, C. & Hochwimmer, G. (1999). Synthesis, pp. 779-782.]); Schubert, Hochwimmer et al. (1999[Schubert, U. S., Hochwimmer, G., Spindler, C. & Nuyken, O. (1999). Macromol. Rapid Commun. 20, 351-355.]); Shi(2009[Shi, W.-J. (2009). Acta Cryst. E65, m653.]); Zhang et al. (2009[Zhang, X., Wei, P., Li, B., Wu, C. & Hu, B. (2009). Acta Cryst. E65, m707.]); Momeni et al. (2009[Momeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690.]); Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615-m616.]); Yang et al. (2001[Yang, X. J., Janiak, C., Heinze, J., Drepper, F. & Mayer, P. (2001). Inorg. Chim. Acta, 318, 103-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H5O2)2(C12H12N2)(H2O)]

  • Mr = 508.01

  • Orthorhombic, F d d 2

  • a = 36.033 (6) Å

  • b = 37.681 (6) Å

  • c = 7.0402 (12) Å

  • V = 9559 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.832, Tmax = 0.862

  • 12887 measured reflections

  • 4187 independent reflections

  • 2889 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.079

  • S = 0.86

  • 4187 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1898 Friedel pairs

  • Flack parameter: 0.584 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2 0.85 1.85 2.668 (4) 162
O1W—H1WA⋯O4i 0.85 2.06 2.821 (4) 149
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a contribution to structural characterization of 5,5'-dimethyl-2,2'-bipyridine complexes (Zhao et al. 2009; Schubert, Eschbaumer et al. 1999; Schubert, Hochwimmer et al. 1999; Yang et al., 2001) we present here the crystal structure of the title complex, [CuL2L'(H2O)](L=benzoate, L'=5,5'-dimethyl-2,2'-bipyridine).

In the complex, the Cu2+ ion is pentacoordinated, with two N atoms of 5,5'-dimethyl-2,2'-bipyridine and two O atoms of two benzoate ligands in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N1, N2, O1 and O3 are nearly coplanar, and the Cu atom is displaced by 0.2071 (6) Å from this plane towards the apical O atom.

With O—H···O hydrogen bonds (Table 1), a one-dimensional chain is formed as shown in Fig.2.

Related literature top

For related structures, see: Zhao et al. (2009); Schubert, Eschbaumer et al. (1999); Schubert, Hochwimmer et al. (1999); Shi et al. (2009); Zhang et al. (2009); Momeni et al. (2009); Kim et al. (2009); Yang et al. (2001).

Experimental top

The title complound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of 5,5'-dimethyl-2,2'-bipyridine (0.2 mmol), benzoic acid (0.4 mmol) and CuSO4.5H2O (0.2 mmol) in water (10 ml) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.96 Å (methyl CH3), 0.93Å (aryl group) and O—H = 0.85 Å and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) otherwise. The refined value of Flack parameter of 0.584 (14) suggests that the crystal studied was a racemic twin.

Structure description top

As a contribution to structural characterization of 5,5'-dimethyl-2,2'-bipyridine complexes (Zhao et al. 2009; Schubert, Eschbaumer et al. 1999; Schubert, Hochwimmer et al. 1999; Yang et al., 2001) we present here the crystal structure of the title complex, [CuL2L'(H2O)](L=benzoate, L'=5,5'-dimethyl-2,2'-bipyridine).

In the complex, the Cu2+ ion is pentacoordinated, with two N atoms of 5,5'-dimethyl-2,2'-bipyridine and two O atoms of two benzoate ligands in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N1, N2, O1 and O3 are nearly coplanar, and the Cu atom is displaced by 0.2071 (6) Å from this plane towards the apical O atom.

With O—H···O hydrogen bonds (Table 1), a one-dimensional chain is formed as shown in Fig.2.

For related structures, see: Zhao et al. (2009); Schubert, Eschbaumer et al. (1999); Schubert, Hochwimmer et al. (1999); Shi et al. (2009); Zhang et al. (2009); Momeni et al. (2009); Kim et al. (2009); Yang et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title complound. Hydrogen-bond interactions are drawn with dashed lines.
Aquabis(benzoato-κO)(5,5'-dimethyl-2,2'-bipyridine- κ2N,N')copper(II) top
Crystal data top
[Cu(C7H5O2)2(C12H12N2)(H2O)]F(000) = 4208
Mr = 508.01Dx = 1.412 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2251 reflections
a = 36.033 (6) Åθ = 2.3–27.4°
b = 37.681 (6) ŵ = 0.95 mm1
c = 7.0402 (12) ÅT = 296 K
V = 9559 (3) Å3Block, blue
Z = 160.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4187 independent reflections
Radiation source: fine-focus sealed tube2889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3442
Tmin = 0.832, Tmax = 0.862k = 4443
12887 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0232P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
4187 reflectionsΔρmax = 0.59 e Å3
310 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1898 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.584 (14)
Crystal data top
[Cu(C7H5O2)2(C12H12N2)(H2O)]V = 9559 (3) Å3
Mr = 508.01Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 36.033 (6) ŵ = 0.95 mm1
b = 37.681 (6) ÅT = 296 K
c = 7.0402 (12) Å0.20 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4187 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2889 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.862Rint = 0.083
12887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.59 e Å3
S = 0.86Δρmin = 0.22 e Å3
4187 reflectionsAbsolute structure: Flack (1983), 1898 Friedel pairs
310 parametersAbsolute structure parameter: 0.584 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.289268 (13)0.075081 (13)0.86862 (8)0.04372 (16)
N10.29272 (9)0.02219 (8)0.9019 (5)0.0390 (9)
N20.23481 (8)0.06306 (8)0.8887 (6)0.0387 (8)
O10.27971 (8)0.12241 (8)0.7744 (4)0.0525 (9)
O20.29910 (9)0.15568 (9)1.0158 (5)0.0675 (10)
O30.34227 (7)0.07939 (8)0.8118 (4)0.0501 (9)
O40.32544 (8)0.06623 (8)0.5189 (4)0.0576 (9)
C10.29069 (11)0.15122 (12)0.8432 (8)0.0412 (11)
C20.29381 (12)0.18240 (12)0.7136 (7)0.0402 (11)
C30.29679 (13)0.17730 (13)0.5216 (8)0.0530 (14)
H30.29580.15450.47180.064*
C40.30136 (13)0.20622 (14)0.4007 (8)0.0681 (16)
H40.30400.20250.27090.082*
C50.30205 (16)0.23955 (16)0.4693 (9)0.0833 (19)
H50.30490.25880.38770.100*
C60.29856 (18)0.24474 (14)0.6595 (10)0.103 (2)
H60.29900.26770.70770.123*
C70.29437 (15)0.21623 (14)0.7835 (7)0.0730 (16)
H70.29200.22020.91330.088*
C80.34916 (11)0.07366 (10)0.6394 (8)0.0440 (11)
C90.38971 (12)0.07565 (11)0.5812 (7)0.0466 (12)
C100.40021 (16)0.06443 (13)0.4021 (9)0.0782 (16)
H100.38290.05540.31680.094*
C110.4386 (2)0.06724 (17)0.3528 (11)0.101 (2)
H110.44670.05960.23420.121*
C120.46305 (19)0.08087 (18)0.4772 (11)0.099 (2)
H120.48780.08290.44200.119*
C130.45266 (15)0.09165 (15)0.6505 (12)0.088 (2)
H130.47010.10070.73500.105*
C140.41569 (13)0.08922 (12)0.7028 (8)0.0634 (15)
H140.40840.09690.82260.076*
C150.32335 (11)0.00233 (12)0.9057 (7)0.0493 (12)
H150.34600.01420.90240.059*
C160.32444 (13)0.03421 (12)0.9142 (6)0.0503 (13)
C170.29028 (15)0.05082 (12)0.9140 (7)0.0554 (14)
H170.28910.07550.91630.066*
C180.25819 (12)0.03145 (11)0.9103 (6)0.0463 (12)
H180.23540.04300.91190.056*
C190.25954 (11)0.00489 (11)0.9043 (6)0.0380 (10)
C200.22719 (11)0.02858 (10)0.9028 (6)0.0382 (10)
C210.19083 (12)0.01653 (12)0.9156 (6)0.0478 (12)
H210.18580.00760.92200.057*
C220.16258 (12)0.04087 (12)0.9184 (6)0.0507 (13)
H220.13820.03300.92710.061*
C230.16969 (12)0.07650 (13)0.9088 (7)0.0504 (13)
C240.20738 (12)0.08629 (10)0.8924 (7)0.0476 (11)
H240.21320.11030.88370.057*
C250.13916 (12)0.10390 (12)0.9142 (8)0.0735 (16)
H25A0.12930.10710.78880.110*
H25B0.14900.12600.95940.110*
H25C0.11980.09600.99800.110*
C260.35995 (13)0.05492 (13)0.9193 (8)0.0753 (17)
H26A0.37710.04500.82960.113*
H26B0.35500.07920.88690.113*
H26C0.37040.05381.04450.113*
O1W0.29338 (8)0.09216 (8)1.1806 (4)0.0668 (9)
H1WA0.31030.08521.25580.080*
H1WB0.29880.11311.14520.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0381 (3)0.0476 (3)0.0454 (3)0.0093 (3)0.0019 (3)0.0048 (3)
N10.034 (2)0.049 (2)0.034 (2)0.0058 (18)0.0006 (18)0.002 (2)
N20.041 (2)0.037 (2)0.038 (2)0.0015 (15)0.002 (2)0.005 (2)
O10.051 (2)0.046 (2)0.060 (2)0.0196 (15)0.0110 (16)0.0072 (16)
O20.089 (3)0.061 (2)0.052 (2)0.0008 (18)0.002 (2)0.0060 (18)
O30.043 (2)0.065 (2)0.043 (2)0.0107 (14)0.0032 (14)0.0033 (17)
O40.054 (2)0.060 (2)0.058 (2)0.0155 (16)0.0136 (18)0.0003 (17)
C10.026 (2)0.052 (3)0.045 (3)0.002 (2)0.007 (2)0.003 (3)
C20.037 (3)0.035 (3)0.048 (3)0.002 (2)0.004 (2)0.005 (2)
C30.054 (4)0.053 (4)0.052 (4)0.016 (2)0.003 (3)0.001 (3)
C40.084 (4)0.074 (4)0.046 (4)0.020 (3)0.011 (3)0.019 (3)
C50.116 (5)0.059 (4)0.074 (5)0.010 (3)0.001 (3)0.024 (4)
C60.183 (7)0.044 (4)0.080 (5)0.009 (3)0.015 (5)0.000 (4)
C70.111 (5)0.055 (4)0.053 (4)0.002 (3)0.011 (3)0.003 (3)
C80.042 (3)0.037 (3)0.053 (3)0.0150 (19)0.012 (3)0.007 (3)
C90.050 (3)0.037 (3)0.052 (3)0.003 (2)0.011 (2)0.013 (3)
C100.077 (4)0.086 (4)0.072 (4)0.013 (3)0.010 (3)0.016 (4)
C110.102 (6)0.128 (6)0.072 (5)0.053 (4)0.041 (5)0.032 (5)
C120.080 (5)0.112 (6)0.105 (7)0.019 (4)0.023 (5)0.042 (6)
C130.050 (4)0.086 (4)0.127 (7)0.003 (3)0.006 (4)0.007 (4)
C140.036 (3)0.069 (4)0.086 (4)0.008 (2)0.001 (3)0.005 (3)
C150.039 (3)0.058 (3)0.051 (3)0.002 (2)0.004 (2)0.011 (3)
C160.053 (3)0.058 (3)0.040 (3)0.008 (2)0.007 (2)0.015 (3)
C170.082 (4)0.040 (3)0.043 (4)0.005 (3)0.005 (3)0.007 (2)
C180.051 (3)0.044 (3)0.044 (3)0.010 (2)0.004 (2)0.001 (3)
C190.051 (3)0.039 (3)0.024 (3)0.006 (2)0.001 (2)0.002 (2)
C200.042 (3)0.042 (3)0.030 (3)0.010 (2)0.001 (2)0.000 (2)
C210.048 (3)0.047 (3)0.048 (3)0.014 (2)0.001 (2)0.001 (2)
C220.042 (3)0.058 (3)0.052 (4)0.011 (2)0.005 (2)0.005 (3)
C230.043 (3)0.062 (3)0.046 (4)0.001 (2)0.000 (2)0.002 (3)
C240.055 (3)0.045 (3)0.044 (3)0.005 (2)0.001 (3)0.003 (3)
C250.055 (3)0.073 (4)0.093 (4)0.007 (3)0.010 (3)0.011 (3)
C260.069 (4)0.079 (4)0.078 (4)0.024 (3)0.011 (3)0.017 (3)
O1W0.087 (3)0.067 (2)0.047 (2)0.0211 (17)0.0145 (16)0.0103 (17)
Geometric parameters (Å, º) top
Cu1—O11.934 (3)C11—H110.9300
Cu1—O31.958 (3)C12—C131.339 (9)
Cu1—N12.011 (3)C12—H120.9300
Cu1—N22.019 (3)C13—C141.385 (6)
Cu1—O1W2.294 (3)C13—H130.9300
N1—C151.334 (5)C14—H140.9300
N1—C191.362 (5)C15—C161.379 (5)
N2—C241.321 (5)C15—H150.9300
N2—C201.332 (4)C16—C171.381 (6)
O1—C11.253 (5)C16—C261.499 (5)
O2—C11.263 (6)C17—C181.368 (5)
O3—C81.258 (5)C17—H170.9300
O4—C81.236 (5)C18—C191.371 (5)
C1—C21.492 (6)C18—H180.9300
C2—C71.367 (6)C19—C201.468 (6)
C2—C31.369 (6)C20—C211.390 (5)
C3—C41.392 (6)C21—C221.370 (6)
C3—H30.9300C21—H210.9300
C4—C51.346 (7)C22—C231.369 (6)
C4—H40.9300C22—H220.9300
C5—C61.359 (8)C23—C241.412 (5)
C5—H50.9300C23—C251.509 (6)
C6—C71.392 (7)C24—H240.9300
C6—H60.9300C25—H25A0.9600
C7—H70.9300C25—H25B0.9600
C8—C91.519 (6)C25—H25C0.9600
C9—C141.368 (6)C26—H26A0.9600
C9—C101.382 (7)C26—H26B0.9600
C10—C111.431 (7)C26—H26C0.9600
C10—H100.9300O1W—H1WA0.8500
C11—C121.344 (9)O1W—H1WB0.8501
O1—Cu1—O391.56 (12)C11—C12—H12119.1
O1—Cu1—N1164.83 (14)C12—C13—C14119.4 (7)
O3—Cu1—N192.61 (13)C12—C13—H13120.3
O1—Cu1—N293.32 (12)C14—C13—H13120.3
O3—Cu1—N2168.80 (15)C9—C14—C13121.1 (5)
N1—Cu1—N280.19 (13)C9—C14—H14119.5
O1—Cu1—O1W94.67 (12)C13—C14—H14119.5
O3—Cu1—O1W96.28 (12)N1—C15—C16125.8 (4)
N1—Cu1—O1W99.37 (13)N1—C15—H15117.1
N2—Cu1—O1W93.37 (13)C16—C15—H15117.1
C15—N1—C19117.2 (4)C15—C16—C17115.3 (4)
C15—N1—Cu1127.6 (3)C15—C16—C26123.0 (4)
C19—N1—Cu1114.9 (3)C17—C16—C26121.7 (5)
C24—N2—C20119.4 (3)C18—C17—C16120.8 (4)
C24—N2—Cu1125.5 (3)C18—C17—H17119.6
C20—N2—Cu1115.1 (3)C16—C17—H17119.6
C1—O1—Cu1127.6 (3)C17—C18—C19120.2 (4)
C8—O3—Cu1112.1 (3)C17—C18—H18119.9
O1—C1—O2124.3 (4)C19—C18—H18119.9
O1—C1—C2118.0 (5)N1—C19—C18120.6 (4)
O2—C1—C2117.7 (4)N1—C19—C20113.9 (4)
C7—C2—C3119.0 (5)C18—C19—C20125.4 (4)
C7—C2—C1121.0 (5)N2—C20—C21121.2 (4)
C3—C2—C1119.9 (5)N2—C20—C19115.5 (4)
C2—C3—C4120.2 (5)C21—C20—C19123.3 (4)
C2—C3—H3119.9C22—C21—C20118.9 (4)
C4—C3—H3119.9C22—C21—H21120.6
C5—C4—C3120.9 (5)C20—C21—H21120.6
C5—C4—H4119.6C23—C22—C21121.1 (4)
C3—C4—H4119.6C23—C22—H22119.4
C4—C5—C6119.1 (5)C21—C22—H22119.4
C4—C5—H5120.5C22—C23—C24116.1 (4)
C6—C5—H5120.5C22—C23—C25122.2 (4)
C5—C6—C7121.1 (6)C24—C23—C25121.6 (4)
C5—C6—H6119.5N2—C24—C23123.2 (4)
C7—C6—H6119.5N2—C24—H24118.4
C2—C7—C6119.7 (5)C23—C24—H24118.4
C2—C7—H7120.1C23—C25—H25A109.5
C6—C7—H7120.1C23—C25—H25B109.5
O4—C8—O3124.4 (4)H25A—C25—H25B109.5
O4—C8—C9119.4 (5)C23—C25—H25C109.5
O3—C8—C9116.2 (4)H25A—C25—H25C109.5
C14—C9—C10119.9 (4)H25B—C25—H25C109.5
C14—C9—C8120.5 (4)C16—C26—H26A109.5
C10—C9—C8119.6 (5)C16—C26—H26B109.5
C9—C10—C11117.6 (6)H26A—C26—H26B109.5
C9—C10—H10121.2C16—C26—H26C109.5
C11—C10—H10121.2H26A—C26—H26C109.5
C12—C11—C10120.2 (7)H26B—C26—H26C109.5
C12—C11—H11119.9Cu1—O1W—H1WA123.8
C10—C11—H11119.9Cu1—O1W—H1WB89.7
C13—C12—C11121.8 (7)H1WA—O1W—H1WB107.7
C13—C12—H12119.1
O1—Cu1—N1—C15113.7 (5)O3—C8—C9—C1411.4 (6)
O3—Cu1—N1—C157.9 (4)O4—C8—C9—C108.9 (6)
N2—Cu1—N1—C15179.3 (4)O3—C8—C9—C10170.1 (4)
O1W—Cu1—N1—C1588.9 (4)C14—C9—C10—C110.7 (7)
O1—Cu1—N1—C1960.3 (7)C8—C9—C10—C11179.2 (4)
O3—Cu1—N1—C19166.1 (3)C9—C10—C11—C121.0 (8)
N2—Cu1—N1—C195.2 (3)C10—C11—C12—C131.1 (10)
O1W—Cu1—N1—C1997.1 (3)C11—C12—C13—C140.9 (10)
O1—Cu1—N2—C2418.4 (4)C10—C9—C14—C130.6 (7)
O3—Cu1—N2—C24134.1 (6)C8—C9—C14—C13179.1 (4)
N1—Cu1—N2—C24175.4 (4)C12—C13—C14—C90.7 (8)
O1W—Cu1—N2—C2476.5 (4)C19—N1—C15—C160.8 (7)
O1—Cu1—N2—C20163.0 (3)Cu1—N1—C15—C16174.7 (4)
O3—Cu1—N2—C2047.3 (9)N1—C15—C16—C171.6 (7)
N1—Cu1—N2—C203.2 (3)N1—C15—C16—C26179.7 (4)
O1W—Cu1—N2—C20102.2 (3)C15—C16—C17—C181.6 (7)
O3—Cu1—O1—C166.4 (4)C26—C16—C17—C18179.7 (4)
N1—Cu1—O1—C1172.3 (5)C16—C17—C18—C190.9 (7)
N2—Cu1—O1—C1123.7 (4)C15—N1—C19—C180.1 (6)
O1W—Cu1—O1—C130.1 (4)Cu1—N1—C19—C18174.6 (3)
O1—Cu1—O3—C880.8 (3)C15—N1—C19—C20179.1 (4)
N1—Cu1—O3—C884.6 (3)Cu1—N1—C19—C206.3 (5)
N2—Cu1—O3—C835.0 (8)C17—C18—C19—N10.0 (7)
O1W—Cu1—O3—C8175.7 (3)C17—C18—C19—C20179.0 (4)
Cu1—O1—C1—O225.0 (6)C24—N2—C20—C212.0 (6)
Cu1—O1—C1—C2155.5 (3)Cu1—N2—C20—C21179.3 (3)
O1—C1—C2—C7159.8 (4)C24—N2—C20—C19177.9 (4)
O2—C1—C2—C719.7 (7)Cu1—N2—C20—C190.8 (5)
O1—C1—C2—C321.3 (7)N1—C19—C20—N23.6 (6)
O2—C1—C2—C3159.2 (4)C18—C19—C20—N2177.3 (4)
C7—C2—C3—C41.8 (8)N1—C19—C20—C21176.3 (4)
C1—C2—C3—C4177.1 (4)C18—C19—C20—C212.8 (7)
C2—C3—C4—C51.6 (8)N2—C20—C21—C221.7 (6)
C3—C4—C5—C60.6 (9)C19—C20—C21—C22178.1 (4)
C4—C5—C6—C70.1 (10)C20—C21—C22—C230.1 (7)
C3—C2—C7—C61.1 (8)C21—C22—C23—C241.1 (7)
C1—C2—C7—C6177.9 (5)C21—C22—C23—C25179.2 (5)
C5—C6—C7—C20.1 (9)C20—N2—C24—C230.7 (7)
Cu1—O3—C8—O40.1 (5)Cu1—N2—C24—C23179.2 (4)
Cu1—O3—C8—C9178.9 (2)C22—C23—C24—N20.9 (7)
O4—C8—C9—C14169.5 (4)C25—C23—C24—N2179.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.851.852.668 (4)162
O1W—H1WA···O4i0.852.062.821 (4)149
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H5O2)2(C12H12N2)(H2O)]
Mr508.01
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)296
a, b, c (Å)36.033 (6), 37.681 (6), 7.0402 (12)
V3)9559 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.832, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
12887, 4187, 2889
Rint0.083
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.079, 0.86
No. of reflections4187
No. of parameters310
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.22
Absolute structureFlack (1983), 1898 Friedel pairs
Absolute structure parameter0.584 (14)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.851.852.668 (4)162
O1W—H1WA···O4i0.852.062.821 (4)149
Symmetry code: (i) x, y, z+1.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615–m616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMomeni, B. Z., Rominger, F. & Hosseini, S. S. (2009). Acta Cryst. E65, m690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchubert, U. S., Eschbaumer, C. & Hochwimmer, G. (1999). Synthesis, pp. 779–782.  CrossRef Google Scholar
First citationSchubert, U. S., Hochwimmer, G., Spindler, C. & Nuyken, O. (1999). Macromol. Rapid Commun. 20, 351–355.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W.-J. (2009). Acta Cryst. E65, m653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, X. J., Janiak, C., Heinze, J., Drepper, F. & Mayer, P. (2001). Inorg. Chim. Acta, 318, 103–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Li, B., Wu, C. & Hu, B. (2009). Acta Cryst. E65, m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds