organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­carbonyl­pyridinium di­fluoro­acetate at 123 K

aStrathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: j.bardin@strath.ac.uk

(Received 23 September 2009; accepted 21 October 2009; online 28 October 2009)

In the crystal of the title compound, C6H7N2O+·C2HF2O2, the cation adopts a catemeric N—H⋯O hydrogen-bonded chain motif involving the carboxamide group, with two further N—H⋯O hydrogen bonds connecting the cations to adjacent difluoro­acetate anions via the carboxamide and pyridinium N atoms. The carboxamide group of the nicotinamidium ion is twisted by 32.3 (6)° from the pyridine ring plane. A number of C—H⋯O and C—H⋯F interactions consolidate the packing.

Related literature

For nicotinamide, see: Wright & King (1954[Wright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283-288.]); Miwa et al. (1999[Miwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78-84.]); Hino et al. (2001[Hino, T., Ford, J. L. & Powell, M. W. (2001). Thermochim. Acta, 374, 85-92.]). For nicotinamide solvates, co-crystals and salts, see: Bardin et al. (2009[Bardin, J., Kennedy, A. R., Wong, L. V., Johnston, B. F. & Florence, A. J. (2009). Acta Cryst. E65, o727-o728.]); Koman et al. (2003[Koman, M., Martiška, L., Valigura, D. & Glowiak, T. (2003). Acta Cryst. E59, o441-o442.]); Athimoolam & Natarajan (2007a[Athimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, o1811-o1813.],b[Athimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, o2430-o2432.]); Fleischman et al. (2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]); Berry et al. (2008[Berry, D. J., Seaton, C. C., Clegg, W., Harrington, R. W., Coles, S. J., Horton, P. N., Hurthouse, M. B., Storey, R., Jones, W., Friščić, T. & Blagden, N. (2008). Cryst. Growth Des. 8, 1697-1712.]). Identification was initially made using multi-sample foil transmission X-ray powder diffraction analysis, see: Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O+·C2HF2O2

  • Mr = 218.16

  • Monoclinic, P 21 /c

  • a = 4.9888 (2) Å

  • b = 25.6147 (12) Å

  • c = 7.2006 (4) Å

  • β = 105.912 (2)°

  • V = 884.88 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 123 K

  • 0.30 × 0.10 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.929, Tmax = 0.997

  • 8921 measured reflections

  • 2201 independent reflections

  • 2087 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.05

  • 2201 reflections

  • 152 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.920 (12) 2.589 (17) 3.2275 (12) 127.0 (13)
N1—H1N⋯O3i 0.920 (12) 1.675 (12) 2.5921 (12) 174.3 (17)
N2—H2N⋯O1ii 0.895 (16) 2.099 (15) 2.9801 (12) 167.9 (13)
N2—H3N⋯O3 0.863 (15) 2.046 (15) 2.8836 (11) 163.2 (13)
C1—H1⋯O1i 0.95 2.30 3.1763 (13) 154
C3—H3⋯F1iii 0.95 2.53 3.1645 (13) 124
C4—H4⋯F2iv 0.95 2.50 3.2885 (13) 141
C5—H5⋯O2iv 0.95 2.40 3.2458 (13) 149
C8—H6⋯O2ii 0.960 (14) 2.405 (15) 3.2403 (14) 145.2 (11)
C8—H6⋯O2v 0.960 (14) 2.577 (13) 3.3558 (13) 138.3 (12)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Nicotinamide (C6H6N2O, NA) is a member of the vitamin B group that includes pyridoxine, riboflavin and thiamine and its crystal structure was first determined in 1954 (Wright & King, 1954). Additional experimental investigations of charge density (Miwa et al.,1999) and polymorphism (Hino et al., 2001) have also been reported although the crystal structures of other polymorphic forms have not been published. A number of multicomponent crystalline forms have been investigated including a trifluoroethanol solvate (Bardin et al., 2009), 3,5-dinitrosalicylate (Koman et al., 2003), 2R,3R-tartrate hydrate (Athimoolam & Natarajan, 2007a) and trifluoroacetate (Athimoolam & Natarajan, 2007b) salts. Co-crystals of NA have also been reported with drugs such as carbamazepine (Fleischman et al., 2003), salicylic acid and both the racemic and single enantiomer (S(+)) forms of ibuprofen (Berry et al., 2008).

The difluoroacetate (DFA-) salt reported here (Scheme 1) was discovered during a study of multicomponent crystal formation involving fluorinated solvents and a range of organic compounds. The ions in the NA+ DFA- salt crystallize in space group P21/c with one NA+ cation and one DFA- anion in the asymmetric unit (Fig.1). The internal C1—N1—C5 angle of the pyridinium ring in NA+ DFA- is 122.13 (9)°, in close agreement to the value reported in the NA+ TFA- salt (122.5 (4)°) but represents a significant increase over the the non-ionized form of NA (117.59 (7)°, Miwa et al., 1999). In the DFA- salt, as in the TFA- salt and NA structures, the carboxamide group is not coplanar with the pyridinium ring with the angle between the planes of these groups being 32.30 (6)° [16.3 (8)° and 22.16 (4)° for NA+ TFA- and NA respectively]. The packing in NA+ DFA- consists of hydrogen bonded chains of NA+ ions extending parallel to the a-axis via contact N2—H2N···O1 between the anti-oriented H atom of the NH2 group and the carbonyl O-atom, O1 (Fig. 2). Each cation forms an N—H···O hydrogen bond to O3 on a DFA- ion and this atom also accepts a second N—H···O hydrogen bond from a neighbouring cation in a parallel chain (Figure 3), that connect adjacent chains resulting in a two-dimensional sheet lying parallel to the ac plane. The remaining O-atom on the DFA- ion, O2, whilst not involved in any hydrogen bonds is involved in three C—H···O contacts to two DFA- ions and a cation. One further C—H···O contact is observed between O1 and C1—H1 on the pyridinium ring in a parallel chain of cations. C—H···F contacts are also observed (C3—H3···F1 and C4—H4···F2, see Table 2).

Related literature top

For nicotinamide, see: Wright & King (1954); Miwa et al. (1999); Hino et al. (2001). For nicotinamide solvates, co-crystals and salts, see: Bardin et al. (2009); Koman et al. (2003); Athimoolam & Natarajan (2007a,b); Fleischman et al. (2003); Berry et al. (2008).

For related literature, see: Florence et al. (2003).

Experimental top

The novel structure reported here was discovered during a study of multicomponent crystal formation in organic compounds using a range of fluorinated acids. Identification of the novel phase was initially made using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003) and a suitable single-crystal for structure determination was obtained by isothermal evaporation at 278 K of a saturated solution of nicotinamide in DFAA.

Refinement top

Aromatic H atoms bound to C were placed in idealized positions and in a riding mode, with C—H distance set to 0.95Å and Uiso equal to 1.2 times Ueq of the parent atom. All other H atoms were located by difference synthesis and then refined isotropically.

Structure description top

Nicotinamide (C6H6N2O, NA) is a member of the vitamin B group that includes pyridoxine, riboflavin and thiamine and its crystal structure was first determined in 1954 (Wright & King, 1954). Additional experimental investigations of charge density (Miwa et al.,1999) and polymorphism (Hino et al., 2001) have also been reported although the crystal structures of other polymorphic forms have not been published. A number of multicomponent crystalline forms have been investigated including a trifluoroethanol solvate (Bardin et al., 2009), 3,5-dinitrosalicylate (Koman et al., 2003), 2R,3R-tartrate hydrate (Athimoolam & Natarajan, 2007a) and trifluoroacetate (Athimoolam & Natarajan, 2007b) salts. Co-crystals of NA have also been reported with drugs such as carbamazepine (Fleischman et al., 2003), salicylic acid and both the racemic and single enantiomer (S(+)) forms of ibuprofen (Berry et al., 2008).

The difluoroacetate (DFA-) salt reported here (Scheme 1) was discovered during a study of multicomponent crystal formation involving fluorinated solvents and a range of organic compounds. The ions in the NA+ DFA- salt crystallize in space group P21/c with one NA+ cation and one DFA- anion in the asymmetric unit (Fig.1). The internal C1—N1—C5 angle of the pyridinium ring in NA+ DFA- is 122.13 (9)°, in close agreement to the value reported in the NA+ TFA- salt (122.5 (4)°) but represents a significant increase over the the non-ionized form of NA (117.59 (7)°, Miwa et al., 1999). In the DFA- salt, as in the TFA- salt and NA structures, the carboxamide group is not coplanar with the pyridinium ring with the angle between the planes of these groups being 32.30 (6)° [16.3 (8)° and 22.16 (4)° for NA+ TFA- and NA respectively]. The packing in NA+ DFA- consists of hydrogen bonded chains of NA+ ions extending parallel to the a-axis via contact N2—H2N···O1 between the anti-oriented H atom of the NH2 group and the carbonyl O-atom, O1 (Fig. 2). Each cation forms an N—H···O hydrogen bond to O3 on a DFA- ion and this atom also accepts a second N—H···O hydrogen bond from a neighbouring cation in a parallel chain (Figure 3), that connect adjacent chains resulting in a two-dimensional sheet lying parallel to the ac plane. The remaining O-atom on the DFA- ion, O2, whilst not involved in any hydrogen bonds is involved in three C—H···O contacts to two DFA- ions and a cation. One further C—H···O contact is observed between O1 and C1—H1 on the pyridinium ring in a parallel chain of cations. C—H···F contacts are also observed (C3—H3···F1 and C4—H4···F2, see Table 2).

For nicotinamide, see: Wright & King (1954); Miwa et al. (1999); Hino et al. (2001). For nicotinamide solvates, co-crystals and salts, see: Bardin et al. (2009); Koman et al. (2003); Athimoolam & Natarajan (2007a,b); Fleischman et al. (2003); Berry et al. (2008).

For related literature, see: Florence et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The NA+ cations form chain motifs via N2—H2N···O1 interactions between carboxamide groups with two further N—H···O contacts formed to the DFA- anions.
[Figure 3] Fig. 3. Chains of NA+ cations propagate down the a-axis with atom O3 connecting adjacent catemeric chains of cations (shown end on) via two N—H···O hydrogen bonds to N2—H3N on the carboxamide and N1—H1N on the pyridinium ring.
3-Aminocarbonylpyridinium difluoroacetate top
Crystal data top
C6H7N2O+·C2HF2O2F(000) = 448
Mr = 218.16Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6311 reflections
a = 4.9888 (2) Åθ = 2.9–28.4°
b = 25.6147 (12) ŵ = 0.15 mm1
c = 7.2006 (4) ÅT = 123 K
β = 105.912 (2)°Slab, colourless
V = 884.88 (7) Å30.30 × 0.10 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2201 independent reflections
Radiation source: fine-focus sealed tube2087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 66
Tmin = 0.929, Tmax = 0.997k = 3234
8921 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.323P]
where P = (Fo2 + 2Fc2)/3
2201 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C6H7N2O+·C2HF2O2V = 884.88 (7) Å3
Mr = 218.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9888 (2) ŵ = 0.15 mm1
b = 25.6147 (12) ÅT = 123 K
c = 7.2006 (4) Å0.30 × 0.10 × 0.02 mm
β = 105.912 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2201 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2087 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.997Rint = 0.015
8921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
2201 reflectionsΔρmin = 0.31 e Å3
152 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80371 (15)0.74427 (3)0.79966 (12)0.0214 (2)
N10.11038 (17)0.87200 (3)0.62567 (12)0.0159 (2)
N20.36157 (18)0.71520 (3)0.75584 (14)0.0186 (3)
C10.19020 (19)0.82177 (4)0.64341 (14)0.0146 (2)
C20.44978 (19)0.80807 (4)0.76136 (14)0.0139 (2)
C30.6222 (2)0.84727 (4)0.86318 (15)0.0176 (3)
C40.5320 (2)0.89865 (4)0.84480 (15)0.0199 (3)
C50.2730 (2)0.91037 (4)0.72202 (15)0.0187 (3)
C60.5522 (2)0.75269 (4)0.77430 (14)0.0149 (2)
F10.12172 (14)0.59643 (3)0.66362 (11)0.0300 (2)
F20.27896 (15)0.52181 (3)0.59164 (10)0.0292 (2)
O20.73632 (16)0.53207 (3)0.90515 (13)0.0238 (3)
O30.61539 (15)0.61630 (3)0.89351 (11)0.0201 (2)
C70.56993 (19)0.56809 (4)0.85520 (14)0.0147 (2)
C80.2715 (2)0.55331 (4)0.74290 (15)0.0177 (3)
H10.068100.795500.574800.0180*
H1N0.063 (2)0.8784 (7)0.543 (2)0.045 (5)*
H2N0.185 (3)0.7234 (6)0.750 (2)0.026 (4)*
H30.801100.838800.945000.0210*
H3N0.422 (3)0.6835 (6)0.773 (2)0.027 (4)*
H40.646800.925500.915700.0240*
H50.210600.945500.706000.0220*
H60.171 (3)0.5363 (5)0.822 (2)0.017 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0136 (4)0.0203 (4)0.0305 (4)0.0040 (3)0.0065 (3)0.0053 (3)
N10.0135 (4)0.0148 (4)0.0183 (4)0.0022 (3)0.0027 (3)0.0026 (3)
N20.0156 (4)0.0124 (4)0.0281 (5)0.0020 (3)0.0066 (3)0.0021 (3)
C10.0130 (4)0.0137 (4)0.0168 (4)0.0002 (3)0.0034 (3)0.0009 (3)
C20.0132 (4)0.0132 (4)0.0154 (4)0.0012 (3)0.0042 (3)0.0020 (3)
C30.0140 (4)0.0181 (5)0.0186 (4)0.0002 (3)0.0011 (3)0.0005 (3)
C40.0196 (5)0.0156 (5)0.0223 (5)0.0022 (4)0.0023 (4)0.0023 (4)
C50.0202 (5)0.0139 (4)0.0218 (5)0.0017 (3)0.0054 (4)0.0009 (3)
C60.0144 (4)0.0152 (4)0.0149 (4)0.0025 (3)0.0039 (3)0.0021 (3)
F10.0183 (3)0.0226 (3)0.0402 (4)0.0048 (2)0.0072 (3)0.0045 (3)
F20.0318 (4)0.0254 (3)0.0267 (4)0.0055 (3)0.0020 (3)0.0094 (3)
O20.0151 (4)0.0154 (4)0.0377 (5)0.0025 (3)0.0019 (3)0.0020 (3)
O30.0158 (3)0.0128 (3)0.0276 (4)0.0002 (3)0.0007 (3)0.0019 (3)
C70.0122 (4)0.0140 (4)0.0175 (4)0.0006 (3)0.0036 (3)0.0005 (3)
C80.0146 (4)0.0146 (4)0.0216 (5)0.0006 (3)0.0011 (4)0.0003 (4)
Geometric parameters (Å, º) top
F1—C81.3676 (13)C1—C21.3851 (14)
F2—C81.3642 (13)C2—C61.5020 (14)
O1—C61.2364 (13)C2—C31.3928 (14)
O2—C71.2272 (13)C3—C41.3854 (15)
O3—C71.2721 (13)C4—C51.3838 (15)
N1—C11.3425 (13)C1—H10.9500
N1—C51.3405 (13)C3—H30.9500
N2—C61.3323 (13)C4—H40.9500
N1—H1N0.920 (12)C5—H50.9500
N2—H2N0.895 (16)C7—C81.5342 (14)
N2—H3N0.863 (15)C8—H60.960 (14)
F1···C3i3.1645 (13)C1···O1xi3.1802 (13)
F1···O32.6133 (11)C1···N2iii3.2748 (14)
F1···C4i3.1997 (13)C1···O1i3.1763 (13)
F2···C4ii3.2885 (13)C1···O3i3.3389 (13)
F2···C4iii3.1834 (13)C3···N1vii3.3972 (14)
F2···F2iv2.9535 (11)C3···F1vi3.1645 (13)
F2···F2v3.0741 (11)C4···F2x3.1834 (13)
F2···O22.7472 (11)C4···O3iii3.4089 (13)
F2···C5iii3.1716 (13)C4···F2xii3.2885 (13)
F1···H4i2.6100C4···F1vi3.1997 (13)
F1···H3i2.5300C5···O2i3.3464 (14)
F1···H3N2.682 (15)C5···C8iii3.5712 (15)
F2···H4iii2.8400C5···F2x3.1716 (13)
F2···H5iii2.8300C5···O3iii3.3459 (13)
F2···H4ii2.5000C5···C7iii3.4089 (14)
O1···C1vi3.1763 (13)C5···O2xii3.2458 (13)
O1···C1vii3.1802 (13)C7···C5x3.4089 (14)
O1···N2vii2.9801 (12)C7···N1vi3.2463 (13)
O2···C8vii3.2403 (14)C8···C5x3.5712 (15)
O2···F22.7472 (11)C8···O2ix3.3558 (13)
O2···O2viii3.0848 (12)C8···O2xi3.2403 (14)
O2···C8ix3.3558 (13)C1···H2Niii3.054 (14)
O2···C5ii3.2458 (13)C1···H2N2.636 (15)
O2···N1vi3.2275 (12)C7···H3N3.065 (15)
O2···C5vi3.3464 (14)C7···H1Nvi2.388 (14)
O3···F12.6133 (11)H1···O1i2.3000
O3···C5x3.3459 (13)H1···H2N2.2200
O3···N22.8836 (11)H1···N22.6500
O3···N1vi2.5921 (12)H1···O1xi2.6900
O3···C1vi3.3389 (13)H1N···O3i1.675 (12)
O3···C4x3.4089 (13)H1N···C7i2.388 (14)
O1···H2Nvii2.099 (15)H1N···O2i2.589 (17)
O1···H32.6400H2N···C1x3.054 (14)
O1···H1vi2.3000H2N···O1xi2.099 (15)
O1···H1vii2.6900H2N···C12.636 (15)
O2···H6ix2.577 (13)H2N···H12.2200
O2···H1Nvi2.589 (17)H3···O12.6400
O2···H6vii2.405 (15)H3···F1vi2.5300
O2···H5vi2.7900H3N···F12.682 (15)
O2···H5ii2.4000H3N···O32.046 (15)
O3···H3N2.046 (15)H3N···C73.065 (15)
O3···H1Nvi1.675 (12)H4···F2x2.8400
N1···C3xi3.3972 (14)H4···F2xii2.5000
N1···C7i3.2463 (13)H4···F1vi2.6100
N1···O2i3.2275 (12)H5···F2x2.8300
N1···O3i2.5921 (12)H5···O2i2.7900
N2···O32.8836 (11)H5···O2xii2.4000
N2···O1xi2.9801 (12)H6···O2xi2.405 (15)
N2···C1x3.2748 (14)H6···O2ix2.577 (13)
N2···H12.6500
C1—N1—C5122.13 (9)C2—C1—H1120.00
C1—N1—H1N115.7 (11)C2—C3—H3120.00
C5—N1—H1N122.2 (11)C4—C3—H3120.00
C6—N2—H2N120.1 (10)C3—C4—H4120.00
H2N—N2—H3N121.9 (14)C5—C4—H4120.00
C6—N2—H3N116.9 (10)N1—C5—H5120.00
N1—C1—C2120.28 (9)C4—C5—H5120.00
C1—C2—C6121.49 (9)O2—C7—O3126.89 (10)
C1—C2—C3118.61 (9)O2—C7—C8116.72 (9)
C3—C2—C6119.85 (9)O3—C7—C8116.32 (9)
C2—C3—C4119.80 (10)F1—C8—F2106.01 (8)
C3—C4—C5119.28 (10)F1—C8—C7111.16 (8)
N1—C5—C4119.88 (9)F2—C8—C7109.38 (8)
O1—C6—C2119.22 (9)F1—C8—H6107.4 (9)
N2—C6—C2116.95 (9)F2—C8—H6109.8 (8)
O1—C6—N2123.83 (10)C7—C8—H6112.9 (9)
N1—C1—H1120.00
C5—N1—C1—C21.18 (15)C3—C2—C6—O130.80 (14)
C1—N1—C5—C40.15 (15)C3—C2—C6—N2149.70 (10)
N1—C1—C2—C31.24 (15)C2—C3—C4—C51.27 (15)
N1—C1—C2—C6176.03 (9)C3—C4—C5—N11.38 (15)
C1—C2—C3—C40.02 (15)O2—C7—C8—F1168.25 (9)
C6—C2—C3—C4177.30 (9)O2—C7—C8—F251.53 (12)
C1—C2—C6—O1146.44 (10)O3—C7—C8—F114.57 (12)
C1—C2—C6—N233.06 (14)O3—C7—C8—F2131.29 (9)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+3/2, z+1/2; (vii) x+1, y, z; (viii) x+2, y+1, z+2; (ix) x+1, y+1, z+2; (x) x, y+3/2, z+1/2; (xi) x1, y, z; (xii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.920 (12)2.589 (17)3.2275 (12)127.0 (13)
N1—H1N···O3i0.920 (12)1.675 (12)2.5921 (12)174.3 (17)
N2—H2N···O1xi0.895 (16)2.099 (15)2.9801 (12)167.9 (13)
N2—H3N···O30.863 (15)2.046 (15)2.8836 (11)163.2 (13)
C1—H1···O1i0.952.303.1763 (13)154
C3—H3···F1vi0.952.533.1645 (13)124
C4—H4···F2xii0.952.503.2885 (13)141
C5—H5···O2xii0.952.403.2458 (13)149
C8—H6···O2xi0.960 (14)2.405 (15)3.2403 (14)145.2 (11)
C8—H6···O2ix0.960 (14)2.577 (13)3.3558 (13)138.3 (12)
Symmetry codes: (i) x1, y+3/2, z1/2; (vi) x+1, y+3/2, z+1/2; (ix) x+1, y+1, z+2; (xi) x1, y, z; (xii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H7N2O+·C2HF2O2
Mr218.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)4.9888 (2), 25.6147 (12), 7.2006 (4)
β (°) 105.912 (2)
V3)884.88 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.10 × 0.02
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.929, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
8921, 2201, 2087
Rint0.015
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.05
No. of reflections2201
No. of parameters152
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.920 (12)2.589 (17)3.2275 (12)127.0 (13)
N1—H1N···O3i0.920 (12)1.675 (12)2.5921 (12)174.3 (17)
N2—H2N···O1ii0.895 (16)2.099 (15)2.9801 (12)167.9 (13)
N2—H3N···O30.863 (15)2.046 (15)2.8836 (11)163.2 (13)
C1—H1···O1i0.95002.30003.1763 (13)154.00
C3—H3···F1iii0.95002.53003.1645 (13)124.00
C4—H4···F2iv0.95002.50003.2885 (13)141.00
C5—H5···O2iv0.95002.40003.2458 (13)149.00
C8—H6···O2ii0.960 (14)2.405 (15)3.2403 (14)145.2 (11)
C8—H6···O2v0.960 (14)2.577 (13)3.3558 (13)138.3 (12)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the University of Strathclyde for funding JB, the Basic Technology programme of the UK Research Councils for project funding under the Control and Prediction of the Organic Solid State (www.cposs.org.uk) and the Glasgow Centre for Physical Organic Chemistry for access to single-crystal diffraction facilities.

References

First citationAthimoolam, S. & Natarajan, S. (2007a). Acta Cryst. E63, o1811–o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAthimoolam, S. & Natarajan, S. (2007b). Acta Cryst. E63, o2430–o2432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBardin, J., Kennedy, A. R., Wong, L. V., Johnston, B. F. & Florence, A. J. (2009). Acta Cryst. E65, o727–o728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerry, D. J., Seaton, C. C., Clegg, W., Harrington, R. W., Coles, S. J., Horton, P. N., Hurthouse, M. B., Storey, R., Jones, W., Friščić, T. & Blagden, N. (2008). Cryst. Growth Des. 8, 1697–1712.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHino, T., Ford, J. L. & Powell, M. W. (2001). Thermochim. Acta, 374, 85-92.  Web of Science CrossRef CAS Google Scholar
First citationKoman, M., Martiška, L., Valigura, D. & Glowiak, T. (2003). Acta Cryst. E59, o441–o442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiwa, Y., Mizuno, T., Tsuchida, K., Taga, T. & Iwata, Y. (1999). Acta Cryst. B55, 78–84.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283–288.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds