metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl­anilinium) di­aqua­bis­[di­hydrogendiphosphato(2−)]cobaltate(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: ahmedselmi09@yahoo.fr

(Received 7 October 2009; accepted 23 October 2009; online 31 October 2009)

In the title cobalt(II) complex with 2-methyl­anilinium and diphosphate, (C7H10N)2[Co(H2P2O7)2(H2O)2], a three-dimensional network is built up from anionic layers of [Co(H2P2O7)2(H2O)2]2− units and 2-methyl­anilinium cations located between these layers. The dihydrogendiphosphate groups present a bent eclipsed conformation, while the Co2+ ions lie on inversion centers. An intricate network of O—H⋯O and N—H⋯O hydrogen bonds is established between the different components, assuring the cohesion of the network with other inter­actions, being of electrostatic and van der Waals nature.

Related literature

For organic-inorganic transition metal frameworks, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268-3292.]); Clearfield (1998[Clearfield, A. (1998). Chem. Mater. 10, 2801-2810.]). For the role played by diphosphates in inter­actions between metal centers, see: Xu et al. (2008[Xu, J. Y., Tian, J. L., Zhang, Q. W., Zhao, J., Yan, S. P. & Liao, D. Z. (2008). Inorg. Chem. Commun. 11, 69-72.]). For related structures, see: Essehli et al. (2006[Essehli, R., El Bali, B., Lachkar, M., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m538-m541.]); Gharbi et al. (1994[Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330-337.]); Gharbi & Jouini (2004[Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11-13.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)2[Co(H2P2O7)2(H2O)2]

  • Mr = 663.19

  • Triclinic, [P \overline 1]

  • a = 7.440 (4) Å

  • b = 7.455 (2) Å

  • c = 11.747 (3) Å

  • α = 91.92 (3)°

  • β = 94.09 (5)°

  • γ = 104.67 (2)°

  • V = 627.8 (4) Å3

  • Z = 1

  • Ag Kα radiation

  • μ = 0.53 mm−1

  • T = 298 K

  • 0.33 × 0.26 × 0.23 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4678 measured reflections

  • 4486 independent reflections

  • 3911 reflections with I > 2σ(I)

  • Rint = 0.008

  • 2 standard reflections frequency: 120 min intensity decay: 7%

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.08

  • 4486 reflections

  • 181 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O3i 0.82 1.75 2.5712 (17) 177
O2—H2⋯O7ii 0.82 1.71 2.522 (2) 169
O8—H2W⋯O2iii 0.842 (9) 1.978 (10) 2.8199 (18) 179 (3)
O8—H1W⋯O4i 0.842 (9) 2.202 (13) 3.020 (2) 164 (3)
N1—H1A⋯O7iii 0.89 1.89 2.7788 (18) 177
N1—H1B⋯O5 0.89 2.31 3.0083 (19) 135
N1—H1B⋯O1iv 0.89 2.48 3.105 (2) 127
N1—H1C⋯O3i 0.89 1.94 2.821 (2) 168
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organic inorganic transition metal frameworks can be usefully employed in diverse areas, such as shape selective catalysis or adsorption (Cheetham et al., 1999; Clearfield, 1998). In such compounds the transition metal plays a key role for building interesting topologies with one-, two- or three-dimensional networks. In these atomic arrangements, the transition element is coordinated generally to ligands via several donor atoms such as oxygen or nitrogen. In recent years, many researchers have focused on diphosphates because they are powerful ligands that can link metal ions through their oxygen atoms, and can play an essential role in the interaction between the metallic centers (Xu et al., 2008).

The title compound, is built up from a diaquabis[dihydrogendiphosphato(2)]cobaltate(II) anion and two organic 2-methylanilinium cations (Fig. 1). A half of the complex anion and one organic cation constitute the asymmetric unit of (I).

The metal complex anions, interconnected via hydrogen bonds involving the two hydroxyl groups of H2P2O72- and the water molecule, develop a thick bi-dimensional layer of formula [Co(H2P2O7)2(H2O)2]2n- perpendicular to the c axis (Fig. 2). The protonated organic cations 2-CH3C6H4NH3+ are anchored between these layers .

With regard to the inorganic arrangement, the Co atom is located on an inversion center and is surrounded by two symmetry related dihydrogendiphosphate ligands with a bent eclipsed conformation as seen by the P1—O4—P2 angle of 129.26 (7)% , and two water molecules in an octahedral coordination. Four external O atoms, OE, in the basal plane from two bidendate [H2P2O7] groups and the two remaining O atoms, OW, in the apical positions from the water molecule give a slightly distorted CoO6 octahedron. Within this octahedron, the Co—O distances range from 2.057 (1) to 2.149 (1) Å with Cu—OW distances longer than those of Co—OE. A similar coordination geometry around the central atom has also been observed in other MIIO6 octahedra, MII = Co or Ni, in organic diphosphate compounds (Essehli et al., 2006; Gharbi et al., 1994; Gharbi et al., 2004).

Analysis of hydrogen bonds within (I), revealed an intricate network of O—H···O and N—H···O bonds which along with other interactions (electrostatic and Van der Waals) stabilize the whole structure. The O—H···O contacts, with O—H···O distances ranging from 2.522 (2) to 3.020 (2) Å, link the complex anions while the N—H···O bonds linking the anions and cations are weaker since the N—H···O distances are longer, ranging from 2.779 (2) to 3.105 (2) Å. These H-bonds (Table 1) participate in the cohesion of the three-dimensional network (Fig 2).

Related literature top

For organic-inorganic transition metal frameworks, see: Cheetham et al. (1999); Clearfield (1998). For the role played by diphosphates in interactions between metal centers, see: Xu et al. (2008). For related structures, see: Essehli et al. (2006); Gharbi et al. (1994, 2004).

Experimental top

Crystals of the title compound were prepared by adding an ethanol solution (10 ml) of 2-methylaniline (7.52 mmol) dropwise to a mixture of H4P2O7 (3.75 mmol) and CoCl2 (1.88 mmol) in water (20 ml). Good quality green prisms were obtained after a slow evaporation during few days at ambient temperature. The diphosphoric acid, H4P2O7, was produced from Na4P2O7 by using an ion-exchange resin (Amberlite IR 120).

Structure description top

Organic inorganic transition metal frameworks can be usefully employed in diverse areas, such as shape selective catalysis or adsorption (Cheetham et al., 1999; Clearfield, 1998). In such compounds the transition metal plays a key role for building interesting topologies with one-, two- or three-dimensional networks. In these atomic arrangements, the transition element is coordinated generally to ligands via several donor atoms such as oxygen or nitrogen. In recent years, many researchers have focused on diphosphates because they are powerful ligands that can link metal ions through their oxygen atoms, and can play an essential role in the interaction between the metallic centers (Xu et al., 2008).

The title compound, is built up from a diaquabis[dihydrogendiphosphato(2)]cobaltate(II) anion and two organic 2-methylanilinium cations (Fig. 1). A half of the complex anion and one organic cation constitute the asymmetric unit of (I).

The metal complex anions, interconnected via hydrogen bonds involving the two hydroxyl groups of H2P2O72- and the water molecule, develop a thick bi-dimensional layer of formula [Co(H2P2O7)2(H2O)2]2n- perpendicular to the c axis (Fig. 2). The protonated organic cations 2-CH3C6H4NH3+ are anchored between these layers .

With regard to the inorganic arrangement, the Co atom is located on an inversion center and is surrounded by two symmetry related dihydrogendiphosphate ligands with a bent eclipsed conformation as seen by the P1—O4—P2 angle of 129.26 (7)% , and two water molecules in an octahedral coordination. Four external O atoms, OE, in the basal plane from two bidendate [H2P2O7] groups and the two remaining O atoms, OW, in the apical positions from the water molecule give a slightly distorted CoO6 octahedron. Within this octahedron, the Co—O distances range from 2.057 (1) to 2.149 (1) Å with Cu—OW distances longer than those of Co—OE. A similar coordination geometry around the central atom has also been observed in other MIIO6 octahedra, MII = Co or Ni, in organic diphosphate compounds (Essehli et al., 2006; Gharbi et al., 1994; Gharbi et al., 2004).

Analysis of hydrogen bonds within (I), revealed an intricate network of O—H···O and N—H···O bonds which along with other interactions (electrostatic and Van der Waals) stabilize the whole structure. The O—H···O contacts, with O—H···O distances ranging from 2.522 (2) to 3.020 (2) Å, link the complex anions while the N—H···O bonds linking the anions and cations are weaker since the N—H···O distances are longer, ranging from 2.779 (2) to 3.105 (2) Å. These H-bonds (Table 1) participate in the cohesion of the three-dimensional network (Fig 2).

For organic-inorganic transition metal frameworks, see: Cheetham et al. (1999); Clearfield (1998). For the role played by diphosphates in interactions between metal centers, see: Xu et al. (2008). For related structures, see: Essehli et al. (2006); Gharbi et al. (1994, 2004).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.[Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Projection of (I) along the a axis.
Bis(2-methylanilinium) diaquabis[dihydrogendiphosphato(2-)]cobaltate(II) top
Crystal data top
(C7H10N)2[Co(H2P2O7)2(H2O)2]Z = 1
Mr = 663.19F(000) = 341
Triclinic, P1Dx = 1.754 Mg m3
a = 7.440 (4) ÅAg Kα radiation, λ = 0.56085 Å
b = 7.455 (2) ÅCell parameters from 25 reflections
c = 11.747 (3) Åθ = 9–11°
α = 91.92 (3)°µ = 0.53 mm1
β = 94.09 (5)°T = 298 K
γ = 104.67 (2)°Prism, pink
V = 627.8 (4) Å30.33 × 0.26 × 0.23 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
Radiation source: Enraf Nonius FR590θmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 1111
Non–profiled ω scansk = 1111
4678 measured reflectionsl = 017
4486 independent reflections2 standard reflections every 120 min
3911 reflections with I > 2σ(I) intensity decay: 7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.209P]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.43 e Å3
3 restraintsΔρmin = 0.29 e Å3
Crystal data top
(C7H10N)2[Co(H2P2O7)2(H2O)2]γ = 104.67 (2)°
Mr = 663.19V = 627.8 (4) Å3
Triclinic, P1Z = 1
a = 7.440 (4) ÅAg Kα radiation, λ = 0.56085 Å
b = 7.455 (2) ŵ = 0.53 mm1
c = 11.747 (3) ÅT = 298 K
α = 91.92 (3)°0.33 × 0.26 × 0.23 mm
β = 94.09 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
4678 measured reflections2 standard reflections every 120 min
4486 independent reflections intensity decay: 7%
3911 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
4486 reflectionsΔρmin = 0.29 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.01548 (6)
P10.21765 (4)0.73669 (4)0.39318 (3)0.01617 (7)
P20.27309 (4)0.74457 (4)0.64170 (3)0.01643 (7)
O10.37007 (14)0.64107 (14)0.38682 (8)0.02204 (18)
O20.29044 (15)0.94783 (14)0.37491 (11)0.0272 (2)
H20.40170.97180.36470.041*
O30.04241 (14)0.65899 (15)0.31845 (9)0.0253 (2)
O40.15097 (14)0.73056 (16)0.52080 (9)0.02389 (19)
O50.39173 (14)0.61111 (14)0.63563 (8)0.02138 (18)
O60.11785 (15)0.68728 (15)0.72493 (9)0.0258 (2)
H60.06300.57760.71160.039*
O70.37403 (15)0.94287 (14)0.67018 (10)0.0275 (2)
O80.25633 (15)0.27064 (15)0.49415 (11)0.0291 (2)
N10.29299 (18)0.25923 (18)0.76160 (10)0.0234 (2)
H1A0.31610.15540.73400.035*
H1B0.38210.35660.74450.035*
H1C0.18320.26870.73080.035*
C10.2890 (2)0.2541 (2)0.88612 (12)0.0242 (3)
C20.4492 (2)0.2523 (2)0.95316 (14)0.0313 (3)
C30.4354 (3)0.2471 (3)1.07075 (16)0.0469 (5)
H30.54070.24711.11840.056*
C40.2716 (4)0.2419 (4)1.11818 (16)0.0550 (6)
H40.26680.23901.19700.066*
C50.1146 (3)0.2411 (4)1.04945 (18)0.0579 (6)
H50.00260.23561.08150.069*
C60.1229 (3)0.2486 (3)0.93204 (15)0.0439 (5)
H6A0.01730.24990.88490.053*
C70.6297 (3)0.2562 (4)0.90335 (19)0.0530 (6)
H7A0.61740.14290.85870.079*
H7B0.72640.26850.96390.079*
H7C0.66090.35960.85550.079*
H2W0.266 (3)0.174 (2)0.458 (2)0.052 (7)*
H1W0.149 (2)0.287 (4)0.481 (2)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01533 (10)0.01613 (11)0.01672 (11)0.00681 (8)0.00249 (8)0.00182 (8)
P10.01346 (13)0.01654 (13)0.01897 (14)0.00477 (10)0.00046 (10)0.00225 (10)
P20.01503 (13)0.01627 (13)0.01831 (14)0.00417 (10)0.00368 (10)0.00060 (10)
O10.0232 (4)0.0268 (5)0.0211 (4)0.0146 (4)0.0039 (3)0.0048 (3)
O20.0226 (5)0.0166 (4)0.0435 (6)0.0046 (3)0.0094 (4)0.0045 (4)
O30.0192 (4)0.0266 (5)0.0276 (5)0.0033 (4)0.0058 (4)0.0029 (4)
O40.0175 (4)0.0356 (5)0.0208 (4)0.0104 (4)0.0031 (3)0.0036 (4)
O50.0249 (4)0.0240 (4)0.0188 (4)0.0124 (4)0.0029 (3)0.0005 (3)
O60.0244 (5)0.0267 (5)0.0252 (5)0.0023 (4)0.0113 (4)0.0023 (4)
O70.0236 (5)0.0172 (4)0.0402 (6)0.0018 (4)0.0081 (4)0.0043 (4)
O80.0194 (5)0.0226 (5)0.0449 (6)0.0051 (4)0.0037 (4)0.0048 (4)
N10.0260 (5)0.0274 (6)0.0187 (5)0.0100 (4)0.0022 (4)0.0020 (4)
C10.0268 (6)0.0295 (7)0.0181 (5)0.0105 (5)0.0013 (5)0.0029 (5)
C20.0302 (7)0.0405 (8)0.0249 (7)0.0136 (6)0.0025 (5)0.0005 (6)
C30.0520 (11)0.0671 (14)0.0254 (8)0.0252 (10)0.0082 (7)0.0032 (8)
C40.0703 (15)0.0815 (17)0.0207 (7)0.0315 (13)0.0095 (8)0.0077 (9)
C50.0507 (12)0.101 (2)0.0299 (9)0.0290 (13)0.0178 (8)0.0089 (11)
C60.0314 (8)0.0799 (15)0.0262 (7)0.0233 (9)0.0067 (6)0.0074 (8)
C70.0297 (9)0.0902 (18)0.0426 (10)0.0239 (10)0.0023 (8)0.0015 (11)
Geometric parameters (Å, º) top
Co1—O12.0574 (12)N1—C11.4667 (18)
Co1—O1i2.0574 (12)N1—H1A0.8900
Co1—O52.0752 (12)N1—H1B0.8900
Co1—O5i2.0752 (12)N1—H1C0.8900
Co1—O82.1491 (14)C1—C61.375 (2)
Co1—O8i2.1491 (14)C1—C21.384 (2)
P1—O11.4892 (11)C2—C31.394 (2)
P1—O31.4919 (14)C2—C71.496 (3)
P1—O21.5570 (11)C3—C41.368 (3)
P1—O41.6108 (12)C3—H30.9300
P2—O51.4909 (11)C4—C51.371 (3)
P2—O71.4933 (12)C4—H40.9300
P2—O61.5529 (13)C5—C61.387 (3)
P2—O41.6160 (13)C5—H50.9300
O2—H20.8200C6—H6A0.9300
O6—H60.8200C7—H7A0.9600
O8—H2W0.842 (9)C7—H7B0.9600
O8—H1W0.842 (9)C7—H7C0.9600
O1—Co1—O1i180.00 (4)Co1—O8—H1W121 (2)
O1—Co1—O590.50 (5)H2W—O8—H1W111 (2)
O1i—Co1—O589.50 (5)C1—N1—H1A109.5
O1—Co1—O5i89.50 (5)C1—N1—H1B109.5
O1i—Co1—O5i90.50 (5)H1A—N1—H1B109.5
O5—Co1—O5i180.00 (3)C1—N1—H1C109.5
O1—Co1—O891.82 (6)H1A—N1—H1C109.5
O1i—Co1—O888.18 (6)H1B—N1—H1C109.5
O5—Co1—O886.64 (6)C6—C1—C2122.21 (15)
O5i—Co1—O893.36 (6)C6—C1—N1118.02 (14)
O1—Co1—O8i88.18 (6)C2—C1—N1119.77 (14)
O1i—Co1—O8i91.82 (6)C1—C2—C3116.73 (17)
O5—Co1—O8i93.36 (6)C1—C2—C7122.34 (15)
O5i—Co1—O8i86.64 (6)C3—C2—C7120.94 (17)
O8—Co1—O8i180.0C4—C3—C2122.00 (18)
O1—P1—O3117.53 (7)C4—C3—H3119.0
O1—P1—O2110.90 (7)C2—C3—H3119.0
O3—P1—O2109.47 (7)C3—C4—C5119.95 (18)
O1—P1—O4109.65 (7)C3—C4—H4120.0
O3—P1—O4104.33 (7)C5—C4—H4120.0
O2—P1—O4103.91 (7)C4—C5—C6119.9 (2)
O5—P2—O7115.99 (7)C4—C5—H5120.1
O5—P2—O6112.76 (7)C6—C5—H5120.1
O7—P2—O6108.25 (7)C1—C6—C5119.22 (18)
O5—P2—O4108.51 (6)C1—C6—H6A120.4
O7—P2—O4108.93 (7)C5—C6—H6A120.4
O6—P2—O4101.36 (7)C2—C7—H7A109.5
P1—O1—Co1134.55 (7)C2—C7—H7B109.5
P1—O2—H2109.5H7A—C7—H7B109.5
P1—O4—P2129.26 (7)C2—C7—H7C109.5
P2—O5—Co1132.40 (6)H7A—C7—H7C109.5
P2—O6—H6109.5H7B—C7—H7C109.5
Co1—O8—H2W114.2 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3ii0.821.752.5712 (17)177
O2—H2···O7iii0.821.712.522 (2)169
O8—H2W···O2iv0.84 (1)1.98 (1)2.8199 (18)179 (3)
O8—H1W···O4ii0.84 (1)2.20 (1)3.020 (2)164 (3)
N1—H1A···O7iv0.891.892.7788 (18)177
N1—H1B···O50.892.313.0083 (19)135
N1—H1B···O1i0.892.483.105 (2)127
N1—H1C···O3ii0.891.942.821 (2)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula(C7H10N)2[Co(H2P2O7)2(H2O)2]
Mr663.19
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.440 (4), 7.455 (2), 11.747 (3)
α, β, γ (°)91.92 (3), 94.09 (5), 104.67 (2)
V3)627.8 (4)
Z1
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.53
Crystal size (mm)0.33 × 0.26 × 0.23
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4678, 4486, 3911
Rint0.008
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.08
No. of reflections4486
No. of parameters181
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.821.752.5712 (17)176.8
O2—H2···O7ii0.821.712.522 (2)169.0
O8—H2W···O2iii0.842 (9)1.978 (10)2.8199 (18)179 (3)
O8—H1W···O4i0.842 (9)2.202 (13)3.020 (2)164 (3)
N1—H1A···O7iii0.891.892.7788 (18)176.9
N1—H1B···O50.892.313.0083 (19)135.0
N1—H1B···O1iv0.892.483.105 (2)127.3
N1—H1C···O3i0.891.942.821 (2)167.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268–3292.  CrossRef PubMed CAS Google Scholar
First citationClearfield, A. (1998). Chem. Mater. 10, 2801–2810.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEssehli, R., El Bali, B., Lachkar, M., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m538–m541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11–13.  Web of Science CSD CrossRef Google Scholar
First citationGharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J. Y., Tian, J. L., Zhang, Q. W., Zhao, J., Yan, S. P. & Liao, D. Z. (2008). Inorg. Chem. Commun. 11, 69–72.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds