organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 6,13-dioxo-5,7,12,13b,13c,14-hexa­hydro-6H,13H-5a,6a,12a,13a-tetra­azabenz[5,6]azuleno[2,1,8-ija]benz[f]azulene-13b,13c-di­carboxyl­ate 1,2-di­chloro­ethane solvate

aSchool of Environmental Science and Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China, and bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: chwangzg@hsit.edu.cn

(Received 4 October 2009; accepted 10 October 2009; online 17 October 2009)

In the title inclusion compound, C26H26N4O6·C2H4Cl2, the solvent mol­ecule occupies a cavity inside the clip-type mol­ecule which is based on the glycoluril skeleton with two ethyl acetate substituents on the convex face of the glycoluril system. The dihedral angle between the aromatic rings of the host is 43.59 (4)° and the centroid–centroid distance is 6.741 (5) Å. The 1,2-dichloro­etane mol­ecule adopts a gauche conformation enabling it to participate in C—H⋯π inter­actions with the host. The packing motif in the title compound differs from that observed in the crystal structures of the host and in the benzene solvate. The host mol­ecules are linked into tapes by ππ stacking inter­actions (centroid–centroid distance = 3.733 Å) and are further assembled into layers via C—H⋯O inter­actions. One of the ethyl groups is disorded over two positions with site-occupancy factors of 0.702 (14) and 0.298 (14).

Related literature

For the related structures, see: Chen et al. (2007[Chen, Y. F., She, N. F., Meng, X. G., Yin, G. D., Wu, A. X. & Isaacs, L. (2007). Org. Lett. 9, 1899-1902.]); Hof et al.,(2002[Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488-1508.]); Hu et al. (2007[Hu, S. L., She, N. F., Yin, G. D., Guo, H. Z., Wu, A. X. & Yang, C. L. (2007). Tetrahedron. Lett. 48, 1591-1594.]); Isaacs & Fettinger (1999[Isaacs, L. & Fettinger, J. C. (1999). Chem. Commun. 24, 2549-2550.]); Wang et al. (2006[Wang, Z. G., Zhou, B. H., Chen, Y. F., Yin, G. D., Li, Y. T., Wu, A. X. & Isaacs, L. (2006). J. Org. Chem. 71, 4502-4508.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N4O6·C2H4Cl2

  • Mr = 589.46

  • Triclinic, [P \overline 1]

  • a = 8.9468 (10) Å

  • b = 11.1544 (13) Å

  • c = 15.6260 (18) Å

  • α = 69.257 (2)°

  • β = 82.688 (2)°

  • γ = 76.892 (2)°

  • V = 1418.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10171 measured reflections

  • 4947 independent reflections

  • 4056 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.188

  • S = 1.04

  • 4947 reflections

  • 383 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28BCg2 0.97 2.55 3.476 (3) 160
C5—H5⋯O5i 0.93 2.59 3.393 (4) 145
C7—H7B⋯O5i 0.97 2.50 3.359 (3) 148
C14—H14A⋯O2ii 0.96 2.57 3.514 (9) 168
C14′—H14F⋯O2ii 0.96 2.47 3.351 (6) 153
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1. Cg2 is the centroid of the C21–C26 ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular clips based on the glycoluril skeleton, which have a well defined geometry due to the rigidity of the fused rings, have been prepared for a wide variety of supramolecular applications, including molecular recognition (Hu et al., 2007), molecular assemblies (Hof et al., 2002), crystal engineering (Wang et al., 2006; Chen et al., 2007),

The title host compound is a kind of molecular receptor, possessing a well defined U-shaped cavity formed by the glycoluril framework with two aromatic side walls. The crystal structures of monoclinic apohost obtained from dichloroethane solution (C2/c, Z' = 1/2; Wang et al., 2006) and monoclinic benzene solvate, C26H26N4O6.0.25C6H6, (P21/c, Z' = 2; Isaacs et al., 1999) have been already reported. Here, we report the structure of a new solvate (P-1, Z' = 1), C26H26N4O6.C2H4Cl2, crystallized from 1,2-dichoroethane/methanol (3:1 vol.) solution.

In the triclinic pseudopolymorph, the asymmetric unit contains one host molecule and one solvent molecule of 1,2-dichloroethane (Fig.1). There is a C-H···π interaction betweeen the host and the guest. The distance between atom H28B and Cg2 (the centroid of the C21—C26 ring) is 2.67 Å (Table 1).

As solvent molecule occupies the cavity, the title compound exhibits different packing motif than the previously known two monoclinic forms. In Isaacs structure, the molecule was kined into three-dimensional network structure by π-π stacking, C—H···π and C—H···O hydrogen-bonds. In our previously reported structure of the apohost, the ethyl group occupied the cavity with C—H···π interactions and the molecules were linked into layers to the ab plane by four pairs of C—H···O hydrogen-bonds parallel .

The title molecules are linked into tapes by π-π stacking interactions. The benzene rings Cg1 (C1—C6) in the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are strictly parallel, with an interplanar spacing of 3.589 Å, a ring centroid separation of 3.733 Å and a centroid offset of 1.027 Å. In addition, intermolecular C—H···O (Table 1) hydrogen-bonds link molecules into two-dimensional layer structure.

Related literature top

For the related structures, see: Chen et al. (2007); Hof et al.,(2002); Hu et al. (2007); Isaacs & Fettinger (1999); Wang et al. (2006). Cg2 is the centroid of the C21–C26 ring.

Experimental top

The host compound was synthesized as reported previously (Wang et al., 2006). Crystals of the title compound were obtained by slow evaporation at 293 K of 1,2-dichoroethane/methanol (vol. 3:1) solution .

Refinement top

The H atoms from methyl groups were placed in calculated positions, with C—H=0.96 Å, and refined to fit the electron density [Uiso(H)=1.5Ueq(C)]. Other H atoms were placed in calculated positions, with C—H = 0.93Å (aromatic) and 0.97Å (methylene), and refined in riding mode [Uiso(H)=1.2Ueq(C)]. One of the ester ethyl groups (C13,C14) is disordered over two positions. Restraints were imposed on the geometry of the disordered ethyl group and anisotropic displacement parameters. The occupanicies of the disordered atoms C13/C13' and C14/C14' refined at 0.702 (14)/0.298 (14).

Structure description top

Molecular clips based on the glycoluril skeleton, which have a well defined geometry due to the rigidity of the fused rings, have been prepared for a wide variety of supramolecular applications, including molecular recognition (Hu et al., 2007), molecular assemblies (Hof et al., 2002), crystal engineering (Wang et al., 2006; Chen et al., 2007),

The title host compound is a kind of molecular receptor, possessing a well defined U-shaped cavity formed by the glycoluril framework with two aromatic side walls. The crystal structures of monoclinic apohost obtained from dichloroethane solution (C2/c, Z' = 1/2; Wang et al., 2006) and monoclinic benzene solvate, C26H26N4O6.0.25C6H6, (P21/c, Z' = 2; Isaacs et al., 1999) have been already reported. Here, we report the structure of a new solvate (P-1, Z' = 1), C26H26N4O6.C2H4Cl2, crystallized from 1,2-dichoroethane/methanol (3:1 vol.) solution.

In the triclinic pseudopolymorph, the asymmetric unit contains one host molecule and one solvent molecule of 1,2-dichloroethane (Fig.1). There is a C-H···π interaction betweeen the host and the guest. The distance between atom H28B and Cg2 (the centroid of the C21—C26 ring) is 2.67 Å (Table 1).

As solvent molecule occupies the cavity, the title compound exhibits different packing motif than the previously known two monoclinic forms. In Isaacs structure, the molecule was kined into three-dimensional network structure by π-π stacking, C—H···π and C—H···O hydrogen-bonds. In our previously reported structure of the apohost, the ethyl group occupied the cavity with C—H···π interactions and the molecules were linked into layers to the ab plane by four pairs of C—H···O hydrogen-bonds parallel .

The title molecules are linked into tapes by π-π stacking interactions. The benzene rings Cg1 (C1—C6) in the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are strictly parallel, with an interplanar spacing of 3.589 Å, a ring centroid separation of 3.733 Å and a centroid offset of 1.027 Å. In addition, intermolecular C—H···O (Table 1) hydrogen-bonds link molecules into two-dimensional layer structure.

For the related structures, see: Chen et al. (2007); Hof et al.,(2002); Hu et al. (2007); Isaacs & Fettinger (1999); Wang et al. (2006). Cg2 is the centroid of the C21–C26 ring.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound
Diethyl 6,13-dioxo-5,7,12,13b,13c,14-hexahydro-6H,13H-5a,6a,12a,13a- tetraazabenz[5,6]azuleno[2,1,8-ija]benz[f]azulene-13b,13c- dicarboxylate 1,2-dichloroethane solvate top
Crystal data top
C26H26N4O6·C2H4Cl2Z = 2
Mr = 589.46F(000) = 616
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9468 (10) ÅCell parameters from 5260 reflections
b = 11.1544 (13) Åθ = 2.3–26.1°
c = 15.6260 (18) ŵ = 0.28 mm1
α = 69.257 (2)°T = 292 K
β = 82.688 (2)°Block, colorless
γ = 76.892 (2)°0.30 × 0.20 × 0.10 mm
V = 1418.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4056 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
φ and ω scansh = 1010
10171 measured reflectionsk = 1313
4947 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1032P)2 + 0.8923P]
where P = (Fo2 + 2Fc2)/3
4947 reflections(Δ/σ)max = 0.001
383 parametersΔρmax = 0.69 e Å3
28 restraintsΔρmin = 0.64 e Å3
Crystal data top
C26H26N4O6·C2H4Cl2γ = 76.892 (2)°
Mr = 589.46V = 1418.5 (3) Å3
Triclinic, P1Z = 2
a = 8.9468 (10) ÅMo Kα radiation
b = 11.1544 (13) ŵ = 0.28 mm1
c = 15.6260 (18) ÅT = 292 K
α = 69.257 (2)°0.30 × 0.20 × 0.10 mm
β = 82.688 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4056 reflections with I > 2σ(I)
10171 measured reflectionsRint = 0.020
4947 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06328 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.04Δρmax = 0.69 e Å3
4947 reflectionsΔρmin = 0.64 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3563 (3)0.4517 (3)0.43467 (17)0.0419 (6)
C20.4101 (3)0.3329 (3)0.5006 (2)0.0527 (7)
H20.34240.29440.54720.063*
C30.5627 (4)0.2702 (3)0.4988 (2)0.0585 (8)
H30.59620.19000.54340.070*
C40.6644 (3)0.3268 (3)0.4308 (2)0.0558 (8)
H40.76700.28560.42940.067*
C50.6127 (3)0.4452 (3)0.3650 (2)0.0489 (7)
H50.68160.48330.31910.059*
C60.4600 (3)0.5090 (3)0.36552 (18)0.0418 (6)
C70.4116 (3)0.6394 (3)0.29185 (19)0.0477 (7)
H7A0.38330.70710.31970.057*
H7B0.49820.65890.24870.057*
C80.1895 (3)0.5177 (3)0.44266 (18)0.0453 (6)
H8A0.13940.46050.49490.054*
H8B0.18660.59740.45520.054*
C90.2946 (3)0.6387 (2)0.15541 (18)0.0398 (6)
C100.0566 (3)0.4531 (2)0.34105 (17)0.0372 (6)
C110.1265 (3)0.6567 (2)0.27998 (17)0.0378 (6)
C120.0736 (3)0.7930 (3)0.2899 (2)0.0508 (7)
C140.0459 (15)0.9472 (8)0.4212 (6)0.128 (4)0.702 (14)
H14A0.04580.87510.47760.192*0.702 (14)
H14B0.09851.02650.43140.192*0.702 (14)
H14C0.05810.95430.39940.192*0.702 (14)
C130.1260 (11)0.9249 (6)0.3514 (6)0.095 (3)0.702 (14)
H13A0.23320.92300.37050.114*0.702 (14)
H13B0.12030.99330.29250.114*0.702 (14)
C150.0392 (3)0.6362 (2)0.20652 (16)0.0368 (5)
C160.1181 (3)0.7301 (3)0.18476 (19)0.0444 (6)
C170.2468 (4)0.9420 (3)0.1062 (3)0.0680 (9)
H17A0.32360.91000.08630.082*
H17B0.28700.96160.16140.082*
C180.2110 (6)1.0594 (4)0.0345 (3)0.0979 (15)
H18A0.13991.09350.05620.147*
H18B0.30361.12390.01870.147*
H18C0.16581.03790.01870.147*
C190.0402 (3)0.4324 (3)0.20547 (18)0.0429 (6)
H19A0.12620.48920.16990.052*
H19B0.07780.35910.25120.052*
C200.1259 (3)0.6119 (3)0.05267 (17)0.0428 (6)
H20A0.19190.65130.00090.051*
H20B0.02050.64670.03500.051*
C210.0802 (3)0.3813 (3)0.14224 (17)0.0419 (6)
C220.1590 (3)0.4658 (3)0.07154 (17)0.0406 (6)
C230.2683 (3)0.4133 (3)0.01628 (19)0.0493 (7)
H230.32240.46810.03010.059*
C240.2981 (4)0.2818 (3)0.0286 (2)0.0550 (7)
H240.37100.24870.00950.066*
C250.2200 (4)0.1994 (3)0.0975 (2)0.0572 (8)
H250.23940.11060.10590.069*
C260.1127 (3)0.2490 (3)0.1541 (2)0.0497 (7)
H260.06110.19270.20110.060*
C270.4248 (6)0.1793 (8)0.3161 (4)0.130 (2)
H27A0.31890.20960.33350.156*
H27B0.48750.16580.36630.156*
C280.4742 (5)0.2807 (4)0.2334 (4)0.0969 (16)
H28A0.44970.36400.24360.116*
H28B0.41690.28910.18220.116*
Cl10.4405 (2)0.03136 (15)0.29818 (12)0.1337 (6)
Cl20.67477 (15)0.24467 (12)0.20429 (9)0.0987 (4)
N10.2825 (2)0.6424 (2)0.24224 (15)0.0421 (5)
N20.1009 (2)0.5506 (2)0.36207 (14)0.0387 (5)
N30.1477 (2)0.6518 (2)0.12931 (13)0.0373 (5)
N40.0168 (2)0.5040 (2)0.25176 (14)0.0392 (5)
O10.4116 (2)0.6274 (2)0.10852 (13)0.0527 (5)
O20.0510 (2)0.34424 (19)0.39298 (13)0.0516 (5)
O30.1344 (3)0.8818 (2)0.2469 (2)0.0853 (8)
O40.0449 (3)0.7988 (2)0.3460 (2)0.0856 (8)
O50.2343 (3)0.7010 (3)0.2211 (2)0.0865 (9)
O60.1047 (2)0.84312 (19)0.12437 (15)0.0582 (6)
C14'0.178 (2)0.9307 (14)0.4359 (10)0.083 (6)0.298 (14)
H14D0.26920.90530.42720.125*0.298 (14)
H14E0.20361.01880.43640.125*0.298 (14)
H14F0.13680.87320.49330.125*0.298 (14)
C13'0.062 (3)0.9224 (17)0.3593 (19)0.109 (9)0.298 (14)
H13C0.09370.99290.30330.131*0.298 (14)
H13D0.03660.93180.37370.131*0.298 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (13)0.0563 (16)0.0361 (13)0.0142 (11)0.0003 (10)0.0176 (12)
C20.0476 (16)0.0627 (18)0.0445 (15)0.0184 (13)0.0048 (12)0.0086 (13)
C30.0564 (19)0.0537 (17)0.0596 (18)0.0080 (14)0.0156 (15)0.0096 (14)
C40.0385 (15)0.0658 (19)0.068 (2)0.0054 (13)0.0085 (14)0.0292 (16)
C50.0338 (14)0.0666 (18)0.0494 (16)0.0145 (12)0.0019 (12)0.0218 (14)
C60.0354 (13)0.0540 (15)0.0411 (14)0.0148 (11)0.0013 (11)0.0187 (12)
C70.0353 (14)0.0592 (17)0.0485 (15)0.0192 (12)0.0022 (11)0.0118 (13)
C80.0372 (14)0.0653 (17)0.0349 (13)0.0139 (12)0.0024 (11)0.0176 (12)
C90.0352 (13)0.0367 (13)0.0410 (14)0.0095 (10)0.0016 (11)0.0049 (10)
C100.0270 (12)0.0450 (14)0.0365 (13)0.0094 (10)0.0044 (10)0.0105 (11)
C110.0305 (12)0.0421 (13)0.0402 (13)0.0094 (10)0.0005 (10)0.0123 (11)
C120.0506 (17)0.0498 (16)0.0552 (17)0.0114 (13)0.0061 (14)0.0194 (14)
C140.196 (11)0.081 (5)0.103 (6)0.005 (6)0.015 (6)0.044 (4)
C130.089 (5)0.063 (4)0.115 (5)0.019 (3)0.020 (4)0.036 (3)
C150.0323 (12)0.0401 (13)0.0359 (13)0.0097 (10)0.0002 (10)0.0094 (10)
C160.0347 (14)0.0491 (15)0.0466 (15)0.0094 (11)0.0008 (11)0.0125 (12)
C170.0547 (19)0.0559 (19)0.076 (2)0.0096 (15)0.0052 (16)0.0134 (16)
C180.099 (3)0.054 (2)0.103 (3)0.013 (2)0.000 (3)0.000 (2)
C190.0405 (14)0.0486 (15)0.0423 (14)0.0183 (11)0.0012 (11)0.0136 (12)
C200.0441 (14)0.0478 (15)0.0330 (13)0.0109 (11)0.0008 (11)0.0085 (11)
C210.0398 (14)0.0502 (15)0.0383 (13)0.0132 (11)0.0062 (11)0.0140 (11)
C220.0378 (13)0.0494 (15)0.0353 (13)0.0096 (11)0.0032 (10)0.0140 (11)
C230.0454 (15)0.0612 (18)0.0432 (15)0.0137 (13)0.0013 (12)0.0189 (13)
C240.0495 (17)0.0634 (19)0.0596 (18)0.0066 (14)0.0005 (14)0.0337 (15)
C250.0621 (19)0.0514 (17)0.0642 (19)0.0075 (14)0.0086 (15)0.0272 (15)
C260.0543 (17)0.0487 (16)0.0494 (16)0.0181 (13)0.0049 (13)0.0146 (13)
C270.073 (3)0.229 (8)0.118 (4)0.017 (4)0.000 (3)0.105 (5)
C280.089 (3)0.066 (2)0.145 (4)0.007 (2)0.055 (3)0.044 (3)
Cl10.1401 (13)0.1025 (10)0.1312 (12)0.0443 (9)0.0254 (10)0.0126 (8)
Cl20.1068 (9)0.0891 (8)0.1020 (8)0.0310 (6)0.0009 (7)0.0292 (6)
N10.0317 (11)0.0554 (13)0.0394 (12)0.0153 (9)0.0016 (9)0.0134 (10)
N20.0312 (11)0.0488 (12)0.0351 (11)0.0116 (9)0.0020 (8)0.0119 (9)
N30.0331 (11)0.0408 (11)0.0344 (11)0.0087 (8)0.0027 (8)0.0090 (9)
N40.0401 (11)0.0413 (11)0.0369 (11)0.0146 (9)0.0001 (9)0.0107 (9)
O10.0362 (10)0.0659 (13)0.0494 (11)0.0124 (9)0.0105 (9)0.0143 (9)
O20.0540 (12)0.0500 (11)0.0436 (11)0.0175 (9)0.0005 (9)0.0034 (9)
O30.106 (2)0.0513 (14)0.101 (2)0.0313 (14)0.0131 (17)0.0258 (14)
O40.0864 (18)0.0585 (14)0.101 (2)0.0014 (13)0.0328 (16)0.0346 (14)
O50.0343 (12)0.0731 (16)0.119 (2)0.0072 (10)0.0087 (13)0.0011 (15)
O60.0463 (11)0.0451 (11)0.0637 (13)0.0029 (9)0.0031 (9)0.0041 (10)
C14'0.103 (11)0.060 (7)0.082 (9)0.005 (7)0.001 (8)0.031 (6)
C13'0.102 (12)0.102 (11)0.117 (12)0.003 (8)0.006 (9)0.044 (8)
Geometric parameters (Å, º) top
C1—C21.385 (4)C16—O61.300 (3)
C1—C61.401 (4)C17—C181.460 (5)
C1—C81.518 (4)C17—O61.465 (4)
C2—C31.388 (4)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.377 (5)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C51.377 (4)C18—H18C0.9600
C4—H40.9300C19—N41.453 (3)
C5—C61.391 (4)C19—C211.520 (4)
C5—H50.9300C19—H19A0.9700
C6—C71.511 (4)C19—H19B0.9700
C7—N11.459 (3)C20—N31.466 (3)
C7—H7A0.9700C20—C221.515 (4)
C7—H7B0.9700C20—H20A0.9700
C8—N21.464 (3)C20—H20B0.9700
C8—H8A0.9700C21—C261.387 (4)
C8—H8B0.9700C21—C221.403 (4)
C9—O11.208 (3)C22—C231.389 (4)
C9—N11.362 (3)C23—C241.376 (4)
C9—N31.386 (3)C23—H230.9300
C10—O21.206 (3)C24—C251.375 (5)
C10—N41.367 (3)C24—H240.9300
C10—N21.389 (3)C25—C261.378 (4)
C11—N21.439 (3)C25—H250.9300
C11—N11.441 (3)C26—H260.9300
C11—C121.543 (4)C27—C281.480 (8)
C11—C151.573 (3)C27—Cl11.742 (7)
C12—O31.186 (4)C27—H27A0.9700
C12—O41.292 (4)C27—H27B0.9700
C14—C131.496 (8)C28—Cl21.784 (5)
C14—H14A0.9600C28—H28A0.9700
C14—H14B0.9600C28—H28B0.9700
C14—H14C0.9600O4—C13'1.438 (9)
C13—O41.455 (5)C14'—C13'1.500 (9)
C13—H13A0.9700C14'—H14D0.9600
C13—H13B0.9700C14'—H14E0.9600
C15—N31.435 (3)C14'—H14F0.9600
C15—N41.440 (3)C13'—H13C0.9700
C15—C161.547 (4)C13'—H13D0.9700
C16—O51.175 (3)
C2—C1—C6118.6 (3)H18B—C18—H18C109.5
C2—C1—C8118.8 (2)N4—C19—C21113.5 (2)
C6—C1—C8122.5 (2)N4—C19—H19A108.9
C1—C2—C3121.4 (3)C21—C19—H19A108.9
C1—C2—H2119.3N4—C19—H19B108.9
C3—C2—H2119.3C21—C19—H19B108.9
C4—C3—C2119.8 (3)H19A—C19—H19B107.7
C4—C3—H3120.1N3—C20—C22115.3 (2)
C2—C3—H3120.1N3—C20—H20A108.4
C3—C4—C5119.3 (3)C22—C20—H20A108.4
C3—C4—H4120.3N3—C20—H20B108.4
C5—C4—H4120.3C22—C20—H20B108.4
C4—C5—C6121.6 (3)H20A—C20—H20B107.5
C4—C5—H5119.2C26—C21—C22119.2 (3)
C6—C5—H5119.2C26—C21—C19119.6 (2)
C5—C6—C1119.2 (3)C22—C21—C19121.3 (2)
C5—C6—C7118.8 (2)C23—C22—C21118.6 (3)
C1—C6—C7122.0 (2)C23—C22—C20119.3 (2)
N1—C7—C6112.8 (2)C21—C22—C20122.1 (2)
N1—C7—H7A109.0C24—C23—C22121.4 (3)
C6—C7—H7A109.0C24—C23—H23119.3
N1—C7—H7B109.0C22—C23—H23119.3
C6—C7—H7B109.0C25—C24—C23119.9 (3)
H7A—C7—H7B107.8C25—C24—H24120.0
N2—C8—C1115.4 (2)C23—C24—H24120.0
N2—C8—H8A108.4C24—C25—C26119.7 (3)
C1—C8—H8A108.4C24—C25—H25120.1
N2—C8—H8B108.4C26—C25—H25120.1
C1—C8—H8B108.4C25—C26—C21121.2 (3)
H8A—C8—H8B107.5C25—C26—H26119.4
O1—C9—N1126.6 (2)C21—C26—H26119.4
O1—C9—N3125.6 (2)C28—C27—Cl1112.0 (4)
N1—C9—N3107.8 (2)C28—C27—H27A109.2
O2—C10—N4126.3 (2)Cl1—C27—H27A109.2
O2—C10—N2126.0 (2)C28—C27—H27B109.2
N4—C10—N2107.6 (2)Cl1—C27—H27B109.2
N2—C11—N1113.7 (2)H27A—C27—H27B107.9
N2—C11—C12113.9 (2)C27—C28—Cl2112.9 (3)
N1—C11—C12110.0 (2)C27—C28—H28A109.0
N2—C11—C15103.24 (19)Cl2—C28—H28A109.0
N1—C11—C15101.53 (19)C27—C28—H28B109.0
C12—C11—C15113.7 (2)Cl2—C28—H28B109.0
O3—C12—O4125.4 (3)H28A—C28—H28B107.8
O3—C12—C11122.0 (3)C9—N1—C11113.3 (2)
O4—C12—C11112.6 (2)C9—N1—C7124.3 (2)
O4—C13—C14105.1 (6)C11—N1—C7122.2 (2)
O4—C13—H13A110.7C10—N2—C11110.7 (2)
C14—C13—H13A110.7C10—N2—C8120.4 (2)
O4—C13—H13B110.7C11—N2—C8120.6 (2)
C14—C13—H13B110.7C9—N3—C15111.0 (2)
H13A—C13—H13B108.8C9—N3—C20120.1 (2)
N3—C15—N4114.1 (2)C15—N3—C20120.6 (2)
N3—C15—C16113.7 (2)C10—N4—C15113.5 (2)
N4—C15—C16109.9 (2)C10—N4—C19123.9 (2)
N3—C15—C11103.08 (18)C15—N4—C19122.6 (2)
N4—C15—C11101.56 (19)C12—O4—C13'105.1 (7)
C16—C15—C11113.7 (2)C12—O4—C13119.7 (5)
O5—C16—O6125.1 (3)C13'—O4—C1323.8 (11)
O5—C16—C15122.6 (3)C16—O6—C17115.7 (2)
O6—C16—C15112.2 (2)C13'—C14'—H14D109.5
C18—C17—O6107.9 (3)C13'—C14'—H14E109.5
C18—C17—H17A110.1H14D—C14'—H14E109.5
O6—C17—H17A110.1C13'—C14'—H14F109.5
C18—C17—H17B110.1H14D—C14'—H14F109.5
O6—C17—H17B110.1H14E—C14'—H14F109.5
H17A—C17—H17B108.4O4—C13'—C14'110.2 (11)
C17—C18—H18A109.5O4—C13'—H13C109.6
C17—C18—H18B109.5C14'—C13'—H13C109.6
H18A—C18—H18B109.5O4—C13'—H13D109.6
C17—C18—H18C109.5C14'—C13'—H13D109.6
H18A—C18—H18C109.5H13C—C13'—H13D108.1
C6—C1—C2—C30.6 (4)N2—C11—N1—C9120.0 (2)
C8—C1—C2—C3177.7 (3)C12—C11—N1—C9110.9 (2)
C1—C2—C3—C40.7 (5)C15—C11—N1—C99.8 (3)
C2—C3—C4—C50.4 (5)N2—C11—N1—C763.1 (3)
C3—C4—C5—C60.1 (5)C12—C11—N1—C766.1 (3)
C4—C5—C6—C10.0 (4)C15—C11—N1—C7173.2 (2)
C4—C5—C6—C7179.3 (3)C6—C7—N1—C9105.6 (3)
C2—C1—C6—C50.3 (4)C6—C7—N1—C1177.8 (3)
C8—C1—C6—C5177.2 (2)O2—C10—N2—C11167.3 (2)
C2—C1—C6—C7179.0 (3)N4—C10—N2—C1114.3 (3)
C8—C1—C6—C72.0 (4)O2—C10—N2—C818.7 (4)
C5—C6—C7—N1125.7 (3)N4—C10—N2—C8162.9 (2)
C1—C6—C7—N155.0 (4)N1—C11—N2—C1090.4 (2)
C2—C1—C8—N2125.1 (3)C12—C11—N2—C10142.5 (2)
C6—C1—C8—N257.9 (4)C15—C11—N2—C1018.7 (2)
N2—C11—C12—O3150.2 (3)N1—C11—N2—C858.1 (3)
N1—C11—C12—O321.2 (4)C12—C11—N2—C869.0 (3)
C15—C11—C12—O391.9 (3)C15—C11—N2—C8167.2 (2)
N2—C11—C12—O432.4 (3)C1—C8—N2—C1072.8 (3)
N1—C11—C12—O4161.4 (3)C1—C8—N2—C1172.7 (3)
C15—C11—C12—O485.6 (3)O1—C9—N3—C15168.2 (2)
N2—C11—C15—N3134.01 (19)N1—C9—N3—C1512.5 (3)
N1—C11—C15—N316.0 (2)O1—C9—N3—C2019.6 (4)
C12—C11—C15—N3102.1 (2)N1—C9—N3—C20161.1 (2)
N2—C11—C15—N415.6 (2)N4—C15—N3—C991.4 (2)
N1—C11—C15—N4102.4 (2)C16—C15—N3—C9141.5 (2)
C12—C11—C15—N4139.5 (2)C11—C15—N3—C917.9 (3)
N2—C11—C15—C16102.4 (2)N4—C15—N3—C2057.1 (3)
N1—C11—C15—C16139.6 (2)C16—C15—N3—C2070.1 (3)
C12—C11—C15—C1621.5 (3)C11—C15—N3—C20166.3 (2)
N3—C15—C16—O5147.3 (3)C22—C20—N3—C971.6 (3)
N4—C15—C16—O518.0 (4)C22—C20—N3—C1574.0 (3)
C11—C15—C16—O595.1 (3)O2—C10—N4—C15178.7 (2)
N3—C15—C16—O634.2 (3)N2—C10—N4—C152.9 (3)
N4—C15—C16—O6163.5 (2)O2—C10—N4—C190.3 (4)
C11—C15—C16—O683.4 (3)N2—C10—N4—C19178.1 (2)
N4—C19—C21—C26124.3 (3)N3—C15—N4—C10118.4 (2)
N4—C19—C21—C2256.0 (3)C16—C15—N4—C10112.5 (2)
C26—C21—C22—C230.7 (4)C11—C15—N4—C108.3 (3)
C19—C21—C22—C23179.7 (2)N3—C15—N4—C1960.6 (3)
C26—C21—C22—C20178.0 (2)C16—C15—N4—C1968.5 (3)
C19—C21—C22—C201.6 (4)C11—C15—N4—C19170.8 (2)
N3—C20—C22—C23122.5 (3)C21—C19—N4—C10102.0 (3)
N3—C20—C22—C2158.8 (3)C21—C19—N4—C1576.9 (3)
C21—C22—C23—C241.2 (4)O3—C12—O4—C13'12.5 (15)
C20—C22—C23—C24177.6 (3)C11—C12—O4—C13'170.2 (14)
C22—C23—C24—C250.7 (4)O3—C12—O4—C138.0 (7)
C23—C24—C25—C260.4 (5)C11—C12—O4—C13169.3 (5)
C24—C25—C26—C210.8 (4)C14—C13—O4—C1288.2 (9)
C22—C21—C26—C250.3 (4)C14—C13—O4—C13'32 (3)
C19—C21—C26—C25179.3 (3)O5—C16—O6—C174.0 (5)
Cl1—C27—C28—Cl266.8 (4)C15—C16—O6—C17174.5 (3)
O1—C9—N1—C11180.0 (2)C18—C17—O6—C16177.6 (3)
N3—C9—N1—C110.7 (3)C12—O4—C13'—C14'170.1 (18)
O1—C9—N1—C73.2 (4)C13—O4—C13'—C14'58.7 (18)
N3—C9—N1—C7176.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28B···Cg20.972.553.476 (3)160
C5—H5···O5i0.932.593.393 (4)145
C7—H7B···O5i0.972.503.359 (3)148
C14—H14A···O2ii0.962.573.514 (9)168
C14—H14F···O2ii0.962.473.351 (6)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H26N4O6·C2H4Cl2
Mr589.46
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.9468 (10), 11.1544 (13), 15.6260 (18)
α, β, γ (°)69.257 (2), 82.688 (2), 76.892 (2)
V3)1418.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10171, 4947, 4056
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.188, 1.04
No. of reflections4947
No. of parameters383
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.64

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28B···Cg20.972.553.476 (3)160
C5—H5···O5i0.932.593.393 (4)145
C7—H7B···O5i0.972.503.359 (3)148
C14—H14A···O2ii0.962.573.514 (9)168
C14'—H14F···O2ii0.962.473.351 (6)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
 

Acknowledgements

This study was financially supported by Huangshi Institute of Technology (B20083002).

References

First citationBruker (2001). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. F., She, N. F., Meng, X. G., Yin, G. D., Wu, A. X. & Isaacs, L. (2007). Org. Lett. 9, 1899–1902.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed. 41, 1488–1508.  Web of Science CrossRef CAS Google Scholar
First citationHu, S. L., She, N. F., Yin, G. D., Guo, H. Z., Wu, A. X. & Yang, C. L. (2007). Tetrahedron. Lett. 48, 1591–1594.  Web of Science CSD CrossRef CAS Google Scholar
First citationIsaacs, L. & Fettinger, J. C. (1999). Chem. Commun. 24, 2549–2550.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. G., Zhou, B. H., Chen, Y. F., Yin, G. D., Li, Y. T., Wu, A. X. & Isaacs, L. (2006). J. Org. Chem. 71, 4502–4508.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds