organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z)-4-[(4-Meth­oxy­benzyl­amino)(phen­yl)methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin, People's Republic of China, bElementary Education College, Tianjin Normal University, Weijin Road No. 241, Tianjin, People's Republic of China, and cState Key Laboratory of Enlemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hsxyxhz@mail.tjnu.edu.cn, zyq8165@126.com

(Received 21 September 2009; accepted 5 October 2009; online 17 October 2009)

In the title compound, C25H23N3O2, the dihedral angles formed by the pyrazolone ring with the three aromatic rings are 14.59 (7), 79.35 (5) and 87.10 (6)°. Three intra­molecular C—H⋯O, C—H⋯N and N—H⋯O hydrogen-bond inter­actions are present. The crystal structure is stabilized by two weak inter­molecular C—H⋯O and C—H⋯N hydrogen-bond inter­actions.

Related literature

For the biological activity of 1-phenyl-3-methyl-4-benzoyl­pyrazolon-5-one and its metal complexes, see: Li et al. (1997[Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98-100.]); Liu et al. (1980[Liu, J.-M., Yang, R.-D. & Ma, T.-R. (1980). Chem. J. Chin. Univ. 1, 23-29.]); Zhou et al. (1999[Zhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37-41.]). For a related structure, see: Wang et al. (2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N3O2

  • Mr = 397.46

  • Orthorhombic, P b c a

  • a = 17.685 (4) Å

  • b = 11.613 (2) Å

  • c = 20.568 (4) Å

  • V = 4224.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.990

  • 32552 measured reflections

  • 4852 independent reflections

  • 4332 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.135

  • S = 1.12

  • 4852 reflections

  • 278 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.96 (2) 1.86 (2) 2.6751 (17) 141.3 (18)
C2—H2⋯O1 0.95 2.28 2.8956 (19) 122
C6—H6⋯N1 0.95 2.49 2.812 (2) 100
C25—H25C⋯O1i 0.98 2.57 3.538 (2) 169
C24—H24⋯N1ii 0.95 2.61 3.551 (2) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (HPMBP), an effective β-diketonate, is widely used and well known for its extractive ability. In recent years, HPMBP and its metal complexes have also been found to have good antibacterial and biological properties. Its metal complexes have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). In order to develop new medicines, we have synthesized the title compound, (I), and its structure is reported here.

The structure of (I) is shown in Fig. 1. The dihedral angles formed by the pyrazolone ring with the three benzene rings C1···C6, C12···C17 and C19···C24 are 14.59 (7), 79.35 (5) and 87.10 (6)°, respectively. The O atom of the 3-methyl-1-phenylpyrazol-5-one moiety and the N atom of the amino group are available for coordination with metals. The pyrazole ring is planar and atoms O1, C7, C8, C11 and N3 are almost coplanar fwith an rmsd value of 0.0093 and the largest deviation is 0.0144 (10) Å for atom C7. The dihedral angle between this mean plane and the pyrazoline ring of PMBP is 3.53 (7)°, close to the value of 3.56 (3)° found in 4-{[3,4-dihydro-5- methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene(phenyl)methylamino}- 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one(Wang et al., 2003). The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. A strong intramolecular N3—H3A···O1 hydrogen bond (Table 1) is observed, leading to a keto-enamine form. The molecule is further stabilized by a C—H···O weak intramolecular hydrogen bond (Table 1). The crystal structure also involves two weak intermolecular(C—H···O and C—H···N) hydrogen-bond interactions(Fig. 2).

Related literature top

For the biological activity of 1-phenyl-3-methyl-4-benzoylpyrazolon-5-one and its metal complexes, see: Li et al. (1997); Liu et al. (1980); Zhou et al. (1999). For a related structure, see: Wang et al. (2003).

Experimental top

Compound (I) was synthesized by refluxing a mixture of 1-phenyl-3- methyl-4-benzoylpyrazol-5-one (10 mmol) and 4-methoxybenzylamine (10 mmol) in ethanol (80 ml) over a steam bath for about 4 h. Excess solvent was removed by evaporation and the solution was cooled to room temperature. After 2 days a yellow solid was obtained and this was dried in air. The product was recrystallized from ethanol, to afford yellow crystals of (I) suitable for X-ray analysis.

Refinement top

C-bonded H atoms were positioned geometrically, with C—H = 0.95–0.99 Å and amine H atoms (H3) were found in a difference map. Amine H atoms were refined freely, while C-bonded H atoms were included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(CH2 and CH) or 1.5Ueq(CH3).

Structure description top

1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (HPMBP), an effective β-diketonate, is widely used and well known for its extractive ability. In recent years, HPMBP and its metal complexes have also been found to have good antibacterial and biological properties. Its metal complexes have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). In order to develop new medicines, we have synthesized the title compound, (I), and its structure is reported here.

The structure of (I) is shown in Fig. 1. The dihedral angles formed by the pyrazolone ring with the three benzene rings C1···C6, C12···C17 and C19···C24 are 14.59 (7), 79.35 (5) and 87.10 (6)°, respectively. The O atom of the 3-methyl-1-phenylpyrazol-5-one moiety and the N atom of the amino group are available for coordination with metals. The pyrazole ring is planar and atoms O1, C7, C8, C11 and N3 are almost coplanar fwith an rmsd value of 0.0093 and the largest deviation is 0.0144 (10) Å for atom C7. The dihedral angle between this mean plane and the pyrazoline ring of PMBP is 3.53 (7)°, close to the value of 3.56 (3)° found in 4-{[3,4-dihydro-5- methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene(phenyl)methylamino}- 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one(Wang et al., 2003). The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. A strong intramolecular N3—H3A···O1 hydrogen bond (Table 1) is observed, leading to a keto-enamine form. The molecule is further stabilized by a C—H···O weak intramolecular hydrogen bond (Table 1). The crystal structure also involves two weak intermolecular(C—H···O and C—H···N) hydrogen-bond interactions(Fig. 2).

For the biological activity of 1-phenyl-3-methyl-4-benzoylpyrazolon-5-one and its metal complexes, see: Li et al. (1997); Liu et al. (1980); Zhou et al. (1999). For a related structure, see: Wang et al. (2003).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen bonds (dashed line) in the structure of (I).
(4Z)-4-[(4-Methoxybenzylamino)(phenyl)methylene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C25H23N3O2F(000) = 1680
Mr = 397.46Dx = 1.250 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10389 reflections
a = 17.685 (4) Åθ = 2.3–27.5°
b = 11.613 (2) ŵ = 0.08 mm1
c = 20.568 (4) ÅT = 113 K
V = 4224.1 (15) Å3Block, yellow
Z = 80.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4852 independent reflections
Radiation source: rotating anode4332 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.043
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω and φ scansh = 2220
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1514
Tmin = 0.984, Tmax = 0.990l = 2026
32552 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0569P)2 + 1.4565P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
4852 reflectionsΔρmax = 0.23 e Å3
278 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0196 (15)
Crystal data top
C25H23N3O2V = 4224.1 (15) Å3
Mr = 397.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.685 (4) ŵ = 0.08 mm1
b = 11.613 (2) ÅT = 113 K
c = 20.568 (4) Å0.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4852 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4332 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.990Rint = 0.043
32552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.23 e Å3
4852 reflectionsΔρmin = 0.28 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03774 (6)0.05679 (9)0.39451 (5)0.0342 (3)
O20.22937 (8)0.44370 (11)0.33811 (7)0.0532 (4)
N10.04301 (7)0.34722 (11)0.44256 (6)0.0315 (3)
N20.02452 (7)0.25809 (10)0.39929 (6)0.0290 (3)
N30.11039 (8)0.01861 (11)0.50035 (6)0.0336 (3)
C10.01072 (8)0.28454 (13)0.33938 (7)0.0295 (3)
C20.04472 (9)0.19813 (14)0.30272 (7)0.0355 (4)
H20.04540.12110.31820.043*
C30.07760 (10)0.22525 (16)0.24341 (8)0.0411 (4)
H30.10020.16620.21810.049*
C40.07778 (9)0.33747 (17)0.22084 (8)0.0429 (4)
H40.09980.35540.17990.051*
C50.04572 (9)0.42288 (16)0.25824 (9)0.0438 (4)
H50.04680.50020.24320.053*
C60.01187 (9)0.39786 (14)0.31747 (8)0.0370 (4)
H60.01030.45740.34280.044*
C70.04567 (8)0.15137 (13)0.42300 (7)0.0283 (3)
C80.07883 (8)0.17516 (12)0.48542 (7)0.0277 (3)
C90.07448 (8)0.29768 (13)0.49309 (7)0.0299 (3)
C100.09843 (10)0.37075 (15)0.54929 (8)0.0404 (4)
H10A0.08780.45180.53960.061*
H10B0.15280.36080.55680.061*
H10C0.07040.34750.58830.061*
C110.11209 (8)0.08831 (13)0.52273 (7)0.0282 (3)
C120.15154 (8)0.11208 (13)0.58498 (7)0.0294 (3)
C130.11171 (9)0.12018 (16)0.64250 (8)0.0404 (4)
H130.05850.10950.64280.048*
C140.14969 (11)0.1440 (2)0.69986 (9)0.0541 (5)
H140.12230.14960.73950.065*
C150.22707 (11)0.15964 (19)0.69975 (9)0.0521 (5)
H150.25270.17670.73920.063*
C160.26706 (10)0.15051 (18)0.64253 (9)0.0482 (5)
H160.32030.16090.64250.058*
C170.22957 (9)0.12621 (15)0.58515 (8)0.0391 (4)
H170.25720.11920.54580.047*
C180.14345 (10)0.12099 (14)0.53081 (8)0.0359 (4)
H18A0.10580.15780.55970.043*
H18B0.18770.09860.55740.043*
C190.16749 (8)0.20464 (13)0.47878 (7)0.0306 (3)
C200.22998 (9)0.18247 (13)0.44036 (8)0.0339 (3)
H200.25750.11300.44640.041*
C210.25327 (9)0.26025 (15)0.39292 (8)0.0372 (4)
H210.29650.24480.36700.045*
C220.21200 (10)0.36117 (14)0.38418 (8)0.0385 (4)
C230.14925 (10)0.38372 (14)0.42166 (9)0.0407 (4)
H230.12130.45270.41520.049*
C240.12701 (9)0.30591 (14)0.46861 (8)0.0368 (4)
H240.08360.32160.49430.044*
C250.29322 (13)0.42679 (19)0.30302 (11)0.0608 (6)
H25A0.28900.35450.27870.091*
H25B0.30000.49080.27260.091*
H25C0.33680.42280.33240.091*
H3A0.0837 (12)0.0281 (18)0.4599 (11)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0433 (6)0.0283 (5)0.0310 (6)0.0064 (4)0.0066 (5)0.0041 (4)
O20.0675 (9)0.0387 (7)0.0535 (8)0.0109 (6)0.0160 (7)0.0121 (6)
N10.0359 (7)0.0267 (6)0.0319 (7)0.0000 (5)0.0018 (5)0.0022 (5)
N20.0344 (6)0.0255 (6)0.0269 (6)0.0027 (5)0.0032 (5)0.0009 (5)
N30.0400 (7)0.0312 (7)0.0296 (7)0.0079 (5)0.0056 (6)0.0008 (5)
C10.0267 (7)0.0347 (8)0.0272 (7)0.0056 (6)0.0025 (6)0.0042 (6)
C20.0405 (9)0.0354 (8)0.0307 (8)0.0088 (7)0.0035 (7)0.0005 (6)
C30.0411 (9)0.0521 (10)0.0302 (8)0.0103 (8)0.0047 (7)0.0026 (7)
C40.0336 (8)0.0629 (12)0.0320 (8)0.0079 (8)0.0004 (7)0.0131 (8)
C50.0352 (9)0.0487 (10)0.0477 (10)0.0009 (7)0.0018 (8)0.0218 (8)
C60.0329 (8)0.0357 (8)0.0425 (9)0.0016 (6)0.0005 (7)0.0108 (7)
C70.0299 (7)0.0273 (7)0.0276 (7)0.0031 (6)0.0002 (6)0.0004 (5)
C80.0280 (7)0.0285 (7)0.0267 (7)0.0015 (5)0.0001 (6)0.0012 (6)
C90.0299 (7)0.0297 (7)0.0303 (7)0.0006 (6)0.0018 (6)0.0013 (6)
C100.0497 (10)0.0336 (8)0.0378 (9)0.0015 (7)0.0051 (7)0.0052 (7)
C110.0254 (7)0.0323 (8)0.0269 (7)0.0018 (6)0.0022 (6)0.0015 (6)
C120.0286 (7)0.0318 (8)0.0279 (7)0.0016 (6)0.0013 (6)0.0031 (6)
C130.0307 (8)0.0582 (11)0.0323 (8)0.0071 (7)0.0015 (7)0.0060 (7)
C140.0499 (11)0.0811 (15)0.0314 (9)0.0092 (10)0.0008 (8)0.0084 (9)
C150.0494 (11)0.0669 (13)0.0401 (10)0.0066 (9)0.0157 (8)0.0040 (9)
C160.0314 (9)0.0588 (12)0.0544 (11)0.0081 (8)0.0117 (8)0.0021 (9)
C170.0301 (8)0.0485 (10)0.0386 (9)0.0048 (7)0.0014 (7)0.0069 (7)
C180.0413 (9)0.0319 (8)0.0345 (8)0.0082 (7)0.0011 (7)0.0058 (6)
C190.0329 (7)0.0262 (7)0.0328 (8)0.0039 (6)0.0060 (6)0.0046 (6)
C200.0355 (8)0.0295 (8)0.0368 (8)0.0004 (6)0.0045 (6)0.0012 (6)
C210.0370 (8)0.0384 (9)0.0361 (8)0.0049 (7)0.0006 (7)0.0013 (7)
C220.0477 (9)0.0313 (8)0.0363 (8)0.0100 (7)0.0142 (7)0.0058 (7)
C230.0437 (9)0.0297 (8)0.0486 (10)0.0033 (7)0.0167 (8)0.0020 (7)
C240.0338 (8)0.0338 (8)0.0427 (9)0.0014 (6)0.0095 (7)0.0070 (7)
C250.0666 (13)0.0546 (12)0.0614 (13)0.0193 (10)0.0103 (11)0.0208 (10)
Geometric parameters (Å, º) top
O1—C71.2527 (18)C11—C121.484 (2)
O2—C251.354 (3)C12—C131.380 (2)
O2—C221.382 (2)C12—C171.390 (2)
N1—C91.3118 (19)C13—C141.386 (2)
N1—N21.4037 (17)C13—H130.9500
N2—C71.3834 (19)C14—C151.381 (3)
N2—C11.4145 (19)C14—H140.9500
N3—C111.325 (2)C15—C161.377 (3)
N3—C181.4656 (19)C15—H150.9500
N3—H3A0.96 (2)C16—C171.383 (2)
C1—C61.391 (2)C16—H160.9500
C1—C21.392 (2)C17—H170.9500
C2—C31.388 (2)C18—C191.507 (2)
C2—H20.9500C18—H18A0.9900
C3—C41.383 (3)C18—H18B0.9900
C3—H30.9500C19—C201.383 (2)
C4—C51.377 (3)C19—C241.393 (2)
C4—H40.9500C20—C211.392 (2)
C5—C61.388 (2)C20—H200.9500
C5—H50.9500C21—C221.392 (2)
C6—H60.9500C21—H210.9500
C7—C81.438 (2)C22—C231.376 (3)
C8—C111.397 (2)C23—C241.380 (2)
C8—C91.434 (2)C23—H230.9500
C9—C101.495 (2)C24—H240.9500
C10—H10A0.9800C25—H25A0.9800
C10—H10B0.9800C25—H25B0.9800
C10—H10C0.9800C25—H25C0.9800
C25—O2—C22116.75 (16)C17—C12—C11119.41 (14)
C9—N1—N2106.13 (12)C12—C13—C14119.75 (15)
C7—N2—N1111.97 (11)C12—C13—H13120.1
C7—N2—C1128.37 (13)C14—C13—H13120.1
N1—N2—C1119.66 (12)C15—C14—C13120.36 (17)
C11—N3—C18127.07 (13)C15—C14—H14119.8
C11—N3—H3A114.7 (12)C13—C14—H14119.8
C18—N3—H3A118.2 (13)C16—C15—C14120.02 (17)
C6—C1—C2120.02 (14)C16—C15—H15120.0
C6—C1—N2119.60 (14)C14—C15—H15120.0
C2—C1—N2120.38 (14)C15—C16—C17119.93 (16)
C3—C2—C1119.58 (16)C15—C16—H16120.0
C3—C2—H2120.2C17—C16—H16120.0
C1—C2—H2120.2C16—C17—C12120.16 (16)
C4—C3—C2120.65 (17)C16—C17—H17119.9
C4—C3—H3119.7C12—C17—H17119.9
C2—C3—H3119.7N3—C18—C19109.38 (12)
C5—C4—C3119.34 (16)N3—C18—H18A109.8
C5—C4—H4120.3C19—C18—H18A109.8
C3—C4—H4120.3N3—C18—H18B109.8
C4—C5—C6121.13 (16)C19—C18—H18B109.8
C4—C5—H5119.4H18A—C18—H18B108.2
C6—C5—H5119.4C20—C19—C24118.83 (15)
C5—C6—C1119.25 (16)C20—C19—C18120.76 (14)
C5—C6—H6120.4C24—C19—C18120.40 (14)
C1—C6—H6120.4C19—C20—C21121.08 (15)
O1—C7—N2126.17 (13)C19—C20—H20119.5
O1—C7—C8129.17 (14)C21—C20—H20119.5
N2—C7—C8104.65 (12)C20—C21—C22118.79 (16)
C11—C8—C9132.73 (14)C20—C21—H21120.6
C11—C8—C7121.55 (13)C22—C21—H21120.6
C9—C8—C7105.49 (12)C23—C22—O2115.55 (16)
N1—C9—C8111.77 (13)C23—C22—C21120.70 (15)
N1—C9—C10118.93 (14)O2—C22—C21123.75 (17)
C8—C9—C10129.28 (14)C22—C23—C24119.82 (15)
C9—C10—H10A109.5C22—C23—H23120.1
C9—C10—H10B109.5C24—C23—H23120.1
H10A—C10—H10B109.5C23—C24—C19120.77 (16)
C9—C10—H10C109.5C23—C24—H24119.6
H10A—C10—H10C109.5C19—C24—H24119.6
H10B—C10—H10C109.5O2—C25—H25A109.5
N3—C11—C8118.43 (13)O2—C25—H25B109.5
N3—C11—C12119.01 (13)H25A—C25—H25B109.5
C8—C11—C12122.52 (13)O2—C25—H25C109.5
C13—C12—C17119.77 (14)H25A—C25—H25C109.5
C13—C12—C11120.82 (13)H25B—C25—H25C109.5
C9—N1—N2—C70.73 (16)C7—C8—C11—N32.2 (2)
C9—N1—N2—C1180.00 (12)C9—C8—C11—C121.8 (2)
C7—N2—C1—C6165.17 (15)C7—C8—C11—C12175.44 (13)
N1—N2—C1—C614.0 (2)N3—C11—C12—C1397.80 (19)
C7—N2—C1—C215.4 (2)C8—C11—C12—C1384.6 (2)
N1—N2—C1—C2165.43 (13)N3—C11—C12—C1782.15 (19)
C6—C1—C2—C32.0 (2)C8—C11—C12—C1795.49 (18)
N2—C1—C2—C3178.63 (14)C17—C12—C13—C140.9 (3)
C1—C2—C3—C40.9 (2)C11—C12—C13—C14179.12 (17)
C2—C3—C4—C50.8 (3)C12—C13—C14—C150.0 (3)
C3—C4—C5—C61.4 (3)C13—C14—C15—C160.6 (3)
C4—C5—C6—C10.3 (2)C14—C15—C16—C170.3 (3)
C2—C1—C6—C51.4 (2)C15—C16—C17—C120.6 (3)
N2—C1—C6—C5179.19 (14)C13—C12—C17—C161.2 (3)
N1—N2—C7—O1178.48 (14)C11—C12—C17—C16178.80 (16)
C1—N2—C7—O10.7 (2)C11—N3—C18—C19148.95 (15)
N1—N2—C7—C80.62 (16)N3—C18—C19—C2072.31 (18)
C1—N2—C7—C8179.82 (13)N3—C18—C19—C24107.74 (16)
O1—C7—C8—C113.6 (2)C24—C19—C20—C211.0 (2)
N2—C7—C8—C11175.44 (13)C18—C19—C20—C21178.92 (14)
O1—C7—C8—C9178.78 (15)C19—C20—C21—C220.6 (2)
N2—C7—C8—C90.28 (15)C25—O2—C22—C23176.45 (16)
N2—N1—C9—C80.52 (16)C25—O2—C22—C214.4 (2)
N2—N1—C9—C10178.04 (13)C20—C21—C22—C230.1 (2)
C11—C8—C9—N1174.23 (15)C20—C21—C22—O2179.21 (14)
C7—C8—C9—N10.16 (17)O2—C22—C23—C24179.45 (14)
C11—C8—C9—C107.4 (3)C21—C22—C23—C240.3 (2)
C7—C8—C9—C10178.22 (15)C22—C23—C24—C190.2 (2)
C18—N3—C11—C8178.28 (14)C20—C19—C24—C230.9 (2)
C18—N3—C11—C120.5 (2)C18—C19—C24—C23179.10 (14)
C9—C8—C11—N3175.86 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.96 (2)1.86 (2)2.6751 (17)141.3 (18)
C2—H2···O10.952.282.8956 (19)122
C6—H6···N10.952.492.812 (2)100
C25—H25C···O1i0.982.573.538 (2)169
C24—H24···N1ii0.952.613.551 (2)174
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H23N3O2
Mr397.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)17.685 (4), 11.613 (2), 20.568 (4)
V3)4224.1 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.984, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
32552, 4852, 4332
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.135, 1.12
No. of reflections4852
No. of parameters278
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.96 (2)1.86 (2)2.6751 (17)141.3 (18)
C2—H2···O10.952.282.8956 (19)122.1
C6—H6···N10.952.492.812 (2)100
C25—H25C···O1i0.982.573.538 (2)168.6
C24—H24···N1ii0.952.613.551 (2)174
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20772066).

References

First citationLi, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationLiu, J.-M., Yang, R.-D. & Ma, T.-R. (1980). Chem. J. Chin. Univ. 1, 23–29.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem. 16, 37–41.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds