organic compounds
(S)-3-[(S,E)-4-(4-Chlorophenyl)-1-nitrobut-3-en-2-yl]thian-4-one
aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: boyzb@163.com
The title compound, C15H16ClNO3S, was obtained by the organocatalytic asymmetric Michael addition of thian-4-one to 1-chloro-4-[(1E,3E)-4-nitrobuta-1,3-dienyl]benzene. The double bond has an E configuration and the thian-4-one six-membered ring adopts a chair conformation. The is stabilized by weak intermolecular C—H⋯O hydrogen bonds.
Related literature
For asymmetric Michael addition employing chiral organocatalysts, see: Belot et al. (2008); Dalko & Moisan (2004); Xu et al. (2008); Yu et al. (2009).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536809043608/fk2005sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809043608/fk2005Isup2.hkl
A 1,2-dichloroethane (0.5 ml) solution of thian-4-one (0.25 mmol) and 1-chloro-4-((1E,3E)-4-nitrobuta-1,3-dienyl)benzene (0.25 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.025 mmol) as amine catalyst and (R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-2-phenylacetic acid (0.025 mmol) as acid module at room tempreture was stirred vigorously (Xu et al., 2008). After completion of the reaction, the resulted reaction mixture was purified directly by silica gel
(eluent: petroleum ether-EtOAc). Single crystals were obtained by slow evaporation of an ethanol-EtOAc solution.All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.98 Å (sp2), C—H = 0.97 Å (sp3) and refined using a riding model, with Uiso(H)=1.2eq(C).
As one of the most important chiral carbon-carbon bond-forming processes in modern organic chemistry, the field of asymmetric Michael addition employing chiral organocatalysts has gained more and more attention and become the focus of intense research efforts (Dalko & Moisan, 2004; Belot et al., 2008; Yu et al., 2009). Consequently, we have synthesized a series of Michael adducts by employing cyclo-ketones to nitrodienes in our laboratory. We report here the ═C9 bond involves the E configuration with the C6—C8—C9—C10 torsion angle of 178.1 (17)°. The conformation of (I) is stabilized by weak intermolecular C7—H7B···O2 and C2—H2B···O1 interaction, Table 1, Fig 2.
and the of the title compound, (I). The six-membered ring of thian-4-one adopts a chair conformation. The C8For asymmetric Michael addition employing chiral organocatalysts, see: Belot et al. (2008); Dalko & Moisan (2004); Xu et al. (2008); Yu et al. (2009).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C15H16ClNO3S | F(000) = 680 |
Mr = 325.80 | Dx = 1.346 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 12670 reflections |
a = 5.5220 (2) Å | θ = 3.0–27.5° |
b = 8.3833 (3) Å | µ = 0.38 mm−1 |
c = 34.7414 (12) Å | T = 296 K |
V = 1608.27 (10) Å3 | Block, colorless |
Z = 4 | 0.34 × 0.28 × 0.19 mm |
Rigaku R-AXIS RAPID diffractometer | 3666 independent reflections |
Radiation source: rotating anode | 2918 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −7→6 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→10 |
Tmin = 0.865, Tmax = 0.932 | l = −45→45 |
15960 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.047P)2 + 0.182P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.16 e Å−3 |
3666 reflections | Δρmin = −0.20 e Å−3 |
191 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0061 (13) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1501 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.03 (7) |
C15H16ClNO3S | V = 1608.27 (10) Å3 |
Mr = 325.80 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.5220 (2) Å | µ = 0.38 mm−1 |
b = 8.3833 (3) Å | T = 296 K |
c = 34.7414 (12) Å | 0.34 × 0.28 × 0.19 mm |
Rigaku R-AXIS RAPID diffractometer | 3666 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2918 reflections with I > 2σ(I) |
Tmin = 0.865, Tmax = 0.932 | Rint = 0.024 |
15960 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.16 e Å−3 |
S = 1.00 | Δρmin = −0.20 e Å−3 |
3666 reflections | Absolute structure: Flack (1983), 1501 Friedel pairs |
191 parameters | Absolute structure parameter: 0.03 (7) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C13 | −0.1203 (6) | 0.9836 (3) | 0.01706 (6) | 0.0747 (7) | |
S1 | 0.55221 (10) | 0.17716 (7) | 0.117335 (15) | 0.06690 (17) | |
Cl1 | −0.1215 (2) | 1.11399 (9) | −0.022097 (18) | 0.1245 (4) | |
C6 | 0.0659 (3) | 0.5010 (2) | 0.16547 (4) | 0.0447 (4) | |
H6 | −0.0877 | 0.4429 | 0.1634 | 0.054* | |
O1 | 0.0671 (3) | 0.22754 (16) | 0.21132 (4) | 0.0613 (3) | |
C4 | 0.2745 (3) | 0.3803 (2) | 0.16338 (4) | 0.0444 (4) | |
H4 | 0.4264 | 0.4371 | 0.1684 | 0.053* | |
N1 | −0.1196 (3) | 0.7113 (2) | 0.20576 (4) | 0.0555 (4) | |
C5 | 0.2912 (4) | 0.3026 (2) | 0.12328 (5) | 0.0555 (4) | |
H5A | 0.2954 | 0.3859 | 0.1039 | 0.067* | |
H5B | 0.1466 | 0.2394 | 0.1189 | 0.067* | |
C8 | 0.0775 (3) | 0.6222 (2) | 0.13348 (5) | 0.0476 (4) | |
H8 | 0.2189 | 0.6816 | 0.1310 | 0.057* | |
C7 | 0.0736 (3) | 0.5865 (2) | 0.20462 (5) | 0.0496 (4) | |
H7A | 0.0481 | 0.5101 | 0.2252 | 0.059* | |
H7B | 0.2309 | 0.6356 | 0.2083 | 0.059* | |
C3 | 0.2507 (3) | 0.2460 (2) | 0.19269 (5) | 0.0492 (4) | |
C9 | −0.0980 (3) | 0.6500 (2) | 0.10879 (5) | 0.0522 (4) | |
H9 | −0.2357 | 0.5869 | 0.1113 | 0.063* | |
O3 | −0.0587 (3) | 0.84976 (18) | 0.20651 (5) | 0.0819 (5) | |
C2 | 0.4615 (4) | 0.1319 (3) | 0.19524 (6) | 0.0669 (5) | |
H2A | 0.4315 | 0.0550 | 0.2155 | 0.080* | |
H2B | 0.6073 | 0.1906 | 0.2017 | 0.080* | |
C15 | 0.0781 (4) | 0.8818 (2) | 0.07241 (5) | 0.0631 (5) | |
H15 | 0.2076 | 0.8847 | 0.0895 | 0.076* | |
O2 | −0.3289 (3) | 0.6674 (2) | 0.20483 (5) | 0.0838 (5) | |
C10 | −0.1020 (3) | 0.7694 (2) | 0.07758 (5) | 0.0519 (4) | |
C1 | 0.4989 (5) | 0.0446 (3) | 0.15734 (6) | 0.0757 (6) | |
H1A | 0.3568 | −0.0196 | 0.1519 | 0.091* | |
H1B | 0.6359 | −0.0270 | 0.1599 | 0.091* | |
C11 | −0.2923 (4) | 0.7687 (3) | 0.05161 (6) | 0.0691 (6) | |
H11 | −0.4169 | 0.6951 | 0.0547 | 0.083* | |
C12 | −0.3010 (5) | 0.8756 (3) | 0.02114 (6) | 0.0819 (7) | |
H12 | −0.4291 | 0.8732 | 0.0038 | 0.098* | |
C14 | 0.0704 (5) | 0.9901 (3) | 0.04238 (6) | 0.0745 (6) | |
H14 | 0.1920 | 1.0658 | 0.0394 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C13 | 0.122 (2) | 0.0560 (12) | 0.0463 (9) | 0.0278 (14) | −0.0102 (12) | 0.0075 (8) |
S1 | 0.0674 (3) | 0.0707 (3) | 0.0626 (3) | 0.0147 (3) | 0.0095 (2) | −0.0069 (2) |
Cl1 | 0.2253 (11) | 0.0834 (4) | 0.0646 (3) | 0.0384 (6) | −0.0194 (5) | 0.0284 (3) |
C6 | 0.0489 (8) | 0.0463 (8) | 0.0387 (7) | −0.0005 (8) | 0.0019 (8) | 0.0031 (6) |
O1 | 0.0645 (8) | 0.0616 (8) | 0.0578 (7) | −0.0018 (7) | 0.0091 (7) | 0.0157 (6) |
C4 | 0.0466 (8) | 0.0457 (9) | 0.0410 (8) | −0.0008 (7) | 0.0026 (7) | 0.0035 (7) |
N1 | 0.0581 (9) | 0.0606 (10) | 0.0478 (8) | 0.0061 (8) | −0.0027 (7) | −0.0059 (7) |
C5 | 0.0667 (10) | 0.0568 (11) | 0.0428 (8) | 0.0090 (9) | 0.0022 (8) | 0.0012 (8) |
C8 | 0.0539 (10) | 0.0429 (8) | 0.0460 (8) | 0.0007 (8) | 0.0025 (8) | 0.0031 (7) |
C7 | 0.0516 (9) | 0.0514 (10) | 0.0457 (8) | 0.0085 (8) | −0.0046 (8) | −0.0011 (7) |
C3 | 0.0569 (10) | 0.0486 (10) | 0.0420 (8) | 0.0003 (8) | −0.0041 (8) | 0.0029 (7) |
C9 | 0.0555 (10) | 0.0536 (10) | 0.0475 (9) | −0.0008 (9) | 0.0003 (8) | 0.0036 (7) |
O3 | 0.1031 (12) | 0.0509 (9) | 0.0918 (11) | 0.0066 (9) | −0.0103 (10) | −0.0046 (8) |
C2 | 0.0719 (12) | 0.0675 (13) | 0.0615 (11) | 0.0137 (11) | −0.0082 (10) | 0.0124 (9) |
C15 | 0.0780 (13) | 0.0597 (11) | 0.0516 (10) | −0.0048 (11) | −0.0136 (10) | 0.0107 (8) |
O2 | 0.0491 (8) | 0.1071 (13) | 0.0954 (11) | 0.0053 (9) | 0.0029 (7) | −0.0237 (11) |
C10 | 0.0614 (10) | 0.0519 (10) | 0.0423 (8) | 0.0094 (9) | −0.0049 (8) | 0.0009 (7) |
C1 | 0.0906 (16) | 0.0619 (13) | 0.0746 (13) | 0.0252 (12) | −0.0040 (12) | 0.0032 (10) |
C11 | 0.0678 (12) | 0.0778 (15) | 0.0618 (11) | 0.0038 (11) | −0.0150 (10) | 0.0045 (10) |
C12 | 0.0969 (18) | 0.0897 (18) | 0.0590 (11) | 0.0216 (16) | −0.0267 (12) | 0.0023 (12) |
C14 | 0.1063 (17) | 0.0566 (11) | 0.0606 (11) | −0.0037 (14) | −0.0062 (13) | 0.0150 (9) |
C13—C12 | 1.355 (4) | C8—H8 | 0.9300 |
C13—C14 | 1.373 (4) | C7—H7A | 0.9700 |
C13—Cl1 | 1.745 (2) | C7—H7B | 0.9700 |
S1—C5 | 1.7959 (19) | C3—C2 | 1.509 (3) |
S1—C1 | 1.804 (2) | C9—C10 | 1.476 (2) |
C6—C8 | 1.507 (2) | C9—H9 | 0.9300 |
C6—C4 | 1.534 (2) | C2—C1 | 1.520 (3) |
C6—C7 | 1.539 (2) | C2—H2A | 0.9700 |
C6—H6 | 0.9800 | C2—H2B | 0.9700 |
O1—C3 | 1.213 (2) | C15—C10 | 1.382 (3) |
C4—C3 | 1.524 (2) | C15—C14 | 1.383 (3) |
C4—C5 | 1.541 (2) | C15—H15 | 0.9300 |
C4—H4 | 0.9800 | C10—C11 | 1.385 (3) |
N1—O3 | 1.209 (2) | C1—H1A | 0.9700 |
N1—O2 | 1.213 (2) | C1—H1B | 0.9700 |
N1—C7 | 1.494 (2) | C11—C12 | 1.388 (3) |
C5—H5A | 0.9700 | C11—H11 | 0.9300 |
C5—H5B | 0.9700 | C12—H12 | 0.9300 |
C8—C9 | 1.315 (3) | C14—H14 | 0.9300 |
C12—C13—C14 | 121.62 (19) | O1—C3—C2 | 122.19 (16) |
C12—C13—Cl1 | 119.81 (19) | O1—C3—C4 | 121.53 (16) |
C14—C13—Cl1 | 118.5 (2) | C2—C3—C4 | 116.17 (15) |
C5—S1—C1 | 98.11 (10) | C8—C9—C10 | 127.61 (17) |
C8—C6—C4 | 112.19 (13) | C8—C9—H9 | 116.2 |
C8—C6—C7 | 109.65 (14) | C10—C9—H9 | 116.2 |
C4—C6—C7 | 109.17 (13) | C3—C2—C1 | 111.04 (16) |
C8—C6—H6 | 108.6 | C3—C2—H2A | 109.4 |
C4—C6—H6 | 108.6 | C1—C2—H2A | 109.4 |
C7—C6—H6 | 108.6 | C3—C2—H2B | 109.4 |
C3—C4—C6 | 113.01 (13) | C1—C2—H2B | 109.4 |
C3—C4—C5 | 107.25 (14) | H2A—C2—H2B | 108.0 |
C6—C4—C5 | 111.50 (13) | C10—C15—C14 | 121.53 (19) |
C3—C4—H4 | 108.3 | C10—C15—H15 | 119.2 |
C6—C4—H4 | 108.3 | C14—C15—H15 | 119.2 |
C5—C4—H4 | 108.3 | C11—C10—C15 | 117.69 (18) |
O3—N1—O2 | 123.82 (19) | C11—C10—C9 | 119.13 (18) |
O3—N1—C7 | 118.28 (17) | C15—C10—C9 | 123.17 (16) |
O2—N1—C7 | 117.86 (18) | C2—C1—S1 | 113.15 (17) |
C4—C5—S1 | 113.56 (12) | C2—C1—H1A | 108.9 |
C4—C5—H5A | 108.9 | S1—C1—H1A | 108.9 |
S1—C5—H5A | 108.9 | C2—C1—H1B | 108.9 |
C4—C5—H5B | 108.9 | S1—C1—H1B | 108.9 |
S1—C5—H5B | 108.9 | H1A—C1—H1B | 107.8 |
H5A—C5—H5B | 107.7 | C10—C11—C12 | 121.3 (2) |
C9—C8—C6 | 124.67 (17) | C10—C11—H11 | 119.3 |
C9—C8—H8 | 117.7 | C12—C11—H11 | 119.3 |
C6—C8—H8 | 117.7 | C13—C12—C11 | 119.1 (2) |
N1—C7—C6 | 109.27 (13) | C13—C12—H12 | 120.5 |
N1—C7—H7A | 109.8 | C11—C12—H12 | 120.5 |
C6—C7—H7A | 109.8 | C13—C14—C15 | 118.7 (2) |
N1—C7—H7B | 109.8 | C13—C14—H14 | 120.6 |
C6—C7—H7B | 109.8 | C15—C14—H14 | 120.6 |
H7A—C7—H7B | 108.3 | ||
C8—C6—C4—C3 | −173.58 (14) | C6—C8—C9—C10 | 178.10 (17) |
C7—C6—C4—C3 | 64.67 (18) | O1—C3—C2—C1 | 114.2 (2) |
C8—C6—C4—C5 | −52.68 (19) | C4—C3—C2—C1 | −62.0 (2) |
C7—C6—C4—C5 | −174.43 (14) | C14—C15—C10—C11 | −0.1 (3) |
C3—C4—C5—S1 | −62.42 (17) | C14—C15—C10—C9 | 178.8 (2) |
C6—C4—C5—S1 | 173.37 (12) | C8—C9—C10—C11 | 172.61 (19) |
C1—S1—C5—C4 | 56.38 (16) | C8—C9—C10—C15 | −6.3 (3) |
C4—C6—C8—C9 | 123.85 (19) | C3—C2—C1—S1 | 58.3 (2) |
C7—C6—C8—C9 | −114.67 (19) | C5—S1—C1—C2 | −53.16 (18) |
O3—N1—C7—C6 | −112.49 (18) | C15—C10—C11—C12 | 0.8 (3) |
O2—N1—C7—C6 | 65.5 (2) | C9—C10—C11—C12 | −178.2 (2) |
C8—C6—C7—N1 | 53.18 (19) | C14—C13—C12—C11 | −0.2 (4) |
C4—C6—C7—N1 | 176.45 (14) | Cl1—C13—C12—C11 | 177.53 (19) |
C6—C4—C3—O1 | 9.8 (2) | C10—C11—C12—C13 | −0.6 (4) |
C5—C4—C3—O1 | −113.44 (18) | C12—C13—C14—C15 | 0.9 (4) |
C6—C4—C3—C2 | −173.94 (15) | Cl1—C13—C14—C15 | −176.91 (18) |
C5—C4—C3—C2 | 62.78 (19) | C10—C15—C14—C13 | −0.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···O2i | 0.97 | 2.45 | 3.368 (4) | 158 |
C2—H2B···O1i | 0.97 | 2.58 | 3.484 (3) | 156 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C15H16ClNO3S |
Mr | 325.80 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 5.5220 (2), 8.3833 (3), 34.7414 (12) |
V (Å3) | 1608.27 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.34 × 0.28 × 0.19 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.865, 0.932 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15960, 3666, 2918 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.090, 1.00 |
No. of reflections | 3666 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.20 |
Absolute structure | Flack (1983), 1501 Friedel pairs |
Absolute structure parameter | 0.03 (7) |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···O2i | 0.97 | 2.448 | 3.368 (4) | 158 |
C2—H2B···O1i | 0.97 | 2.580 | 3.484 (3) | 156 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
We acknowledge the help of Professor Jianming Gu of Zhejiang University. We are also grateful for financial support from the Catalytic Hydrogenation Research Center of Zhejiang University of Technology.
References
Belot, S., Massaro, A., Tenti, A., Mordini, A. & Alexakis, A. (2008). Org. Lett. 10, 4557–4560. Web of Science CrossRef PubMed CAS Google Scholar
Dalko, P. I. & Moisan, L. (2004). Angew. Chem. Int. Ed. 43, 5138–5175. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlaands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, D., Yue, H., Luo, S., Xia, A., Zhang, S. & Xu, Z. (2008). Org. Biomol. Chem. 6, 2054–2057. Web of Science CrossRef PubMed CAS Google Scholar
Yu, Z., Liu, X., Zhou, L., Lin, L. & Feng, X. (2009). Angew. Chem. Int. Ed. 48, 5195–5198. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As one of the most important chiral carbon-carbon bond-forming processes in modern organic chemistry, the field of asymmetric Michael addition employing chiral organocatalysts has gained more and more attention and become the focus of intense research efforts (Dalko & Moisan, 2004; Belot et al., 2008; Yu et al., 2009). Consequently, we have synthesized a series of Michael adducts by employing cyclo-ketones to nitrodienes in our laboratory. We report here the crystal structure and the absolute configuration of the title compound, (I). The six-membered ring of thian-4-one adopts a chair conformation. The C8═C9 bond involves the E configuration with the C6—C8—C9—C10 torsion angle of 178.1 (17)°. The conformation of (I) is stabilized by weak intermolecular C7—H7B···O2 and C2—H2B···O1 interaction, Table 1, Fig 2.