organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-3-Pyridylmethyl­­idene]benzo­hydrazide

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 22 September 2009; accepted 25 September 2009; online 3 October 2009)

The title compound, C13H11N3O, was prepared by the reaction of benzohydrazide and nicotinaldehyde. The dihedral angle between the planes of the two aromatic rings is 47.78 (9)°. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen-bonding inter­actions.

Related literature

For related structures, see: Yin et al. (2008[Yin, H., Cui, J. & Qiao, Y. (2008). Polyhedron, 27, 2157-2166.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O

  • Mr = 225.25

  • Orthorhombic, P 21 21 21

  • a = 7.6193 (13) Å

  • b = 10.6291 (17) Å

  • c = 13.530 (2) Å

  • V = 1095.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.21 × 0.18 × 0.08 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.993

  • 5473 measured reflections

  • 1136 independent reflections

  • 612 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.18

  • 1136 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.86 2.40 3.236 (5) 164
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acylhydrazones, as an example of Schiff bases, and their metal complexes have been widely studied due to their versatile applications in the fields of analytical and medicinal chemistry and biotechnology. These ligands, owing to their facile keto-enol tautomerization and the availability of several potential donor sites, can coordinate with metals (Yin et al., 2008). We report here the synthesis and structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. The hydrazone molecule crystallizes as an E isomer. In the crystal structure, there exist intermolecular N—H···N hydrogen bonds (Table 1). As seen in Fig. 2, the molecules are linked into one-dimensional extended chain structure.

Related literature top

For related structures, see: Yin et al. (2008).

Experimental top

A mixture of benzohydrazide (10 mmol) and nicotinaldehyde (10 mmol) was refluxed in ethanol (40 ml) for 2 h at 353K. After the solution had cooled down to room temperature yellow sediment appeared. The product was crystallized from a solution of methanol to yield yellow block-shaped crystals of the title compound (yield 78%). Anal. Calcd (%) for C13H11N3O (Mr = 225.25): C,69.32; H, 4.92; N, 18.65. Found (%): C, 69.21; H, 4.97; N, 18.76.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. The C—H and N—H H atoms were positioned with idealized geometry (N—H = 0.86 Å and C—H = 0.93 Å) and were refined using a riding model approximation with Uiso(H) = 1.2 Ueq(C, N).

Structure description top

Acylhydrazones, as an example of Schiff bases, and their metal complexes have been widely studied due to their versatile applications in the fields of analytical and medicinal chemistry and biotechnology. These ligands, owing to their facile keto-enol tautomerization and the availability of several potential donor sites, can coordinate with metals (Yin et al., 2008). We report here the synthesis and structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. The hydrazone molecule crystallizes as an E isomer. In the crystal structure, there exist intermolecular N—H···N hydrogen bonds (Table 1). As seen in Fig. 2, the molecules are linked into one-dimensional extended chain structure.

For related structures, see: Yin et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the one-dimensional extended chain structure in the title compound.
N'-[(E)-3-Pyridylmethylidene]benzohydrazide top
Crystal data top
C13H11N3OF(000) = 472
Mr = 225.25Dx = 1.365 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 764 reflections
a = 7.6193 (13) Åθ = 2.4–25.1°
b = 10.6291 (17) ŵ = 0.09 mm1
c = 13.530 (2) ÅT = 298 K
V = 1095.7 (3) Å3Block, yellow
Z = 40.21 × 0.18 × 0.08 mm
Data collection top
Siemens SMART CCD
diffractometer
1136 independent reflections
Radiation source: fine-focus sealed tube612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.981, Tmax = 0.993k = 1211
5473 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0242P)2 + 0.2399P]
where P = (Fo2 + 2Fc2)/3
1136 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H11N3OV = 1095.7 (3) Å3
Mr = 225.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6193 (13) ŵ = 0.09 mm1
b = 10.6291 (17) ÅT = 298 K
c = 13.530 (2) Å0.21 × 0.18 × 0.08 mm
Data collection top
Siemens SMART CCD
diffractometer
1136 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
612 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.993Rint = 0.073
5473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.18Δρmax = 0.20 e Å3
1136 reflectionsΔρmin = 0.20 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1276 (5)0.7488 (3)0.4106 (3)0.0430 (12)
H10.15510.81290.37500.052*
N20.1085 (5)0.7596 (4)0.5111 (3)0.0410 (11)
N30.1881 (5)1.0185 (4)0.7966 (3)0.0450 (12)
O10.0701 (5)0.5389 (3)0.4181 (2)0.0544 (10)
C10.1015 (7)0.6334 (4)0.3688 (4)0.0386 (13)
C20.1109 (6)0.6291 (4)0.2602 (3)0.0327 (12)
C30.0535 (7)0.7257 (4)0.2001 (4)0.0438 (14)
H30.01070.79920.22850.053*
C40.0588 (7)0.7150 (5)0.0986 (4)0.0523 (15)
H40.01750.78050.05940.063*
C50.1247 (7)0.6078 (5)0.0548 (4)0.0559 (17)
H50.13010.60130.01370.067*
C60.1826 (7)0.5105 (4)0.1136 (4)0.0515 (15)
H60.22680.43760.08480.062*
C70.1748 (6)0.5212 (4)0.2156 (4)0.0448 (14)
H70.21320.45470.25470.054*
C80.1525 (6)0.8640 (5)0.5499 (3)0.0446 (14)
H80.19410.92880.51010.054*
C90.1968 (6)0.9926 (4)0.6998 (3)0.0432 (14)
H90.24601.05330.65880.052*
C100.1383 (6)0.8825 (4)0.6558 (4)0.0365 (13)
C110.0676 (6)0.7933 (4)0.7186 (4)0.0416 (14)
H110.02720.71730.69330.050*
C120.0567 (7)0.8168 (5)0.8183 (4)0.0492 (15)
H120.00940.75720.86100.059*
C130.1173 (6)0.9306 (5)0.8537 (4)0.0497 (15)
H130.10800.94650.92110.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.066 (3)0.036 (2)0.026 (2)0.006 (2)0.001 (2)0.0031 (19)
N20.051 (3)0.039 (2)0.033 (3)0.002 (2)0.003 (2)0.0001 (19)
N30.048 (3)0.046 (2)0.041 (3)0.003 (2)0.001 (2)0.008 (2)
O10.080 (3)0.0399 (19)0.044 (2)0.009 (2)0.004 (2)0.0059 (18)
C10.043 (3)0.036 (3)0.037 (3)0.005 (3)0.006 (3)0.003 (3)
C20.030 (3)0.033 (3)0.035 (3)0.004 (3)0.002 (3)0.004 (2)
C30.057 (4)0.033 (3)0.042 (4)0.004 (3)0.005 (3)0.005 (3)
C40.063 (4)0.054 (3)0.040 (4)0.002 (3)0.007 (3)0.003 (3)
C50.077 (4)0.056 (4)0.035 (3)0.002 (3)0.002 (3)0.006 (3)
C60.063 (4)0.037 (3)0.055 (4)0.004 (3)0.005 (3)0.011 (3)
C70.050 (4)0.036 (3)0.049 (4)0.004 (3)0.000 (3)0.001 (3)
C80.057 (4)0.039 (3)0.038 (3)0.003 (3)0.001 (3)0.003 (3)
C90.056 (4)0.038 (3)0.036 (3)0.002 (3)0.002 (3)0.000 (3)
C100.044 (3)0.035 (3)0.030 (3)0.002 (3)0.000 (3)0.002 (2)
C110.045 (4)0.038 (3)0.042 (4)0.002 (3)0.000 (3)0.002 (3)
C120.060 (4)0.048 (3)0.039 (3)0.010 (3)0.004 (3)0.006 (3)
C130.052 (4)0.061 (3)0.037 (3)0.002 (3)0.004 (3)0.006 (3)
Geometric parameters (Å, º) top
N1—C11.365 (5)C5—H50.9300
N1—N21.372 (5)C6—C71.386 (6)
N1—H10.8600C6—H60.9300
N2—C81.273 (6)C7—H70.9300
N3—C131.327 (6)C8—C101.451 (6)
N3—C91.340 (5)C8—H80.9300
O1—C11.229 (5)C9—C101.386 (6)
C1—C21.473 (6)C9—H90.9300
C2—C31.380 (6)C10—C111.381 (6)
C2—C71.385 (6)C11—C121.375 (6)
C3—C41.378 (6)C11—H110.9300
C3—H30.9300C12—C131.381 (6)
C4—C51.379 (6)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.377 (6)
C1—N1—N2118.1 (4)C7—C6—H6120.0
C1—N1—H1121.0C2—C7—C6121.1 (5)
N2—N1—H1121.0C2—C7—H7119.5
C8—N2—N1117.0 (4)C6—C7—H7119.5
C13—N3—C9116.4 (4)N2—C8—C10120.4 (5)
O1—C1—N1122.5 (5)N2—C8—H8119.8
O1—C1—C2121.7 (5)C10—C8—H8119.8
N1—C1—C2115.7 (4)N3—C9—C10125.2 (4)
C3—C2—C7118.1 (4)N3—C9—H9117.4
C3—C2—C1123.4 (5)C10—C9—H9117.4
C7—C2—C1118.5 (5)C11—C10—C9116.2 (4)
C4—C3—C2121.1 (5)C11—C10—C8122.9 (5)
C4—C3—H3119.5C9—C10—C8120.9 (5)
C2—C3—H3119.5C12—C11—C10120.1 (5)
C3—C4—C5120.5 (5)C12—C11—H11119.9
C3—C4—H4119.8C10—C11—H11119.9
C5—C4—H4119.8C11—C12—C13118.6 (5)
C6—C5—C4119.2 (5)C11—C12—H12120.7
C6—C5—H5120.4C13—C12—H12120.7
C4—C5—H5120.4N3—C13—C12123.4 (5)
C5—C6—C7120.0 (5)N3—C13—H13118.3
C5—C6—H6120.0C12—C13—H13118.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.862.403.236 (5)164
Symmetry code: (i) x+1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O
Mr225.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.6193 (13), 10.6291 (17), 13.530 (2)
V3)1095.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.18 × 0.08
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5473, 1136, 612
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.18
No. of reflections1136
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.862.403.236 (5)164
Symmetry code: (i) x+1/2, y+2, z1/2.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (20771053), the Natural Science Foundation of Shandong Province (Y2008B48) and the Students Technology Cultural Innovation Fund of Liaocheng University (SRT08044HX2) for financial support.

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, H., Cui, J. & Qiao, Y. (2008). Polyhedron, 27, 2157–2166.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds