organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro-3-nitro­phen­yl)-4-(4-chloro­phen­yl)-1,3-thia­zole

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, cDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 023, India, and dSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: dchopra@iiserbhopal.ac.in

(Received 14 September 2009; accepted 29 September 2009; online 3 October 2009)

The title compound, C15H8Cl2N2O2S, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the 4-chloro-3-nitro­phenyl ring and the thia­zole ring are 0.5 (1) and 7.1 (1)° and those between the 4-chloro­phenyl ring and the thia­zole ring are 7.1 (1) and 7.4 (1)° in the two mol­ecules. The crystal structure is stabilized by inter­molecular C—H⋯Cl and C—H⋯O hydrogen bonds.

Related literature

The amino­thia­zole ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development, see: Fortuna et al. (1988[Fortuna, H., James, D. R., Robert, W. D., Francis, A. K., Roland, L. W., Steven, P. S., James, H. H., Patrick, R. Y. & George, W. C. (1988). J. Med. Chem. 31, 1719-1728.]); Frank et al. (1995[Frank, W. B., Amanda, S. C., Marita, H. S., Richard, J., Nils, G. J., Christopher, L. J., Michael, D. K., Peter, L., John, M. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem. 38, 4929-4936.]); Karl et al. (1983[Karl, D. H., Friedrich, K. H. & James, T. O. (1983). J. Med. Chem. 26, 1158-1163.]); Tsuji & Ishikawa (1994[Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601-1606.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8Cl2N2O2S

  • Mr = 351.20

  • Triclinic, [P \overline 1]

  • a = 7.4379 (19) Å

  • b = 12.305 (3) Å

  • c = 16.808 (4) Å

  • α = 88.596 (5)°

  • β = 84.131 (4)°

  • γ = 76.721 (5)°

  • V = 1489.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 292 K

  • 0.28 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.854, Tmax = 0.918

  • 14507 measured reflections

  • 5235 independent reflections

  • 2855 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.130

  • S = 0.97

  • 5235 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.48 3.285 (5) 145
C15′—H15′⋯Cl2ii 0.93 2.73 3.610 (4) 158
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The aminothiazole ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development as antiallergies (Karl et al., 1983), anti-inflammatory (Fortuna et al., 1988), antibacterial (Tsuji et al., 1994) and anti-HIV agents (Frank et al., 1995]. In view of different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound. The compound is completely planar with the nitro group not planar with the 4-chloro-4-nitrophenyl ring to avoid electrostatic repulsion with the chlorine atom in an ortho position, the dihedral twist being 35.4 (3)° and 48.1 (3)° respectively in the two molecules. Relevant torsion angles are given in Table 1. Figure 1 gives an ORTEP view depicting two molecules (A) and (B) in the asymmetric unit. The C—N bond lengths of the five-membered thiazoyl ring is different indicating that the electrnoic environment around each nitrogen atom is different. The torsion angles N2—C7—C1—C6/N2'-C7'-C1'-C6' and N2—C9—C10—C11/N2'-C9'-C10'-C11'are nearly equal to 180° indicating delocalization of the π electron density between all the three aromatic moieties, namely the thiazoyl ring and the adjacent aryl rings. The crystal structure is stabilized by C—H···O intermolecular hydrogen bonds (between molecules of the 'A' type), each of which are held by C—H···Cl intermolecular interactions (with molecules of 'B' type) between them (Figure 2).

Related literature top

The aminothiazole ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development, see: Fortuna et al. (1988); Frank et al. (1995); Karl et al. (1983); Tsuji & Ishikawa (1994).

Experimental top

A mixture of 4-chloro-3-nitrobenzonitrile, (0.1 mol), thioacetic acid (0.1 mol), boron trifluoride diethyletherate (0.1 mol) and 1,2 dichloro ethane was refluxed for 1 h at 80 C. The reaction medium was quenched with 1 N hydrochloric acid (congo red) and the obtained product i.e 4-chloro-3-nitrobenzothioamide was isolated with dichloromethane. The solvent was evaporated at reduced pressure and the crude product (Yield = 89%) left behind was recrystallized from ethyl acetate. This was taken with 2-bromo-1-(4-chlorophenyl)ethanone (0.1 mol) in absolute ethanol medium was refluxed under nitrogen atmosphere for 2 h at 80 C. Reaction medium was cooled to room temperature and poured into 50 ml of water containing sodium acetate. The precipitate obtained was filtered and recrystallized from ethanol. (Yield: 92%) and the melting point was 128–129 C.

Refinement top

All the aromatic H atoms were positioned geometrically, C—H = 0.93 Å, and refined using a riding model with Uiso(H)= 1.2 Ueq(C).

Structure description top

The aminothiazole ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development as antiallergies (Karl et al., 1983), anti-inflammatory (Fortuna et al., 1988), antibacterial (Tsuji et al., 1994) and anti-HIV agents (Frank et al., 1995]. In view of different applications of this class of compounds, we have undertaken a single-crystal structure determination of the title compound. The compound is completely planar with the nitro group not planar with the 4-chloro-4-nitrophenyl ring to avoid electrostatic repulsion with the chlorine atom in an ortho position, the dihedral twist being 35.4 (3)° and 48.1 (3)° respectively in the two molecules. Relevant torsion angles are given in Table 1. Figure 1 gives an ORTEP view depicting two molecules (A) and (B) in the asymmetric unit. The C—N bond lengths of the five-membered thiazoyl ring is different indicating that the electrnoic environment around each nitrogen atom is different. The torsion angles N2—C7—C1—C6/N2'-C7'-C1'-C6' and N2—C9—C10—C11/N2'-C9'-C10'-C11'are nearly equal to 180° indicating delocalization of the π electron density between all the three aromatic moieties, namely the thiazoyl ring and the adjacent aryl rings. The crystal structure is stabilized by C—H···O intermolecular hydrogen bonds (between molecules of the 'A' type), each of which are held by C—H···Cl intermolecular interactions (with molecules of 'B' type) between them (Figure 2).

The aminothiazole ring system is a useful structural element in medicinal chemistry and has found broad applications in drug development, see: Fortuna et al. (1988); Frank et al. (1995); Karl et al. (1983); Tsuji & Ishikawa (1994).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure shows the atom labelling Scheme with displacement ellipsoids for non-H atoms at 50% probability level, hydrogen atoms are arbitary circle.
[Figure 2] Fig. 2. : The molecular packing depicting C—H···O and C—H···Cl intermolecular interactions in the solid state.
2-(4-Chloro-3-nitrophenyl)-4-(4-chlorophenyl)-1,3-thiazole top
Crystal data top
C15H8Cl2N2O2SZ = 4
Mr = 351.20F(000) = 712
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4379 (19) ÅCell parameters from 320 reflections
b = 12.305 (3) Åθ = 1.0–28.0°
c = 16.808 (4) ŵ = 0.58 mm1
α = 88.596 (5)°T = 292 K
β = 84.131 (4)°Plate, colorless
γ = 76.721 (5)°0.28 × 0.24 × 0.15 mm
V = 1489.3 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5235 independent reflections
Radiation source: fine-focus sealed tube2855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.854, Tmax = 0.918k = 1414
14507 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0568P)2]
where P = (Fo2 + 2Fc2)/3
5235 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H8Cl2N2O2Sγ = 76.721 (5)°
Mr = 351.20V = 1489.3 (6) Å3
Triclinic, P1Z = 4
a = 7.4379 (19) ÅMo Kα radiation
b = 12.305 (3) ŵ = 0.58 mm1
c = 16.808 (4) ÅT = 292 K
α = 88.596 (5)°0.28 × 0.24 × 0.15 mm
β = 84.131 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5235 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2855 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.918Rint = 0.042
14507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.97Δρmax = 0.34 e Å3
5235 reflectionsΔρmin = 0.21 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28130 (14)0.08178 (8)1.08929 (6)0.0671 (3)
S1'0.55762 (17)0.57562 (10)0.65181 (7)0.0872 (4)
Cl2'1.01634 (16)0.76240 (10)0.20368 (8)0.1005 (4)
Cl20.02483 (18)0.26482 (9)0.64160 (7)0.0962 (4)
Cl1'0.55818 (19)0.00327 (11)0.69174 (8)0.1110 (5)
Cl10.3241 (2)0.48445 (10)1.11376 (8)0.1125 (5)
N20.2343 (4)0.0036 (2)0.95110 (18)0.0511 (7)
N2'0.7301 (4)0.4815 (2)0.52398 (18)0.0561 (8)
C10.2750 (4)0.1409 (3)1.0459 (2)0.0477 (8)
C90.2261 (4)0.1062 (3)0.9456 (2)0.0501 (9)
C10'0.8033 (5)0.6361 (3)0.4402 (2)0.0572 (10)
C1'0.6345 (5)0.3473 (3)0.6178 (2)0.0558 (10)
C20.2580 (4)0.2243 (3)0.9895 (2)0.0514 (9)
H20.23850.20880.93760.062*
C100.1895 (4)0.1486 (3)0.8695 (2)0.0506 (9)
C70.2621 (4)0.0289 (3)1.0228 (2)0.0497 (9)
C9'0.7236 (5)0.5945 (3)0.5149 (2)0.0582 (10)
C30.2695 (5)0.3300 (3)1.0087 (2)0.0551 (9)
N10.2537 (5)0.4131 (3)0.9443 (3)0.0807 (11)
C3'0.6725 (5)0.1531 (4)0.5877 (2)0.0627 (10)
C2'0.6890 (5)0.2590 (3)0.5648 (2)0.0575 (10)
H2'0.73730.27120.51290.069*
C40.3003 (5)0.3551 (3)1.0859 (3)0.0650 (10)
C120.1416 (5)0.2967 (3)0.7884 (3)0.0694 (11)
H120.14060.37150.78220.083*
C15'0.8695 (5)0.5650 (3)0.3768 (2)0.0627 (10)
H15'0.86790.48990.38300.075*
C130.0966 (5)0.2213 (3)0.7275 (2)0.0657 (11)
C6'0.5613 (5)0.3250 (4)0.6947 (2)0.0728 (12)
H6'0.52530.38240.73200.087*
C5'0.5417 (5)0.2198 (4)0.7162 (2)0.0770 (13)
H5'0.48920.20760.76730.092*
C150.1492 (5)0.0769 (3)0.8060 (2)0.0617 (10)
H150.15390.00250.81100.074*
C140.1024 (5)0.1121 (3)0.7358 (2)0.0692 (11)
H140.07480.06190.69400.083*
C110.1880 (5)0.2598 (3)0.8587 (3)0.0663 (11)
H110.21910.31060.89980.080*
C4'0.5983 (5)0.1320 (4)0.6634 (3)0.0704 (11)
C60.3070 (5)0.1658 (3)1.1221 (2)0.0633 (10)
H60.32020.11021.16100.076*
C7'0.6514 (5)0.4589 (3)0.5922 (2)0.0577 (10)
C14'0.9381 (5)0.6015 (3)0.3042 (3)0.0681 (11)
H14'0.98270.55180.26210.082*
N1'0.7310 (6)0.0637 (3)0.5286 (3)0.0868 (11)
C13'0.9395 (5)0.7127 (4)0.2952 (3)0.0708 (11)
C50.3194 (5)0.2702 (4)1.1411 (2)0.0697 (11)
H50.34150.28461.19290.084*
C80.2493 (5)0.1640 (3)1.0153 (2)0.0597 (10)
H80.24770.23911.02140.072*
C12'0.8791 (6)0.7851 (3)0.3577 (3)0.0791 (13)
H12'0.88360.85980.35120.095*
O2'0.6821 (5)0.0812 (3)0.4624 (2)0.1199 (13)
C11'0.8114 (5)0.7484 (3)0.4306 (3)0.0734 (12)
H11'0.77130.79800.47310.088*
O1'0.8319 (6)0.0236 (3)0.5481 (2)0.1366 (15)
O20.3185 (6)0.3817 (3)0.8786 (2)0.1309 (15)
C8'0.6340 (6)0.6561 (3)0.5786 (3)0.0785 (12)
H8'0.61640.73320.58190.094*
O10.1819 (6)0.5084 (3)0.9591 (2)0.1363 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0729 (7)0.0615 (7)0.0633 (7)0.0124 (5)0.0007 (5)0.0185 (5)
S1'0.0982 (9)0.0881 (9)0.0658 (7)0.0012 (7)0.0043 (6)0.0207 (6)
Cl2'0.0947 (9)0.0892 (8)0.1212 (10)0.0332 (7)0.0096 (7)0.0432 (8)
Cl20.1247 (10)0.0670 (7)0.0990 (9)0.0185 (7)0.0239 (8)0.0217 (6)
Cl1'0.1280 (11)0.1157 (10)0.1013 (10)0.0510 (9)0.0264 (8)0.0499 (8)
Cl10.1490 (12)0.0793 (8)0.1167 (11)0.0433 (8)0.0024 (9)0.0282 (7)
N20.0489 (18)0.0452 (18)0.057 (2)0.0088 (14)0.0001 (15)0.0068 (15)
N2'0.0536 (19)0.056 (2)0.058 (2)0.0087 (15)0.0144 (16)0.0017 (16)
C10.041 (2)0.052 (2)0.048 (2)0.0085 (17)0.0027 (16)0.0034 (18)
C90.038 (2)0.045 (2)0.063 (3)0.0075 (17)0.0035 (17)0.0139 (19)
C10'0.050 (2)0.050 (2)0.073 (3)0.0085 (18)0.022 (2)0.001 (2)
C1'0.046 (2)0.082 (3)0.038 (2)0.008 (2)0.0140 (17)0.002 (2)
C20.054 (2)0.053 (2)0.049 (2)0.0172 (18)0.0032 (17)0.0029 (19)
C100.047 (2)0.043 (2)0.060 (2)0.0117 (17)0.0071 (18)0.0029 (19)
C70.041 (2)0.054 (2)0.051 (2)0.0083 (17)0.0048 (17)0.0083 (18)
C9'0.054 (2)0.053 (3)0.067 (3)0.0032 (19)0.021 (2)0.013 (2)
C30.051 (2)0.055 (2)0.057 (3)0.0135 (18)0.0016 (18)0.011 (2)
N10.105 (3)0.057 (3)0.082 (3)0.028 (2)0.002 (2)0.004 (2)
C3'0.060 (3)0.074 (3)0.055 (3)0.015 (2)0.010 (2)0.009 (2)
C2'0.050 (2)0.073 (3)0.047 (2)0.010 (2)0.0025 (18)0.009 (2)
C40.058 (2)0.063 (3)0.072 (3)0.014 (2)0.008 (2)0.012 (2)
C120.068 (3)0.044 (2)0.097 (3)0.016 (2)0.000 (2)0.008 (2)
C15'0.062 (3)0.044 (2)0.083 (3)0.0150 (19)0.011 (2)0.005 (2)
C130.063 (3)0.052 (3)0.079 (3)0.010 (2)0.002 (2)0.007 (2)
C6'0.067 (3)0.095 (3)0.054 (3)0.011 (2)0.014 (2)0.004 (2)
C5'0.070 (3)0.116 (4)0.046 (3)0.022 (3)0.009 (2)0.023 (3)
C150.078 (3)0.044 (2)0.064 (3)0.021 (2)0.005 (2)0.000 (2)
C140.098 (3)0.046 (2)0.065 (3)0.021 (2)0.001 (2)0.003 (2)
C110.062 (3)0.048 (2)0.087 (3)0.0114 (19)0.004 (2)0.008 (2)
C4'0.064 (3)0.086 (3)0.066 (3)0.022 (2)0.021 (2)0.025 (3)
C60.068 (3)0.065 (3)0.056 (3)0.016 (2)0.003 (2)0.010 (2)
C7'0.049 (2)0.066 (3)0.056 (3)0.0033 (19)0.0160 (19)0.003 (2)
C14'0.065 (3)0.054 (3)0.085 (3)0.018 (2)0.004 (2)0.010 (2)
N1'0.108 (3)0.070 (3)0.082 (3)0.021 (2)0.009 (3)0.006 (3)
C13'0.053 (3)0.062 (3)0.099 (3)0.013 (2)0.015 (2)0.007 (3)
C50.074 (3)0.082 (3)0.053 (3)0.019 (2)0.003 (2)0.008 (2)
C80.060 (2)0.045 (2)0.072 (3)0.0136 (18)0.004 (2)0.007 (2)
C12'0.069 (3)0.049 (3)0.127 (4)0.022 (2)0.030 (3)0.020 (3)
O2'0.169 (4)0.100 (3)0.089 (3)0.018 (2)0.032 (2)0.013 (2)
C11'0.074 (3)0.051 (3)0.099 (4)0.012 (2)0.029 (3)0.008 (2)
O1'0.181 (4)0.076 (2)0.131 (3)0.013 (2)0.015 (3)0.011 (2)
O20.237 (5)0.094 (3)0.074 (2)0.070 (3)0.002 (3)0.011 (2)
C8'0.093 (3)0.061 (3)0.082 (3)0.012 (2)0.023 (3)0.007 (2)
O10.185 (4)0.066 (2)0.143 (3)0.014 (2)0.011 (3)0.028 (2)
Geometric parameters (Å, º) top
S1—C81.692 (4)C3'—C4'1.377 (5)
S1—C71.730 (3)C3'—C2'1.378 (5)
S1'—C8'1.695 (4)C3'—N1'1.459 (5)
S1'—C7'1.737 (4)C2'—H2'0.9300
Cl2'—C13'1.733 (4)C4—C51.373 (5)
Cl2—C131.727 (4)C12—C131.379 (5)
Cl1'—C4'1.726 (4)C12—C111.380 (5)
Cl1—C41.723 (4)C12—H120.9300
N2—C71.300 (4)C15'—C14'1.380 (5)
N2—C91.372 (4)C15'—H15'0.9300
N2'—C7'1.288 (4)C13—C141.366 (5)
N2'—C9'1.385 (4)C6'—C5'1.370 (5)
C1—C21.372 (4)C6'—H6'0.9300
C1—C61.380 (5)C5'—C4'1.376 (5)
C1—C71.468 (5)C5'—H5'0.9300
C9—C81.361 (5)C15—C141.371 (5)
C9—C101.467 (5)C15—H150.9300
C10'—C15'1.372 (5)C14—H140.9300
C10'—C11'1.402 (5)C11—H110.9300
C10'—C9'1.465 (5)C6—C51.357 (5)
C1'—C2'1.383 (5)C6—H60.9300
C1'—C6'1.396 (5)C14'—C13'1.374 (5)
C1'—C7'1.458 (5)C14'—H14'0.9300
C2—C31.372 (4)N1'—O2'1.205 (4)
C2—H20.9300N1'—O1'1.219 (4)
C10—C151.380 (5)C13'—C12'1.366 (5)
C10—C111.388 (5)C5—H50.9300
C9'—C8'1.352 (5)C8—H80.9300
C3—C41.395 (5)C12'—C11'1.382 (5)
C3—N11.464 (5)C12'—H12'0.9300
N1—O11.193 (4)C11'—H11'0.9300
N1—O21.195 (4)C8'—H8'0.9300
C8—S1—C789.27 (18)C14—C13—Cl2119.9 (3)
C8'—S1'—C7'89.0 (2)C12—C13—Cl2119.5 (3)
C7—N2—C9111.8 (3)C5'—C6'—C1'121.2 (4)
C7'—N2'—C9'112.2 (3)C5'—C6'—H6'119.4
C2—C1—C6118.2 (3)C1'—C6'—H6'119.4
C2—C1—C7119.1 (3)C6'—C5'—C4'121.1 (4)
C6—C1—C7122.7 (3)C6'—C5'—H5'119.4
C8—C9—N2113.8 (3)C4'—C5'—H5'119.4
C8—C9—C10126.9 (3)C14—C15—C10122.0 (4)
N2—C9—C10119.3 (3)C14—C15—H15119.0
C15'—C10'—C11'118.2 (4)C10—C15—H15119.0
C15'—C10'—C9'120.1 (3)C13—C14—C15119.5 (4)
C11'—C10'—C9'121.7 (4)C13—C14—H14120.2
C2'—C1'—C6'117.4 (4)C15—C14—H14120.2
C2'—C1'—C7'120.0 (3)C12—C11—C10121.5 (4)
C6'—C1'—C7'122.5 (4)C12—C11—H11119.3
C3—C2—C1120.9 (3)C10—C11—H11119.3
C3—C2—H2119.5C5'—C4'—C3'118.1 (4)
C1—C2—H2119.5C5'—C4'—Cl1'119.0 (4)
C15—C10—C11117.3 (4)C3'—C4'—Cl1'122.7 (4)
C15—C10—C9120.3 (3)C5—C6—C1121.0 (4)
C11—C10—C9122.3 (3)C5—C6—H6119.5
N2—C7—C1123.5 (3)C1—C6—H6119.5
N2—C7—S1113.8 (3)N2'—C7'—C1'124.4 (3)
C1—C7—S1122.7 (3)N2'—C7'—S1'113.7 (3)
C8'—C9'—N2'113.3 (4)C1'—C7'—S1'121.9 (3)
C8'—C9'—C10'126.8 (4)C13'—C14'—C15'118.8 (4)
N2'—C9'—C10'119.9 (3)C13'—C14'—H14'120.6
C2—C3—C4120.6 (3)C15'—C14'—H14'120.6
C2—C3—N1117.2 (3)O2'—N1'—O1'123.4 (4)
C4—C3—N1122.2 (4)O2'—N1'—C3'118.3 (4)
O1—N1—O2122.6 (4)O1'—N1'—C3'118.3 (4)
O1—N1—C3119.8 (4)C12'—C13'—C14'120.7 (4)
O2—N1—C3117.6 (4)C12'—C13'—Cl2'119.3 (3)
C4'—C3'—C2'121.3 (4)C14'—C13'—Cl2'120.0 (4)
C4'—C3'—N1'120.5 (4)C6—C5—C4121.7 (4)
C2'—C3'—N1'118.2 (4)C6—C5—H5119.2
C3'—C2'—C1'120.9 (4)C4—C5—H5119.2
C3'—C2'—H2'119.6C9—C8—S1111.3 (3)
C1'—C2'—H2'119.6C9—C8—H8124.4
C5—C4—C3117.5 (4)S1—C8—H8124.4
C5—C4—Cl1119.0 (3)C13'—C12'—C11'120.5 (4)
C3—C4—Cl1123.4 (3)C13'—C12'—H12'119.8
C13—C12—C11119.1 (4)C11'—C12'—H12'119.8
C13—C12—H12120.4C12'—C11'—C10'119.7 (4)
C11—C12—H12120.4C12'—C11'—H11'120.1
C10'—C15'—C14'122.1 (4)C10'—C11'—H11'120.1
C10'—C15'—H15'119.0C9'—C8'—S1'111.7 (3)
C14'—C15'—H15'119.0C9'—C8'—H8'124.1
C14—C13—C12120.5 (4)S1'—C8'—H8'124.1
C7—N2—C9—C80.2 (4)C9—C10—C15—C14175.7 (3)
C7—N2—C9—C10178.1 (3)C12—C13—C14—C151.5 (6)
C6—C1—C2—C31.1 (5)Cl2—C13—C14—C15176.2 (3)
C7—C1—C2—C3179.9 (3)C10—C15—C14—C130.5 (6)
C8—C9—C10—C15173.0 (3)C13—C12—C11—C100.3 (6)
N2—C9—C10—C155.1 (5)C15—C10—C11—C122.3 (5)
C8—C9—C10—C115.0 (5)C9—C10—C11—C12175.8 (3)
N2—C9—C10—C11176.9 (3)C6'—C5'—C4'—C3'1.1 (6)
C9—N2—C7—C1179.4 (3)C6'—C5'—C4'—Cl1'176.4 (3)
C9—N2—C7—S10.2 (4)C2'—C3'—C4'—C5'0.4 (5)
C2—C1—C7—N20.3 (5)N1'—C3'—C4'—C5'178.6 (4)
C6—C1—C7—N2179.2 (3)C2'—C3'—C4'—Cl1'174.7 (3)
C2—C1—C7—S1179.9 (2)N1'—C3'—C4'—Cl1'3.6 (5)
C6—C1—C7—S11.3 (4)C2—C1—C6—C50.7 (5)
C8—S1—C7—N20.1 (3)C7—C1—C6—C5179.5 (3)
C8—S1—C7—C1179.5 (3)C9'—N2'—C7'—C1'178.9 (3)
C7'—N2'—C9'—C8'1.1 (4)C9'—N2'—C7'—S1'1.0 (4)
C7'—N2'—C9'—C10'178.9 (3)C2'—C1'—C7'—N2'6.4 (5)
C15'—C10'—C9'—C8'171.7 (4)C6'—C1'—C7'—N2'174.8 (3)
C11'—C10'—C9'—C8'7.1 (6)C2'—C1'—C7'—S1'171.4 (3)
C15'—C10'—C9'—N2'5.8 (5)C6'—C1'—C7'—S1'7.5 (5)
C11'—C10'—C9'—N2'175.5 (3)C8'—S1'—C7'—N2'0.6 (3)
C1—C2—C3—C40.6 (5)C8'—S1'—C7'—C1'178.5 (3)
C1—C2—C3—N1178.8 (3)C10'—C15'—C14'—C13'0.2 (5)
C2—C3—N1—O1146.7 (4)C4'—C3'—N1'—O2'132.4 (4)
C4—C3—N1—O135.2 (6)C2'—C3'—N1'—O2'45.9 (6)
C2—C3—N1—O235.0 (5)C4'—C3'—N1'—O1'50.1 (6)
C4—C3—N1—O2143.1 (4)C2'—C3'—N1'—O1'131.7 (4)
C4'—C3'—C2'—C1'1.2 (5)C15'—C14'—C13'—C12'1.9 (6)
N1'—C3'—C2'—C1'179.5 (3)C15'—C14'—C13'—Cl2'177.5 (3)
C6'—C1'—C2'—C3'0.5 (5)C1—C6—C5—C40.2 (6)
C7'—C1'—C2'—C3'179.4 (3)C3—C4—C5—C60.7 (6)
C2—C3—C4—C50.3 (5)Cl1—C4—C5—C6178.3 (3)
N1—C3—C4—C5177.8 (3)N2—C9—C8—S10.2 (4)
C2—C3—C4—Cl1177.7 (3)C10—C9—C8—S1178.0 (3)
N1—C3—C4—Cl10.3 (5)C7—S1—C8—C90.0 (3)
C11'—C10'—C15'—C14'1.7 (5)C14'—C13'—C12'—C11'1.6 (6)
C9'—C10'—C15'—C14'177.1 (3)Cl2'—C13'—C12'—C11'177.8 (3)
C11—C12—C13—C141.6 (6)C13'—C12'—C11'—C10'0.5 (6)
C11—C12—C13—Cl2176.1 (3)C15'—C10'—C11'—C12'2.1 (5)
C2'—C1'—C6'—C5'1.0 (5)C9'—C10'—C11'—C12'176.7 (3)
C7'—C1'—C6'—C5'177.9 (3)N2'—C9'—C8'—S1'0.7 (4)
C1'—C6'—C5'—C4'1.9 (6)C10'—C9'—C8'—S1'178.2 (3)
C11—C10—C15—C142.4 (5)C7'—S1'—C8'—C9'0.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.483.285 (5)145
C15—H15···Cl2ii0.932.733.610 (4)158
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H8Cl2N2O2S
Mr351.20
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.4379 (19), 12.305 (3), 16.808 (4)
α, β, γ (°)88.596 (5), 84.131 (4), 76.721 (5)
V3)1489.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.28 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.854, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
14507, 5235, 2855
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.130, 0.97
No. of reflections5235
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.93002.48003.285 (5)145
C15'—H15'···Cl2ii0.93002.73003.610 (4)158
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1.
 

Acknowledgements

We thank the DST–IRHPA for the CCD X-ray facility at IISc and SKN thanks the CSIR (SRF), India, for financial support.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFortuna, H., James, D. R., Robert, W. D., Francis, A. K., Roland, L. W., Steven, P. S., James, H. H., Patrick, R. Y. & George, W. C. (1988). J. Med. Chem. 31, 1719–1728.  PubMed Web of Science Google Scholar
First citationFrank, W. B., Amanda, S. C., Marita, H. S., Richard, J., Nils, G. J., Christopher, L. J., Michael, D. K., Peter, L., John, M. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem. 38, 4929–4936.  PubMed Web of Science Google Scholar
First citationKarl, D. H., Friedrich, K. H. & James, T. O. (1983). J. Med. Chem. 26, 1158–1163.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601–1606.  CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds