organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-N-(phenyl­sulfon­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 September 2009; accepted 5 October 2009; online 10 October 2009)

In the title compound, C10H13NO3S, the N—H and C=O bonds in the SO2—NH—CO—C segment are anti to each other. The benzene ring and the SO2—NH—CO—C segment form a dihedral angle of 87.4 (1)°. The crystal packing features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For sulfonamide drugs, see: Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309-327.]). It has been postulated that the propensity for hydrogen bonding in the solid state can give rise to polymorphism due to the presence of various hydrogen-bond donors and acceptors, see: Yang & Guillory (1972[Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.]). The hydrogen bonding preferences of sulfon­amides have also been investigated, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). The nature and position of substituents play a significant role in the crystal structures of N-(ar­yl)sulfonoamides, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1522.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1492.],c[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008c). Acta Cryst. E64, o1410.]);

[Scheme 1]

Experimental

Crystal data
  • C10H13NO3S

  • Mr = 227.27

  • Monoclinic, P 21 /c

  • a = 6.1240 (4) Å

  • b = 22.201 (2) Å

  • c = 8.9192 (9) Å

  • β = 106.903 (6)°

  • V = 1160.26 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.40 mm−1

  • T = 299 K

  • 0.50 × 0.13 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2732 measured reflections

  • 2075 independent reflections

  • 1755 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.213

  • S = 1.08

  • 2075 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.81 (4) 2.12 (5) 2.898 (4) 160 (4)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamide drugs that exhibit antibacterial activity contain the sulfanilamide moiety (Maren, 1976). It has been postulated that the propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides have also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role in the crystal structures of N-(aryl)sulfonoamides (Gowda et al., 2008a, b, c).

As part of our substituent effect studies, the structure of (I) has been determined. The N—H and C=O bonds of the SO2—NH—CO—C segment in (I) are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)2,2,2-trimethylacetamide (II)(Gowda et al., 2008c), N-(phenylsulfonyl)2,2-dichloroacetamide (III) (Gowda et al., 2008a) and other sulfonoamides (Gowda et al., 2008b). The SO2—NH—CO—C segment forms a dihedral angle of 87.4 (1)° with the benzene ring, compared to values of 83.2 (1) and 76.0 (1)° (for the two independent molecules of (II)) and 79.8 (1)° in (III). In the crystal the molecules form inversion-related dimers along the c axis, linked by pairs of N—H···O(S) hydrogen bonds (Table 1, Fig.2).

Related literature top

Sulfonamide drugs that exhibit antibacterial activity contain the sulfanilamide moiety, see: Maren (1976). It has been postulated that the propensity for hydrogen bonding in the solid state, see: Yang & Guillory (1972). The hydrogen bonding preferences of sulfonamides have also been investigated, see: Adsmond & Grant (2001). The nature and position of substituents play a significant role in the crystal structures of N-(aryl)sulfonoamides, see: Gowda et al. (2008a,b,c);

Experimental top

The title compound was prepared by refluxing benzenesulfonamide (0.10 mole) with an excess of isobutanoyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atom of the NH group was located in a difference map and and its position refined with N—H = 0.81 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å.

All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

Sulfonamide drugs that exhibit antibacterial activity contain the sulfanilamide moiety (Maren, 1976). It has been postulated that the propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides have also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role in the crystal structures of N-(aryl)sulfonoamides (Gowda et al., 2008a, b, c).

As part of our substituent effect studies, the structure of (I) has been determined. The N—H and C=O bonds of the SO2—NH—CO—C segment in (I) are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)2,2,2-trimethylacetamide (II)(Gowda et al., 2008c), N-(phenylsulfonyl)2,2-dichloroacetamide (III) (Gowda et al., 2008a) and other sulfonoamides (Gowda et al., 2008b). The SO2—NH—CO—C segment forms a dihedral angle of 87.4 (1)° with the benzene ring, compared to values of 83.2 (1) and 76.0 (1)° (for the two independent molecules of (II)) and 79.8 (1)° in (III). In the crystal the molecules form inversion-related dimers along the c axis, linked by pairs of N—H···O(S) hydrogen bonds (Table 1, Fig.2).

Sulfonamide drugs that exhibit antibacterial activity contain the sulfanilamide moiety, see: Maren (1976). It has been postulated that the propensity for hydrogen bonding in the solid state, see: Yang & Guillory (1972). The hydrogen bonding preferences of sulfonamides have also been investigated, see: Adsmond & Grant (2001). The nature and position of substituents play a significant role in the crystal structures of N-(aryl)sulfonoamides, see: Gowda et al. (2008a,b,c);

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,2-Dimethyl-N-(phenylsulfonyl)acetamide top
Crystal data top
C10H13NO3SF(000) = 480
Mr = 227.27Dx = 1.301 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.1240 (4) Åθ = 4.0–20.3°
b = 22.201 (2) ŵ = 2.40 mm1
c = 8.9192 (9) ÅT = 299 K
β = 106.903 (6)°Rod, colourless
V = 1160.26 (17) Å30.50 × 0.13 × 0.08 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.047
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 4.0°
Graphite monochromatorh = 07
ω/2θ scansk = 264
2732 measured reflectionsl = 1010
2075 independent reflections3 standard reflections every 120 min
1755 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.213 w = 1/[σ2(Fo2) + (0.1492P)2 + 0.3098P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2075 reflectionsΔρmax = 0.78 e Å3
140 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (4)
Crystal data top
C10H13NO3SV = 1160.26 (17) Å3
Mr = 227.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.1240 (4) ŵ = 2.40 mm1
b = 22.201 (2) ÅT = 299 K
c = 8.9192 (9) Å0.50 × 0.13 × 0.08 mm
β = 106.903 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.047
2732 measured reflections3 standard reflections every 120 min
2075 independent reflections intensity decay: 1.0%
1755 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.213H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.78 e Å3
2075 reflectionsΔρmin = 0.58 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4133 (5)0.36281 (13)0.1597 (3)0.0566 (7)
C20.6038 (6)0.3479 (2)0.1164 (5)0.0806 (10)
H20.67060.37510.06370.097*
C30.6932 (8)0.2901 (3)0.1549 (7)0.1103 (19)
H30.82120.27820.12630.132*
C40.5957 (12)0.2509 (2)0.2337 (7)0.117 (2)
H40.65870.21280.25910.141*
C50.4070 (11)0.26677 (19)0.2757 (6)0.1049 (15)
H50.34180.23970.32970.126*
C60.3138 (7)0.32271 (16)0.2382 (4)0.0734 (9)
H60.18380.33370.26550.088*
C70.0475 (5)0.41022 (15)0.1737 (4)0.0627 (8)
C80.0133 (7)0.42667 (17)0.3429 (4)0.0721 (9)
H80.05820.46890.34590.087*
C90.1661 (13)0.3903 (4)0.4061 (7)0.162 (3)
H9A0.13240.34840.39880.194*
H9B0.32160.39800.34700.194*
H9C0.14430.40080.51390.194*
C100.2332 (10)0.4217 (3)0.4352 (6)0.123 (2)
H10A0.32270.44790.39080.148*
H10B0.28350.38090.43210.148*
H10C0.25140.43320.54200.148*
N10.2199 (5)0.44210 (13)0.0704 (3)0.0632 (8)
H1N0.280 (7)0.4703 (19)0.101 (5)0.076*
O10.1032 (5)0.43906 (11)0.1775 (3)0.0754 (7)
O20.4768 (5)0.47818 (11)0.1727 (3)0.0779 (8)
O30.0530 (5)0.37102 (14)0.1283 (3)0.0923 (10)
S10.29657 (13)0.43493 (3)0.12050 (8)0.0570 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0624 (17)0.0556 (16)0.0489 (15)0.0002 (12)0.0118 (13)0.0021 (11)
C20.0643 (19)0.094 (3)0.084 (2)0.0031 (18)0.0227 (17)0.020 (2)
C30.074 (3)0.120 (4)0.122 (4)0.030 (3)0.005 (3)0.043 (3)
C40.137 (5)0.080 (3)0.105 (4)0.038 (3)0.012 (3)0.005 (3)
C50.144 (4)0.071 (2)0.094 (3)0.014 (3)0.026 (3)0.021 (2)
C60.090 (2)0.0648 (19)0.0673 (19)0.0021 (17)0.0261 (17)0.0103 (15)
C70.0627 (17)0.0669 (18)0.0547 (17)0.0113 (14)0.0112 (14)0.0026 (13)
C80.083 (2)0.076 (2)0.0534 (18)0.0139 (17)0.0147 (16)0.0006 (15)
C90.184 (7)0.226 (8)0.096 (4)0.083 (6)0.074 (4)0.015 (5)
C100.113 (4)0.163 (5)0.068 (3)0.016 (3)0.015 (3)0.003 (3)
N10.0731 (17)0.0619 (16)0.0497 (14)0.0170 (12)0.0104 (12)0.0071 (11)
O10.0876 (17)0.0760 (16)0.0715 (15)0.0129 (12)0.0370 (13)0.0004 (11)
O20.0986 (18)0.0689 (14)0.0570 (13)0.0292 (12)0.0081 (12)0.0041 (10)
O30.0977 (19)0.108 (2)0.0663 (15)0.0501 (16)0.0162 (13)0.0048 (13)
S10.0701 (6)0.0519 (5)0.0477 (5)0.0063 (3)0.0153 (4)0.0007 (3)
Geometric parameters (Å, º) top
C1—C21.372 (5)C7—C81.507 (4)
C1—C61.379 (5)C8—C91.466 (7)
C1—S11.747 (3)C8—C101.499 (6)
C2—C31.400 (7)C8—H80.9800
C2—H20.9300C9—H9A0.9600
C3—C41.361 (8)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.361 (8)C10—H10A0.9600
C4—H40.9300C10—H10B0.9600
C5—C61.367 (6)C10—H10C0.9600
C5—H50.9300N1—S11.637 (3)
C6—H60.9300N1—H1N0.81 (4)
C7—O31.202 (4)O1—S11.420 (3)
C7—N11.378 (4)O2—S11.435 (2)
C2—C1—C6121.7 (3)C9—C8—H8107.5
C2—C1—S1119.7 (3)C10—C8—H8107.5
C6—C1—S1118.6 (3)C7—C8—H8107.5
C1—C2—C3117.1 (4)C8—C9—H9A109.5
C1—C2—H2121.4C8—C9—H9B109.5
C3—C2—H2121.4H9A—C9—H9B109.5
C4—C3—C2121.0 (4)C8—C9—H9C109.5
C4—C3—H3119.5H9A—C9—H9C109.5
C2—C3—H3119.5H9B—C9—H9C109.5
C5—C4—C3120.8 (4)C8—C10—H10A109.5
C5—C4—H4119.6C8—C10—H10B109.5
C3—C4—H4119.6H10A—C10—H10B109.5
C4—C5—C6119.7 (5)C8—C10—H10C109.5
C4—C5—H5120.1H10A—C10—H10C109.5
C6—C5—H5120.1H10B—C10—H10C109.5
C5—C6—C1119.7 (4)C7—N1—S1125.3 (2)
C5—C6—H6120.1C7—N1—H1N120 (3)
C1—C6—H6120.1S1—N1—H1N114 (3)
O3—C7—N1120.9 (3)O1—S1—O2118.90 (16)
O3—C7—C8125.3 (3)O1—S1—N1110.43 (16)
N1—C7—C8113.7 (3)O2—S1—N1103.49 (14)
C9—C8—C10113.7 (5)O1—S1—C1108.82 (15)
C9—C8—C7109.5 (4)O2—S1—C1108.49 (16)
C10—C8—C7110.9 (4)N1—S1—C1105.91 (14)
C6—C1—C2—C30.2 (5)O3—C7—N1—S14.4 (5)
S1—C1—C2—C3178.2 (3)C8—C7—N1—S1179.4 (3)
C1—C2—C3—C40.8 (7)C7—N1—S1—O150.6 (3)
C2—C3—C4—C50.6 (8)C7—N1—S1—O2178.9 (3)
C3—C4—C5—C60.2 (8)C7—N1—S1—C167.1 (3)
C4—C5—C6—C10.8 (7)C2—C1—S1—O1179.6 (3)
C2—C1—C6—C50.6 (6)C6—C1—S1—O11.4 (3)
S1—C1—C6—C5177.5 (3)C2—C1—S1—O248.8 (3)
O3—C7—C8—C988.9 (6)C6—C1—S1—O2129.3 (3)
N1—C7—C8—C987.0 (5)C2—C1—S1—N161.7 (3)
O3—C7—C8—C1037.3 (6)C6—C1—S1—N1120.1 (3)
N1—C7—C8—C10146.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.81 (4)2.12 (5)2.898 (4)160 (4)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13NO3S
Mr227.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)6.1240 (4), 22.201 (2), 8.9192 (9)
β (°) 106.903 (6)
V3)1160.26 (17)
Z4
Radiation typeCu Kα
µ (mm1)2.40
Crystal size (mm)0.50 × 0.13 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2732, 2075, 1755
Rint0.047
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.213, 1.08
No. of reflections2075
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.58

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.81 (4)2.12 (5)2.898 (4)160 (4)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008c). Acta Cryst. E64, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationYang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds