organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-4,5-Dihydr­­oxy-1,3-bis­­(4-meth­oxy­phen­yl)imidazolidine-2-thione

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, and bCollege of Chemistry, Luoyang Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: zzf5188@sohu.com

(Received 10 September 2009; accepted 17 October 2009; online 23 October 2009)

In the title compound, C17H18N2O4S, where one of the N-4-methoxy­phenyl fragments is disordered over two sets of sites, the five-membered ring exhibits a nearly half-chair conformation and the two hydroxyl groups lie on opposite sides of the five-membered ring. In the crystal, the mol­ecules are linked into sheets parallel to (100) via O—H⋯O and O—H⋯S hydrogen bonds.

Related literature

For the bioactivity of imidazolidine-2-one derivatives, see: Lam et al. (1994[Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C.-H., Weber, P. C., Jackson, D. A., Sharpe, T. R. & Erickson-Viitanen, S. (1994). Science, 263, 380-384.]); Lenzen & Ahmad (2001[Lenzen, S. & Ahmad, R. (2001). Ger. Offen. DE10012401.]); Perronnet & Teche (1973[Perronnet, J. & Teche, A. (1973). US Patent 3905996.]). For related structures, see: Zhang et al. (2007[Zhang, Z.-F., Zhang, J.-M., Guo, J.-P. & Qu, G.-R. (2007). Acta Cryst. E63, o2821-o2823.], 2009[Zhang, Z., Wei, M., Wang, J. & Zhang, G. (2009). Acta Cryst. E65, o2389.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4S

  • Mr = 346.39

  • Monoclinic, P 21 /c

  • a = 13.9807 (12) Å

  • b = 12.1789 (11) Å

  • c = 10.0958 (9) Å

  • β = 93.815 (1)°

  • V = 1715.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 294 K

  • 0.49 × 0.35 × 0.34 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.904, Tmax = 0.931

  • 12720 measured reflections

  • 3179 independent reflections

  • 2654 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.03

  • 3179 reflections

  • 244 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.99 2.7971 (19) 169
O1—H1⋯S1ii 0.82 2.40 3.1799 (14) 158
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazolidine-2-one derivates often exhibit powerful bioactivitiy, as herbicides (Perronnet & Teche,1973), antidiabetics (Lenzen & Ahmad, 2001) and anti-HIV agents (Lam et al., 1994). Enders and his workers have earlier reported the synthesis and use of 4,5-dihydroxyimidazolidine-2-thiones. However, to our knowledge, there are few N,N'-diarylsubstituted 4,5-dihydroxyimidazolidine-2-thiones reported so far. As a continuation of our structural studies of such compounds (Zhang et al., 2009), we report here the molecular and supramolecular structures of (I) (Fig. 1).

In (I), the N2-containing (4-methoxyphenyl)imino group is disordered over two sites with refined occupancies of 0.747 (2) and 0.253 (2) (Fig. 1). The five-membered ring adopts a nearly half-chair conformation; the total puckering amplitudes Q2 (Cremer & Pople, 1975) are 0.247 (5) and 0.187 (11) Å, and the ring puckering parameters φ2 are 302.1 (9) and 333 (5)°, respectively, for the atom sequences, N1—C1—N2—C3—C2 and N1—C1—N2'—C3—C2. For an idealized half-chair, the ring puckering angle is φ2 = (36k + 18) ° (where k = zero or an integer). Therefore, the conformation for the five-membered ring in (I) is markedly different from that found in our previously reported compound (Zhang et al., 2007), where the five-membered ring shows a perfect envelope conformation. The difference in conformation is mainly attributed to van der Waals repulsions between the five-membered ring and its N1 and N2 phenyl substituents. Due to the existence of the van der Waals repulsions, the aryl groups exhibit nearly perpendicular orientations to the five-membered ring with the dihedral angle between the planes C4–C9 and C1/N1/C2 being 73.1 (2) °. Meanwhile, the dihedral angle between the planes C10–C15 and C1/N2/C3 is 89.7 (9) °. In addition, the C7 and C13 methoxy groups adopt closely coplanar orientations, respectively to their attached aryl rings, as shown by the torsion angles of C6—C7—O3—C16 [5.4 (4) °] and C14—C13—O4—C17 [6.4 (13) °]. Interestingly, the molecule (I) adopts a trans configuration (Fig. 1); the two hydroxyl groups lie on opposite sides of the five-membered ring. In view of the same trans configuration in 4,5-dihydroxyimidazolidine-2-thiones (Zhang et al., 2007; Zhang et al., 2009), we can draw a general conclusion that this trans-configuration is probably ubiquitous in 4,5-dihydroxyimidazolidine- 2-thiones.

The heterocyclic geometries of (I) also present some unexpected features. The C1—N1[1.366 (2) Å] and C1—N2 [1.352 (6) Å] bonds are significantly longer than the corresponding bonds in 4,5-dihydroxyimidazolidine-2-thione [1.335 (2) and 1.336 (2) Å; Zhang et al., 2007]. Conversely, the C1-S1[1.669 (2) Å] and C2—C3 [1.523 (2) Å] bonds are shorter than the corresponding bonds in 4,5-dihydroxyimidazolidine-2-thione [1.684 (2) and 1.537 (2) Å, respectively].

In analyzing the supramolecular structure of (I), for the sake of simplicity, we shall omit any consideration of the intermolecular C—H···O interactions involving a C—H bond from an aromatic ring, which is far too long to be significant. Thus, molecules of (I) are linked into sheets by only two independent O—H···S and O—H···O hydrogen bonds (Table 1), the formation of which is readily analyzed in terms of two one-dimensional substructures. In the first substructure, hydroxyl atom O1 in the molecule at (x,y,z) acts as a hydrogen-bond donor to thiocarbonyl atom S1 in the molecule at (-x, y - 1/2,-z + 3/2), so forming a C22(6) (Bernstein et al.,1995) chain along [010] and generated by 21 screw axis along (0,y,3/4) (Fig. 2). Similarly in the second substructure, hydroxyl atom O2 in the molecule at (x,y,z) acts as a hydrogen-bond donor to hydroxyl atom O1 in the molecule at (x,-y + 3/2,z + 1/2), so forming a C(5) (Bernstein et al., 1995) chain parallel to [001], this time generated by a 21 screw along (1/8,3/4,z) (Fig. 2). The combination of the two chain motifs is sufficient to link all the molecules into a sheet parallel to (100). Two such sheets pass through each unit cell; in each sheet, there are both enantiomers of (I); there are no direction-specific interactions between adjacent sheets, in particular C—H···π hydrogen bonds and π-π stacking interactions are absent.

Related literature top

For the bioactivity of imidazolidine-2-one derivatives, see: Lam et al. (1994); Lenzen & Ahmad (2001); Perronnet & Teche (1973). For related structures, see: Zhang et al. (2007, 2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Into a three-necked round-bottomed flask equipped with a stirrer were introduced 1,3-bis(4-methoxyphenyl)thiourea(0.1 mol), glyoxal (40%, 18 g) and ethanol (95%, 30 ml). The mixture was then refluxed with stirring for ca 30 min and thereafter the solvent was removed; the residue was washed with cold ethanol and the resulting solid product was recrystallized from hot ethanol to give crystals of (I).

1H NMR(DMSO, 400 MHz) of (I): δ 7.36–6.95 (m, 8H), δ 7.1 (d, J = 8.0 Hz, 2H), δ 5.08 (d, J = 8.4 Hz, 2H), δ 3.76 (s, 6H).

Refinement top

The hydroxyl H atoms in (I) were found in a difference Fourier map and then freely refined. All other H atoms were positioned geometrically (aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, methyne C—H = 0.98 Å and O—H = 0.82 Å) and refined using a riding model [Uiso(H) = 1.2Ueq (aromatic and methyne C) and 1.5 Ueq(methyl C and hydroxy O)]. The N2-containing (4-methoxyphenyl)imino group was found to be disordered, and therefore was modelled over two sets of positions, with a refined major occupancy of 0.747 (2). 10 Geometric displacement-parameter restraints were applied to the disordered part. They are: DFIX 1.37 0.02 C10' C11'; DFIX 1.38 0.02 C11' C12'; DFIX 1.37 0.02 C10' C15' ; DFIX 1.37 0.02 C1 N2; DFIX 1.37 0.02 C1 N2'; DFIX 1.46 0.02 C3 N2; DFIX 1.46 0.02 C3 N2' ; DFIX 1.42 0.02 N2' C10'; DFIX 1.42 0.02 O4' C17'; DFIX 1.42 0.02 O4 C17

Structure description top

Imidazolidine-2-one derivates often exhibit powerful bioactivitiy, as herbicides (Perronnet & Teche,1973), antidiabetics (Lenzen & Ahmad, 2001) and anti-HIV agents (Lam et al., 1994). Enders and his workers have earlier reported the synthesis and use of 4,5-dihydroxyimidazolidine-2-thiones. However, to our knowledge, there are few N,N'-diarylsubstituted 4,5-dihydroxyimidazolidine-2-thiones reported so far. As a continuation of our structural studies of such compounds (Zhang et al., 2009), we report here the molecular and supramolecular structures of (I) (Fig. 1).

In (I), the N2-containing (4-methoxyphenyl)imino group is disordered over two sites with refined occupancies of 0.747 (2) and 0.253 (2) (Fig. 1). The five-membered ring adopts a nearly half-chair conformation; the total puckering amplitudes Q2 (Cremer & Pople, 1975) are 0.247 (5) and 0.187 (11) Å, and the ring puckering parameters φ2 are 302.1 (9) and 333 (5)°, respectively, for the atom sequences, N1—C1—N2—C3—C2 and N1—C1—N2'—C3—C2. For an idealized half-chair, the ring puckering angle is φ2 = (36k + 18) ° (where k = zero or an integer). Therefore, the conformation for the five-membered ring in (I) is markedly different from that found in our previously reported compound (Zhang et al., 2007), where the five-membered ring shows a perfect envelope conformation. The difference in conformation is mainly attributed to van der Waals repulsions between the five-membered ring and its N1 and N2 phenyl substituents. Due to the existence of the van der Waals repulsions, the aryl groups exhibit nearly perpendicular orientations to the five-membered ring with the dihedral angle between the planes C4–C9 and C1/N1/C2 being 73.1 (2) °. Meanwhile, the dihedral angle between the planes C10–C15 and C1/N2/C3 is 89.7 (9) °. In addition, the C7 and C13 methoxy groups adopt closely coplanar orientations, respectively to their attached aryl rings, as shown by the torsion angles of C6—C7—O3—C16 [5.4 (4) °] and C14—C13—O4—C17 [6.4 (13) °]. Interestingly, the molecule (I) adopts a trans configuration (Fig. 1); the two hydroxyl groups lie on opposite sides of the five-membered ring. In view of the same trans configuration in 4,5-dihydroxyimidazolidine-2-thiones (Zhang et al., 2007; Zhang et al., 2009), we can draw a general conclusion that this trans-configuration is probably ubiquitous in 4,5-dihydroxyimidazolidine- 2-thiones.

The heterocyclic geometries of (I) also present some unexpected features. The C1—N1[1.366 (2) Å] and C1—N2 [1.352 (6) Å] bonds are significantly longer than the corresponding bonds in 4,5-dihydroxyimidazolidine-2-thione [1.335 (2) and 1.336 (2) Å; Zhang et al., 2007]. Conversely, the C1-S1[1.669 (2) Å] and C2—C3 [1.523 (2) Å] bonds are shorter than the corresponding bonds in 4,5-dihydroxyimidazolidine-2-thione [1.684 (2) and 1.537 (2) Å, respectively].

In analyzing the supramolecular structure of (I), for the sake of simplicity, we shall omit any consideration of the intermolecular C—H···O interactions involving a C—H bond from an aromatic ring, which is far too long to be significant. Thus, molecules of (I) are linked into sheets by only two independent O—H···S and O—H···O hydrogen bonds (Table 1), the formation of which is readily analyzed in terms of two one-dimensional substructures. In the first substructure, hydroxyl atom O1 in the molecule at (x,y,z) acts as a hydrogen-bond donor to thiocarbonyl atom S1 in the molecule at (-x, y - 1/2,-z + 3/2), so forming a C22(6) (Bernstein et al.,1995) chain along [010] and generated by 21 screw axis along (0,y,3/4) (Fig. 2). Similarly in the second substructure, hydroxyl atom O2 in the molecule at (x,y,z) acts as a hydrogen-bond donor to hydroxyl atom O1 in the molecule at (x,-y + 3/2,z + 1/2), so forming a C(5) (Bernstein et al., 1995) chain parallel to [001], this time generated by a 21 screw along (1/8,3/4,z) (Fig. 2). The combination of the two chain motifs is sufficient to link all the molecules into a sheet parallel to (100). Two such sheets pass through each unit cell; in each sheet, there are both enantiomers of (I); there are no direction-specific interactions between adjacent sheets, in particular C—H···π hydrogen bonds and π-π stacking interactions are absent.

For the bioactivity of imidazolidine-2-one derivatives, see: Lam et al. (1994); Lenzen & Ahmad (2001); Perronnet & Teche (1973). For related structures, see: Zhang et al. (2007, 2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a (100) sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Intermolecular interactions are represented by dashed lines. Selected atoms are labelled. [Symmetry codes: (i) -x,y - 1/2,-z + 3/2; (ii) x + 1,-y + 3/2,z + 1/2; (iii) -x,y + 1/2,-z + 3/2; (iv) x,-y + 3/2,z + 1/2].
trans-4,5-Dihydroxy-1,3-bis(4-methoxyphenyl)imidazolidine-2-thione top
Crystal data top
C17H18N2O4SF(000) = 728
Mr = 346.39Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9807 (12) ÅCell parameters from 4930 reflections
b = 12.1789 (11) Åθ = 2.6–26.9°
c = 10.0958 (9) ŵ = 0.21 mm1
β = 93.815 (1)°T = 294 K
V = 1715.2 (3) Å3Block, colorless
Z = 40.49 × 0.35 × 0.34 mm
Data collection top
Bruker SMART CCD
diffractometer
3179 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.904, Tmax = 0.931k = 1414
12720 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.751P]
where P = (Fo2 + 2Fc2)/3
3179 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.41 e Å3
10 restraintsΔρmin = 0.60 e Å3
Crystal data top
C17H18N2O4SV = 1715.2 (3) Å3
Mr = 346.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9807 (12) ŵ = 0.21 mm1
b = 12.1789 (11) ÅT = 294 K
c = 10.0958 (9) Å0.49 × 0.35 × 0.34 mm
β = 93.815 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3179 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2654 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.931Rint = 0.019
12720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04110 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
3179 reflectionsΔρmin = 0.60 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N20.1894 (5)0.8182 (5)0.8627 (11)0.0376 (14)0.746 (2)
C100.2878 (3)0.8426 (4)0.8958 (3)0.0387 (8)0.746 (2)
C110.3522 (2)0.8265 (2)0.7987 (3)0.0538 (7)0.746 (2)
H110.32950.81160.71190.065*0.746 (2)
C120.4492 (2)0.8325 (3)0.8299 (3)0.0644 (8)0.746 (2)
H120.49200.82290.76400.077*0.746 (2)
C130.4833 (2)0.8528 (2)0.9598 (3)0.0532 (7)0.746 (2)
C140.4205 (2)0.8754 (3)1.0555 (3)0.0542 (8)0.746 (2)
H140.44320.89361.14130.065*0.746 (2)
C150.3222 (2)0.8705 (2)1.0222 (3)0.0480 (7)0.746 (2)
H150.27930.88631.08620.058*0.746 (2)
C170.6212 (9)0.861 (2)1.1138 (17)0.0922 (15)0.746 (2)
H17A0.59760.92641.15230.138*0.746 (2)
H17B0.68980.86401.11390.138*0.746 (2)
H17C0.60310.79821.16480.138*0.746 (2)
O40.58130 (14)0.8499 (2)0.9808 (3)0.0785 (7)0.746 (2)
N2'0.1897 (16)0.8218 (15)0.883 (4)0.0376 (14)0.254 (2)
C10'0.2843 (11)0.8530 (16)0.9341 (14)0.0387 (8)0.254 (2)
C11'0.3624 (6)0.8085 (8)0.8804 (9)0.0538 (7)0.254 (2)
H11'0.35600.77070.80030.065*0.254 (2)
C12'0.4518 (7)0.8206 (10)0.9478 (12)0.0644 (8)0.254 (2)
H12'0.50640.79240.91230.077*0.254 (2)
C13'0.4586 (7)0.8747 (9)1.0675 (13)0.0532 (7)0.254 (2)
C14'0.3778 (6)0.9179 (8)1.1206 (9)0.0542 (8)0.254 (2)
H14'0.38370.95661.20010.065*0.254 (2)
C15'0.2897 (7)0.9037 (8)1.0563 (9)0.0480 (7)0.254 (2)
H15'0.23450.92771.09410.058*0.254 (2)
C17'0.629 (3)0.854 (7)1.100 (6)0.0922 (15)0.254 (2)
H17D0.64170.77911.12560.138*0.254 (2)
H17E0.68050.89981.13470.138*0.254 (2)
H17F0.62430.85881.00440.138*0.254 (2)
O4'0.5427 (4)0.8885 (6)1.1491 (8)0.0785 (7)0.254 (2)
S10.12664 (3)1.02415 (4)0.81566 (5)0.04968 (17)
O10.06318 (10)0.66792 (11)0.68364 (12)0.0507 (4)
H10.02270.61990.66960.076*
O20.15350 (10)0.68187 (11)1.02357 (12)0.0498 (3)
H20.12610.73111.06160.075*
O30.33055 (13)0.9381 (2)0.6034 (2)0.1059 (6)
N10.03525 (10)0.82649 (12)0.81002 (15)0.0404 (3)
C10.11643 (11)0.88826 (14)0.83077 (16)0.0368 (4)
C20.05733 (13)0.70931 (15)0.81329 (17)0.0409 (4)
H2A0.01010.66850.86110.049*
C30.15534 (13)0.70725 (14)0.88879 (17)0.0405 (4)
H30.19630.65410.84660.049*
C40.05667 (12)0.86336 (15)0.75615 (17)0.0402 (4)
C50.06968 (13)0.90132 (16)0.62842 (18)0.0446 (4)
H50.01680.90980.57820.054*
C60.16006 (14)0.92724 (17)0.5726 (2)0.0509 (5)
H60.16800.95260.48570.061*
C70.23823 (14)0.9148 (2)0.6480 (2)0.0602 (6)
C80.22540 (15)0.8775 (2)0.7771 (2)0.0737 (7)
H80.27820.86980.82770.088*
C90.13567 (14)0.8517 (2)0.8319 (2)0.0601 (6)
H90.12770.82670.91900.072*
C160.34805 (19)0.9682 (3)0.4689 (3)0.1059 (6)
H16A0.31671.03670.45310.159*
H16B0.41580.97610.44890.159*
H16C0.32350.91240.41320.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0346 (8)0.0367 (9)0.041 (4)0.0025 (6)0.0037 (13)0.0023 (13)
C100.0363 (11)0.0352 (15)0.044 (3)0.0000 (9)0.0051 (17)0.0031 (18)
C110.0475 (14)0.0643 (16)0.0496 (16)0.0027 (12)0.0039 (14)0.0145 (15)
C120.0405 (14)0.076 (2)0.0784 (19)0.0006 (13)0.0130 (14)0.0227 (17)
C130.0337 (15)0.0461 (15)0.0786 (19)0.0015 (11)0.0059 (14)0.0030 (14)
C140.0476 (19)0.0632 (18)0.0502 (17)0.0093 (16)0.0092 (14)0.0047 (13)
C150.0443 (17)0.0579 (19)0.0419 (16)0.0056 (13)0.0029 (12)0.0013 (12)
C170.052 (3)0.098 (4)0.122 (5)0.017 (2)0.030 (2)0.028 (3)
O40.0357 (10)0.0820 (15)0.1161 (19)0.0034 (10)0.0094 (11)0.0010 (13)
N2'0.0346 (8)0.0367 (9)0.041 (4)0.0025 (6)0.0037 (13)0.0023 (13)
C10'0.0363 (11)0.0352 (15)0.044 (3)0.0000 (9)0.0051 (17)0.0031 (18)
C11'0.0475 (14)0.0643 (16)0.0496 (16)0.0027 (12)0.0039 (14)0.0145 (15)
C12'0.0405 (14)0.076 (2)0.0784 (19)0.0006 (13)0.0130 (14)0.0227 (17)
C13'0.0337 (15)0.0461 (15)0.0786 (19)0.0015 (11)0.0059 (14)0.0030 (14)
C14'0.0476 (19)0.0632 (18)0.0502 (17)0.0093 (16)0.0092 (14)0.0047 (13)
C15'0.0443 (17)0.0579 (19)0.0419 (16)0.0056 (13)0.0029 (12)0.0013 (12)
C17'0.052 (3)0.098 (4)0.122 (5)0.017 (2)0.030 (2)0.028 (3)
O4'0.0357 (10)0.0820 (15)0.1161 (19)0.0034 (10)0.0094 (11)0.0010 (13)
S10.0414 (3)0.0359 (3)0.0700 (4)0.00154 (19)0.0095 (2)0.0005 (2)
O10.0596 (9)0.0473 (8)0.0449 (7)0.0153 (6)0.0015 (6)0.0073 (6)
O20.0591 (9)0.0482 (8)0.0417 (7)0.0025 (6)0.0011 (6)0.0083 (6)
O30.0481 (8)0.1623 (18)0.1038 (13)0.0091 (9)0.0214 (8)0.0229 (12)
N10.0348 (8)0.0394 (8)0.0463 (8)0.0035 (6)0.0028 (6)0.0003 (6)
C10.0329 (9)0.0419 (9)0.0353 (8)0.0004 (7)0.0013 (7)0.0010 (7)
C20.0426 (10)0.0399 (10)0.0402 (9)0.0087 (8)0.0037 (7)0.0012 (7)
C30.0429 (10)0.0372 (9)0.0412 (9)0.0008 (7)0.0026 (7)0.0024 (7)
C40.0327 (9)0.0442 (10)0.0433 (10)0.0041 (7)0.0007 (7)0.0047 (8)
C50.0412 (10)0.0480 (10)0.0449 (10)0.0015 (8)0.0044 (8)0.0018 (8)
C60.0511 (11)0.0536 (12)0.0467 (10)0.0004 (9)0.0072 (9)0.0009 (9)
C70.0379 (11)0.0709 (14)0.0702 (14)0.0008 (10)0.0092 (10)0.0009 (11)
C80.0370 (11)0.117 (2)0.0681 (15)0.0030 (12)0.0095 (10)0.0065 (14)
C90.0434 (11)0.0916 (17)0.0452 (11)0.0045 (11)0.0029 (9)0.0067 (11)
C160.0481 (8)0.1623 (18)0.1038 (13)0.0091 (9)0.0214 (8)0.0229 (12)
Geometric parameters (Å, º) top
N2—C11.352 (6)C15'—H15'0.9300
N2—C101.426 (6)C17'—O4'1.40 (2)
N2—C31.462 (6)C17'—H17D0.9600
C10—C151.376 (4)C17'—H17E0.9600
C10—C111.388 (5)C17'—H17F0.9600
C11—C121.374 (4)S1—C11.669 (2)
C11—H110.9300O1—C21.410 (2)
C12—C131.388 (5)O1—H10.8200
C12—H120.9300O2—C31.397 (2)
C13—O41.372 (3)O2—H20.8200
C13—C141.376 (5)O3—C71.368 (3)
C14—C151.394 (4)O3—C161.413 (4)
C14—H140.9300N1—C11.366 (2)
C15—H150.9300N1—C41.434 (2)
C17—O41.426 (17)N1—C21.460 (2)
C17—H17A0.9600C2—C31.523 (2)
C17—H17B0.9600C2—H2A0.9800
C17—H17C0.9600C3—H30.9800
N2'—C11.382 (17)C4—C51.371 (3)
N2'—C10'1.438 (17)C4—C91.392 (3)
N2'—C31.478 (17)C5—C61.385 (3)
C10'—C11'1.364 (14)C5—H50.9300
C10'—C15'1.377 (13)C6—C71.381 (3)
C11'—C12'1.391 (12)C6—H60.9300
C11'—H11'0.9300C7—C81.381 (3)
C12'—C13'1.374 (18)C8—C91.373 (3)
C12'—H12'0.9300C8—H80.9300
C13'—C14'1.385 (15)C9—H90.9300
C13'—O4'1.400 (12)C16—H16A0.9600
C14'—C15'1.365 (12)C16—H16B0.9600
C14'—H14'0.9300C16—H16C0.9600
C1—N2—C10128.7 (5)C3—O2—H2109.5
C1—N2—C3112.1 (5)C7—O3—C16118.0 (2)
C10—N2—C3118.1 (4)C1—N1—C4126.88 (15)
C15—C10—C11119.1 (4)C1—N1—C2111.25 (14)
C15—C10—N2122.8 (6)C4—N1—C2119.84 (14)
C11—C10—N2117.8 (5)N2—C1—N1107.1 (3)
C12—C11—C10120.5 (3)N2—C1—N2'9 (2)
C12—C11—H11119.7N1—C1—N2'108.9 (8)
C10—C11—H11119.7N2—C1—S1125.4 (3)
C11—C12—C13119.8 (3)N1—C1—S1127.39 (13)
C11—C12—H12120.1N2'—C1—S1123.4 (7)
C13—C12—H12120.1O1—C2—N1110.71 (14)
O4—C13—C14125.1 (3)O1—C2—C3110.66 (15)
O4—C13—C12114.7 (3)N1—C2—C3102.08 (13)
C14—C13—C12120.2 (3)O1—C2—H2A111.0
C13—C14—C15119.2 (3)N1—C2—H2A111.0
C13—C14—H14120.4C3—C2—H2A111.0
C15—C14—H14120.4O2—C3—N2114.0 (5)
C10—C15—C14120.8 (3)O2—C3—N2'106.0 (16)
C10—C15—H15119.6N2—C3—N2'8 (2)
C14—C15—H15119.6O2—C3—C2114.63 (15)
C13—O4—C17117.8 (5)N2—C3—C2100.8 (3)
C1—N2'—C10'128.5 (15)N2'—C3—C2104.4 (7)
C1—N2'—C3109.5 (12)O2—C3—H3109.0
C10'—N2'—C3121.9 (14)N2—C3—H3109.0
C11'—C10'—C15'122.4 (13)N2'—C3—H3113.9
C11'—C10'—N2'119.6 (18)C2—C3—H3109.0
C15'—C10'—N2'116 (2)C5—C4—C9119.39 (17)
C10'—C11'—C12'118.8 (10)C5—C4—N1121.47 (16)
C10'—C11'—H11'120.6C9—C4—N1118.93 (17)
C12'—C11'—H11'120.6C4—C5—C6121.34 (18)
C13'—C12'—C11'119.2 (9)C4—C5—H5119.3
C13'—C12'—H12'120.4C6—C5—H5119.3
C11'—C12'—H12'120.4C7—C6—C5118.96 (19)
C12'—C13'—C14'120.8 (9)C7—C6—H6120.5
C12'—C13'—O4'125.5 (10)C5—C6—H6120.5
C14'—C13'—O4'113.6 (10)O3—C7—C8116.0 (2)
C15'—C14'—C13'120.1 (9)O3—C7—C6124.0 (2)
C15'—C14'—H14'120.0C8—C7—C6119.92 (19)
C13'—C14'—H14'120.0C9—C8—C7120.9 (2)
C14'—C15'—C10'118.5 (11)C9—C8—H8119.6
C14'—C15'—H15'120.8C7—C8—H8119.6
C10'—C15'—H15'120.8C8—C9—C4119.5 (2)
O4'—C17'—H17D109.5C8—C9—H9120.2
O4'—C17'—H17E109.5C4—C9—H9120.2
H17D—C17'—H17E109.5O3—C16—H16A109.5
O4'—C17'—H17F109.5O3—C16—H16B109.5
H17D—C17'—H17F109.5H16A—C16—H16B109.5
H17E—C17'—H17F109.5O3—C16—H16C109.5
C13'—O4'—C17'118 (2)H16A—C16—H16C109.5
C2—O1—H1109.5H16B—C16—H16C109.5
C1—N2—C10—C1584.6 (12)C10'—N2'—C1—N2108 (10)
C3—N2—C10—C1582.6 (9)C3—N2'—C1—N276 (6)
C1—N2—C10—C11102.0 (11)C10'—N2'—C1—N1172 (3)
C3—N2—C10—C1190.9 (9)C3—N2'—C1—N14 (3)
C15—C10—C11—C123.5 (7)C10'—N2'—C1—S11 (5)
N2—C10—C11—C12170.2 (4)C3—N2'—C1—S1176.9 (12)
C10—C11—C12—C131.1 (5)C1—N1—C2—O197.38 (16)
C11—C12—C13—O4176.0 (3)C4—N1—C2—O167.5 (2)
C11—C12—C13—C145.0 (5)C1—N1—C2—C320.43 (18)
O4—C13—C14—C15176.9 (3)C4—N1—C2—C3174.67 (14)
C12—C13—C14—C154.1 (5)C1—N2—C3—O2100.6 (7)
C11—C10—C15—C144.4 (7)C10—N2—C3—O268.6 (9)
N2—C10—C15—C14169.0 (4)C1—N2—C3—N2'95 (8)
C13—C14—C15—C100.6 (5)C10—N2—C3—N2'75 (7)
C14—C13—O4—C176.4 (13)C1—N2—C3—C222.7 (8)
C12—C13—O4—C17174.6 (13)C10—N2—C3—C2168.1 (7)
C1—N2'—C10'—C11'123 (3)C1—N2'—C3—O2113 (2)
C3—N2'—C10'—C11'62 (4)C10'—N2'—C3—O264 (3)
C1—N2'—C10'—C15'74 (4)C1—N2'—C3—N273 (6)
C3—N2'—C10'—C15'102 (3)C10'—N2'—C3—N2111 (10)
C15'—C10'—C11'—C12'4 (2)C1—N2'—C3—C29 (3)
N2'—C10'—C11'—C12'166.4 (17)C10'—N2'—C3—C2175 (3)
C10'—C11'—C12'—C13'1.4 (19)O1—C2—C3—O2143.51 (15)
C11'—C12'—C13'—C14'0.6 (18)N1—C2—C3—O298.64 (16)
C11'—C12'—C13'—O4'176.8 (10)O1—C2—C3—N293.6 (5)
C12'—C13'—C14'—C15'2.3 (16)N1—C2—C3—N224.3 (5)
O4'—C13'—C14'—C15'175.4 (8)O1—C2—C3—N2'101.0 (17)
C13'—C14'—C15'—C10'4.6 (17)N1—C2—C3—N2'16.9 (17)
C11'—C10'—C15'—C14'6 (2)C1—N1—C4—C564.1 (2)
N2'—C10'—C15'—C14'168.7 (14)C2—N1—C4—C598.2 (2)
C12'—C13'—O4'—C17'7 (4)C1—N1—C4—C9121.2 (2)
C14'—C13'—O4'—C17'176 (4)C2—N1—C4—C976.4 (2)
C10—N2—C1—N1178.6 (9)C9—C4—C5—C60.7 (3)
C3—N2—C1—N110.9 (9)N1—C4—C5—C6173.91 (17)
C10—N2—C1—N2'76 (7)C4—C5—C6—C70.3 (3)
C3—N2—C1—N2'92 (8)C16—O3—C7—C8175.2 (3)
C10—N2—C1—S13.1 (14)C16—O3—C7—C65.4 (4)
C3—N2—C1—S1170.9 (4)C5—C6—C7—O3179.8 (2)
C4—N1—C1—N2170.5 (6)C5—C6—C7—C80.4 (3)
C2—N1—C1—N26.9 (6)O3—C7—C8—C9180.0 (3)
C4—N1—C1—N2'179.4 (19)C6—C7—C8—C90.5 (4)
C2—N1—C1—N2'15.8 (19)C7—C8—C9—C40.0 (4)
C4—N1—C1—S17.7 (3)C5—C4—C9—C80.6 (3)
C2—N1—C1—S1171.30 (13)N1—C4—C9—C8174.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.992.7971 (19)169
O1—H1···S1ii0.822.403.1799 (14)158
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O4S
Mr346.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)13.9807 (12), 12.1789 (11), 10.0958 (9)
β (°) 93.815 (1)
V3)1715.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.49 × 0.35 × 0.34
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.904, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
12720, 3179, 2654
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.03
No. of reflections3179
No. of parameters244
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.992.7971 (19)169.1
O1—H1···S1ii0.822.403.1799 (14)158.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

Financial support from Henan Normal University and the `Innovation Scientists and Technicians Troop Construction projects of Henan province' (grant No. 2008IRTSTHN002) is gratefully acknowledged. The authors also thank the Physiochemical Analysis Measurement Laboratory, College of Chemistry, Luoyang Normal University, for performing the X-ray analysis.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C.-H., Weber, P. C., Jackson, D. A., Sharpe, T. R. & Erickson-Viitanen, S. (1994). Science, 263, 380–384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLenzen, S. & Ahmad, R. (2001). Ger. Offen. DE10012401.  Google Scholar
First citationPerronnet, J. & Teche, A. (1973). US Patent 3905996.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z., Wei, M., Wang, J. & Zhang, G. (2009). Acta Cryst. E65, o2389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z.-F., Zhang, J.-M., Guo, J.-P. & Qu, G.-R. (2007). Acta Cryst. E63, o2821–o2823.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds