organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(3-Phenyl­sulfanyl-1-phenyl­sulfonyl-1H-indol-2-yl)meth­yl]propionamide

aDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram 631 502, Tamilnadu, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 9 September 2009; accepted 11 October 2009; online 31 October 2009)

In the title compound, C24H22N2O3S2, the phenyl rings form dihedral angles of 75.2 (1) and 86.1 (1)° with the indole ring system. The mol­ecular structure is stabilized by intra­molecular C–H⋯O and N—H⋯O hydrogen bonds. The crystal structure exhibit inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, C—H⋯π and ππ [centroid–centroid distance = 3.748 (1) Å] inter­actions.

Related literature

For the biological activity of indole derivatives, see: Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Olgen & Coban (2003[Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.]). For related structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o392.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N2O3S2

  • Mr = 450.56

  • Monoclinic, P 21 /c

  • a = 10.9216 (3) Å

  • b = 23.1856 (6) Å

  • c = 9.4298 (2) Å

  • β = 110.147 (1)°

  • V = 2241.74 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.26 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.959

  • 26619 measured reflections

  • 5543 independent reflections

  • 3962 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.04

  • 5543 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.86 2.52 2.939 (2) 111
C13—H13⋯O1 0.93 2.37 2.921 (3) 118
C18—H18⋯O2i 0.93 2.52 3.317 (3) 144
N2—H2A⋯O3ii 0.86 2.15 2.899 (2) 145
C16—H16⋯O3ii 0.93 2.60 3.416 (3) 147
C10—H10⋯Cg2iii 0.93 2.81 3.658 (2) 152
C5—H5⋯Cg4iv 0.93 2.91 3.788 (4) 158
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x, -y, -z. Cg2 and Cg4 are the centroids of C1–C6 and C15–C20 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of indole derivatives, which are known to exhibit anti-oxidant (Olgen & Coban, 2003) and antibacterial (Nieto et al., 2005) activities, we report the crystal structure of the title compound (I). The geometric parameters in (I) (Fig. 1) agree with the reported values of similar structures (Chakkaravarthi et al., 2007, 2008).

The phenyl rings C1—C6 and C15—C20 form the dihedral angles of 75.2 (1)° and 86.1 (1)°, respectively, with the indole ring system. The mean planes of the two phenyl rings are inclined at an angle of 78.7 (1)° with respect to each other. A distorted tetrahedral geometry [N1- S1- O1 106.3 (1)° and N1—S1—O2 106.4 (1)°] is observed around S1 atom.

The molecular structure is stabilized by intramolecular C—H···O and N—H···O hydrogen bonds and the crystal structure exhibit intermolecular N—H···O and C—H···O hydrogen bonds, C—H···π (Table 1 and Fig. 2) and π···π [Cg1···Cg3 3.748 (1) Å; symmetry code: -x, -y, -z; Cg1 and Cg3 are the centroids of N1/C7/C8/C9/C14 and C9—C14 rings, respectively] interactions.

Related literature top

For the biological activity of indole derivatives, see: Nieto et al. (2005); Olgen & Coban (2003). For related structures, see: Chakkaravarthi et al. (2007, 2008). Cg2 and Cg4 are the centroids of C1–C6 and C15–C20 rings, respectively.

Experimental top

To a solution of 1-phenylsulfonyl-(3-(phenylthio)-2-bromomethylindole (0.5 g, 1.09 mmol) in dry 1,2-dimethoxyethane (20 ml), ZnBr2 (0.5 g, 2.22 mmol) and propiononitrile (0.24 g, 4.35 mmol) were added. The reaction mixture was then refluxed for 5 hr under N2 atmosphere. It was then poured over ice-water (30 ml) containing 1 ml of conc.HCl, extracted with CHCl3 (3 X 10 ml) and dried (Na2SO4). Removal of solvent followed by recrystallization from CDCl3 afforded the compound.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, N—H = 0.86Å and Uiso(H) = 1.2Ueq(N) for N—H, C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for CH3.

Structure description top

In continuation of our studies of indole derivatives, which are known to exhibit anti-oxidant (Olgen & Coban, 2003) and antibacterial (Nieto et al., 2005) activities, we report the crystal structure of the title compound (I). The geometric parameters in (I) (Fig. 1) agree with the reported values of similar structures (Chakkaravarthi et al., 2007, 2008).

The phenyl rings C1—C6 and C15—C20 form the dihedral angles of 75.2 (1)° and 86.1 (1)°, respectively, with the indole ring system. The mean planes of the two phenyl rings are inclined at an angle of 78.7 (1)° with respect to each other. A distorted tetrahedral geometry [N1- S1- O1 106.3 (1)° and N1—S1—O2 106.4 (1)°] is observed around S1 atom.

The molecular structure is stabilized by intramolecular C—H···O and N—H···O hydrogen bonds and the crystal structure exhibit intermolecular N—H···O and C—H···O hydrogen bonds, C—H···π (Table 1 and Fig. 2) and π···π [Cg1···Cg3 3.748 (1) Å; symmetry code: -x, -y, -z; Cg1 and Cg3 are the centroids of N1/C7/C8/C9/C14 and C9—C14 rings, respectively] interactions.

For the biological activity of indole derivatives, see: Nieto et al. (2005); Olgen & Coban (2003). For related structures, see: Chakkaravarthi et al. (2007, 2008). Cg2 and Cg4 are the centroids of C1–C6 and C15–C20 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
N-[(3-Phenylsulfanyl-1-phenylsulfonyl-1H-indol-2- yl)methyl]propionamide top
Crystal data top
C24H22N2O3S2F(000) = 944
Mr = 450.56Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9917 reflections
a = 10.9216 (3) Åθ = 2.5–27.5°
b = 23.1856 (6) ŵ = 0.27 mm1
c = 9.4298 (2) ÅT = 295 K
β = 110.147 (1)°Block, colourless
V = 2241.74 (10) Å30.26 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5543 independent reflections
Radiation source: fine-focus sealed tube3962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.934, Tmax = 0.959k = 3030
26619 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.7649P]
where P = (Fo2 + 2Fc2)/3
5543 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H22N2O3S2V = 2241.74 (10) Å3
Mr = 450.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9216 (3) ŵ = 0.27 mm1
b = 23.1856 (6) ÅT = 295 K
c = 9.4298 (2) Å0.26 × 0.20 × 0.16 mm
β = 110.147 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
5543 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3962 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.959Rint = 0.026
26619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
5543 reflectionsΔρmin = 0.24 e Å3
281 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35657 (17)0.09160 (9)0.2609 (2)0.0566 (5)
C20.3938 (2)0.03731 (10)0.3194 (3)0.0700 (6)
H20.35480.02030.38240.084*
C30.4893 (2)0.00865 (12)0.2834 (3)0.0863 (8)
H30.51570.02790.32260.104*
C40.5455 (2)0.03392 (15)0.1901 (4)0.0951 (9)
H40.61010.01440.16600.114*
C50.5080 (3)0.08729 (16)0.1321 (4)0.1013 (9)
H50.54660.10390.06830.122*
C60.4135 (2)0.11678 (12)0.1672 (3)0.0823 (7)
H60.38820.15340.12800.099*
C70.02638 (16)0.12894 (7)0.03684 (18)0.0424 (4)
C80.08307 (16)0.09744 (7)0.02800 (17)0.0408 (4)
C90.08564 (16)0.05099 (7)0.07163 (18)0.0400 (4)
C100.17279 (18)0.00610 (8)0.0598 (2)0.0505 (4)
H100.24750.00260.02520.061*
C110.1468 (2)0.03292 (9)0.1756 (3)0.0603 (5)
H110.20400.06330.16900.072*
C120.0360 (2)0.02736 (9)0.3024 (2)0.0621 (5)
H120.02050.05430.37980.075*
C130.0514 (2)0.01642 (9)0.3174 (2)0.0562 (5)
H130.12550.01970.40330.067*
C140.02547 (16)0.05580 (7)0.19997 (18)0.0421 (4)
C150.31688 (17)0.15356 (8)0.1635 (2)0.0486 (4)
C160.2896 (2)0.18462 (9)0.0313 (2)0.0581 (5)
H160.20730.18260.04260.070*
C170.3848 (3)0.21854 (11)0.0095 (3)0.0791 (7)
H170.36630.23960.07940.095*
C180.5068 (3)0.22168 (13)0.1175 (4)0.0935 (9)
H180.57090.24440.10130.112*
C190.5334 (2)0.19155 (13)0.2483 (4)0.0920 (8)
H190.61560.19420.32220.110*
C200.4396 (2)0.15706 (10)0.2721 (3)0.0703 (6)
H200.45890.13610.36130.084*
C210.0691 (2)0.18028 (8)0.0289 (2)0.0523 (4)
H21A0.16340.18020.00170.063*
H21B0.03400.17770.13820.063*
C220.0289 (2)0.27564 (8)0.0787 (2)0.0547 (5)
C230.0686 (3)0.32715 (9)0.0106 (2)0.0770 (7)
H23A0.08680.31500.07860.092*
H23B0.00430.35380.02190.092*
C240.1833 (3)0.35801 (12)0.1114 (3)0.0908 (8)
H24A0.16770.36930.20160.136*
H24B0.19900.39170.06100.136*
H24C0.25810.33310.13740.136*
N10.09434 (14)0.10500 (6)0.17978 (16)0.0455 (3)
N20.02720 (17)0.23387 (6)0.01795 (16)0.0538 (4)
H2A0.03910.23890.11210.065*
O10.23581 (16)0.10952 (8)0.44854 (16)0.0793 (5)
O20.24265 (16)0.18788 (7)0.2755 (2)0.0806 (5)
O30.04305 (18)0.27293 (7)0.21278 (15)0.0766 (5)
S10.23448 (5)0.12841 (2)0.30516 (6)0.05906 (16)
S20.20032 (5)0.10989 (2)0.20547 (5)0.05258 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (9)0.0629 (12)0.0571 (11)0.0080 (8)0.0062 (8)0.0097 (9)
C20.0551 (12)0.0777 (15)0.0703 (14)0.0019 (11)0.0128 (10)0.0042 (11)
C30.0606 (14)0.0838 (18)0.105 (2)0.0139 (13)0.0163 (14)0.0022 (15)
C40.0519 (13)0.119 (2)0.117 (2)0.0048 (15)0.0318 (15)0.0191 (19)
C50.0679 (16)0.122 (3)0.128 (3)0.0041 (16)0.0524 (17)0.011 (2)
C60.0575 (13)0.0840 (17)0.108 (2)0.0058 (12)0.0320 (14)0.0118 (14)
C70.0488 (9)0.0427 (9)0.0380 (8)0.0025 (7)0.0179 (7)0.0070 (7)
C80.0447 (9)0.0437 (9)0.0352 (8)0.0051 (7)0.0150 (7)0.0045 (7)
C90.0434 (8)0.0399 (8)0.0405 (8)0.0062 (7)0.0194 (7)0.0052 (6)
C100.0478 (9)0.0498 (10)0.0569 (10)0.0007 (8)0.0219 (8)0.0082 (8)
C110.0690 (13)0.0462 (11)0.0784 (14)0.0009 (9)0.0418 (11)0.0024 (10)
C120.0798 (14)0.0528 (11)0.0636 (12)0.0179 (10)0.0373 (11)0.0167 (9)
C130.0605 (11)0.0618 (12)0.0454 (10)0.0146 (9)0.0169 (8)0.0075 (8)
C140.0443 (9)0.0442 (9)0.0400 (8)0.0073 (7)0.0172 (7)0.0042 (7)
C150.0503 (9)0.0453 (10)0.0469 (9)0.0041 (8)0.0128 (8)0.0105 (8)
C160.0581 (11)0.0572 (12)0.0567 (11)0.0122 (9)0.0169 (9)0.0004 (9)
C170.0856 (16)0.0702 (15)0.0843 (16)0.0264 (13)0.0331 (14)0.0003 (12)
C180.0784 (17)0.0898 (19)0.114 (2)0.0439 (15)0.0348 (17)0.0238 (17)
C190.0615 (14)0.099 (2)0.099 (2)0.0263 (14)0.0062 (14)0.0286 (17)
C200.0635 (13)0.0708 (14)0.0622 (13)0.0088 (11)0.0034 (10)0.0099 (11)
C210.0637 (11)0.0505 (10)0.0496 (10)0.0055 (9)0.0284 (9)0.0068 (8)
C220.0824 (14)0.0484 (10)0.0374 (9)0.0075 (9)0.0258 (9)0.0033 (8)
C230.130 (2)0.0541 (12)0.0471 (11)0.0132 (13)0.0308 (13)0.0022 (9)
C240.119 (2)0.0855 (18)0.0672 (15)0.0240 (16)0.0306 (15)0.0015 (13)
N10.0438 (7)0.0509 (8)0.0388 (7)0.0017 (6)0.0102 (6)0.0052 (6)
N20.0867 (12)0.0439 (8)0.0348 (7)0.0055 (8)0.0259 (8)0.0049 (6)
O10.0732 (10)0.1127 (13)0.0419 (8)0.0004 (9)0.0070 (7)0.0195 (8)
O20.0718 (10)0.0555 (9)0.0969 (12)0.0100 (7)0.0064 (9)0.0252 (8)
O30.1285 (14)0.0722 (10)0.0369 (7)0.0096 (9)0.0383 (8)0.0020 (6)
S10.0518 (3)0.0646 (3)0.0511 (3)0.0045 (2)0.0054 (2)0.0177 (2)
S20.0570 (3)0.0629 (3)0.0337 (2)0.0058 (2)0.01022 (18)0.00357 (19)
Geometric parameters (Å, º) top
C1—C61.374 (3)C15—C161.380 (3)
C1—C21.378 (3)C15—C201.381 (3)
C1—S11.750 (2)C15—S21.7748 (19)
C2—C31.374 (3)C16—C171.374 (3)
C2—H20.9300C16—H160.9300
C3—C41.366 (4)C17—C181.372 (4)
C3—H30.9300C17—H170.9300
C4—C51.358 (4)C18—C191.358 (4)
C4—H40.9300C18—H180.9300
C5—C61.370 (4)C19—C201.378 (4)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.354 (2)C21—N21.445 (2)
C7—N11.410 (2)C21—H21A0.9700
C7—C211.489 (3)C21—H21B0.9700
C8—C91.436 (2)C22—O31.222 (2)
C8—S21.7457 (16)C22—N21.326 (2)
C9—C101.389 (2)C22—C231.489 (3)
C9—C141.392 (2)C23—C241.472 (3)
C10—C111.370 (3)C23—H23A0.9700
C10—H100.9300C23—H23B0.9700
C11—C121.383 (3)C24—H24A0.9600
C11—H110.9300C24—H24B0.9600
C12—C131.367 (3)C24—H24C0.9600
C12—H120.9300N1—S11.6699 (14)
C13—C141.388 (2)N2—H2A0.8600
C13—H130.9300O1—S11.4165 (17)
C14—N11.415 (2)O2—S11.4159 (17)
C6—C1—C2120.6 (2)C15—C16—H16120.2
C6—C1—S1119.78 (18)C18—C17—C16120.7 (2)
C2—C1—S1119.61 (18)C18—C17—H17119.7
C3—C2—C1119.2 (2)C16—C17—H17119.7
C3—C2—H2120.4C19—C18—C17119.8 (2)
C1—C2—H2120.4C19—C18—H18120.1
C4—C3—C2120.0 (3)C17—C18—H18120.1
C4—C3—H3120.0C18—C19—C20120.5 (2)
C2—C3—H3120.0C18—C19—H19119.7
C5—C4—C3120.6 (3)C20—C19—H19119.7
C5—C4—H4119.7C19—C20—C15120.0 (2)
C3—C4—H4119.7C19—C20—H20120.0
C4—C5—C6120.4 (3)C15—C20—H20120.0
C4—C5—H5119.8N2—C21—C7112.51 (15)
C6—C5—H5119.8N2—C21—H21A109.1
C5—C6—C1119.2 (3)C7—C21—H21A109.1
C5—C6—H6120.4N2—C21—H21B109.1
C1—C6—H6120.4C7—C21—H21B109.1
C8—C7—N1108.15 (15)H21A—C21—H21B107.8
C8—C7—C21126.70 (16)O3—C22—N2122.52 (18)
N1—C7—C21125.15 (15)O3—C22—C23122.38 (18)
C7—C8—C9108.81 (14)N2—C22—C23115.06 (16)
C7—C8—S2125.86 (14)C24—C23—C22114.89 (19)
C9—C8—S2125.31 (13)C24—C23—H23A108.5
C10—C9—C14119.86 (16)C22—C23—H23A108.5
C10—C9—C8132.61 (16)C24—C23—H23B108.5
C14—C9—C8107.52 (15)C22—C23—H23B108.5
C11—C10—C9118.87 (18)H23A—C23—H23B107.5
C11—C10—H10120.6C23—C24—H24A109.5
C9—C10—H10120.6C23—C24—H24B109.5
C10—C11—C12120.43 (19)H24A—C24—H24B109.5
C10—C11—H11119.8C23—C24—H24C109.5
C12—C11—H11119.8H24A—C24—H24C109.5
C13—C12—C11122.05 (18)H24B—C24—H24C109.5
C13—C12—H12119.0C7—N1—C14108.48 (13)
C11—C12—H12119.0C7—N1—S1126.97 (12)
C12—C13—C14117.57 (18)C14—N1—S1124.54 (12)
C12—C13—H13121.2C22—N2—C21122.54 (15)
C14—C13—H13121.2C22—N2—H2A118.7
C13—C14—C9121.21 (17)C21—N2—H2A118.7
C13—C14—N1131.79 (16)O2—S1—O1120.59 (11)
C9—C14—N1107.00 (14)O2—S1—N1106.35 (9)
C16—C15—C20119.43 (19)O1—S1—N1106.31 (9)
C16—C15—S2123.45 (14)O2—S1—C1108.84 (11)
C20—C15—S2117.10 (16)O1—S1—C1108.57 (10)
C17—C16—C15119.7 (2)N1—S1—C1105.10 (8)
C17—C16—H16120.2C8—S2—C15103.06 (8)
C6—C1—C2—C30.3 (3)C16—C15—C20—C190.3 (3)
S1—C1—C2—C3179.69 (18)S2—C15—C20—C19178.15 (19)
C1—C2—C3—C40.4 (4)C8—C7—C21—N293.9 (2)
C2—C3—C4—C50.0 (4)N1—C7—C21—N285.7 (2)
C3—C4—C5—C60.4 (5)O3—C22—C23—C2432.6 (4)
C4—C5—C6—C10.4 (5)N2—C22—C23—C24149.7 (2)
C2—C1—C6—C50.0 (4)C8—C7—N1—C142.10 (18)
S1—C1—C6—C5179.3 (2)C21—C7—N1—C14178.23 (15)
N1—C7—C8—C91.67 (18)C8—C7—N1—S1179.39 (12)
C21—C7—C8—C9178.66 (16)C21—C7—N1—S10.3 (2)
N1—C7—C8—S2179.76 (12)C13—C14—N1—C7178.38 (18)
C21—C7—C8—S20.1 (3)C9—C14—N1—C71.68 (17)
C7—C8—C9—C10178.64 (17)C13—C14—N1—S10.2 (3)
S2—C8—C9—C100.1 (3)C9—C14—N1—S1179.76 (12)
C7—C8—C9—C140.63 (18)O3—C22—N2—C213.8 (3)
S2—C8—C9—C14179.21 (12)C23—C22—N2—C21178.51 (19)
C14—C9—C10—C110.3 (2)C7—C21—N2—C22132.61 (19)
C8—C9—C10—C11178.90 (17)C7—N1—S1—O225.25 (18)
C9—C10—C11—C120.4 (3)C14—N1—S1—O2156.46 (14)
C10—C11—C12—C130.2 (3)C7—N1—S1—O1154.92 (15)
C11—C12—C13—C140.1 (3)C14—N1—S1—O126.79 (16)
C12—C13—C14—C90.2 (3)C7—N1—S1—C190.08 (16)
C12—C13—C14—N1179.87 (18)C14—N1—S1—C188.21 (15)
C10—C9—C14—C130.0 (2)C6—C1—S1—O219.4 (2)
C8—C9—C14—C13179.39 (15)C2—C1—S1—O2161.21 (16)
C10—C9—C14—N1179.96 (14)C6—C1—S1—O1152.42 (18)
C8—C9—C14—N10.66 (17)C2—C1—S1—O128.22 (19)
C20—C15—C16—C170.0 (3)C6—C1—S1—N194.15 (19)
S2—C15—C16—C17178.35 (17)C2—C1—S1—N185.20 (17)
C15—C16—C17—C180.2 (4)C7—C8—S2—C1593.53 (16)
C16—C17—C18—C190.8 (4)C9—C8—S2—C1588.13 (15)
C17—C18—C19—C201.1 (5)C16—C15—S2—C820.21 (18)
C18—C19—C20—C150.9 (4)C20—C15—S2—C8161.43 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.522.939 (2)111
C6—H6···O20.932.572.925 (3)103
C13—H13···O10.932.372.921 (3)118
C21—H21A···O20.972.432.849 (3)106
C21—H21B···O30.972.382.767 (2)103
C18—H18···O2i0.932.523.317 (3)144
N2—H2A···O3ii0.862.152.899 (2)145
C16—H16···O3ii0.932.603.416 (3)147
C10—H10···Cg2iii0.932.813.658 (2)152
C5—H5···Cg4iv0.932.913.788 (4)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC24H22N2O3S2
Mr450.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.9216 (3), 23.1856 (6), 9.4298 (2)
β (°) 110.147 (1)
V3)2241.74 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.26 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
26619, 5543, 3962
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.04
No. of reflections5543
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.522.939 (2)111
C6—H6···O20.932.572.925 (3)103
C13—H13···O10.932.372.921 (3)118
C21—H21A···O20.972.432.849 (3)106
C21—H21B···O30.972.382.767 (2)103
C18—H18···O2i0.932.523.317 (3)144
N2—H2A···O3ii0.862.152.899 (2)145
C16—H16···O3ii0.932.603.416 (3)147
C10—H10···Cg2iii0.932.813.658 (2)152
C5—H5···Cg4iv0.932.913.788 (4)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z.
 

Acknowledgements

The authors acknowledge SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736–738.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds