organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Benzamido­acridinium chloride

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn

(Received 31 August 2009; accepted 28 September 2009; online 3 October 2009)

In the title compound, C20H15N2O+·Cl, the dihedral angle between the fused-ring system and the benzene ring is 63.10 (7)°. In the crystal, N—H⋯Cl hydrogen bonds link the components and aromatic ππ stacking [shortest centroid–centroid distance = 3.6421 (12) Å] occurs.

Related literature

For background to acridine derivatives, see: Antonini (2002[Antonini, I. (2002). Curr. Med. Chem. 9, 1701-1716.]); Carvalho et al. (2005[Carvalho, I., Moreira, I. & Gehlen, M. (2005). Polyhedron, 24, 65-73.]). For the synthesis, see: He et al. (2008[He, Z. C., Bu, X. Y., Eleftheriou, A., Zihlif, M., Qing, Z., Stewar, B. W. & Wakeli, L. P. G. (2008). Bioorg. Med. Chem. 16, 4390-4400.]); Chandregowda et al. (2009[Chandregowda, V., Kush, A. & Reddy, G. C. (2009). Eur. J. Med. Chem. 44, 2711-2719.]). For related structures, see: Sikorski et al. (2007[Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484-o4485.], 2008[Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372-o373.]); Trzybiníski et al. (2009[Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770-o771.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N2O+·Cl

  • Mr = 334.79

  • Triclinic, [P \overline 1]

  • a = 8.9601 (17) Å

  • b = 9.0084 (17) Å

  • c = 10.8775 (18) Å

  • α = 79.168 (7)°

  • β = 65.855 (5)°

  • γ = 86.927 (7)°

  • V = 786.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 93 K

  • 0.37 × 0.33 × 0.17 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.959

  • 4772 measured reflections

  • 2955 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.069

  • S = 1.00

  • 2955 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1i 0.93 (2) 2.09 (2) 3.0167 (17) 168 (8)
N2—H2N⋯Cl1 0.90 (2) 2.37 (2) 3.2139 (17) 154 (4)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Acridine derivatives which show strong antiproliferative activities on human transformed cells, have been considered as promising agents for anticancer and antiparasitic therapy (Antonini et al., 2002) in recent years. Meanwhile Complexes containing acridine moiety are interesting in luminescence study (Carvalho et al., 2005). Therefore they attract more and more chemists' attention. Here we report the synthesis and crystal structure of the title compound (Fig. 1).

the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007, 2008). Atoms N2/C14/O1 which form dihedral angles with n1/c1/c6/c13/c12/c7 plane and c15 - c20 ring of 55.48 (1) Å and 6.82 (3) Å, respectively,are coplaner. The dihedral angle between the n1/c1/c6/c13/c12/c7 ring and c15 - c20 plane is 61.76 (6) Å.

In the crystal structure, weak Cl—H···N hydrogen bonds link the two cations and anions in ion pairs. π-π interactions between n1/c1/c6/c13/c12/c7 ring and c1-c6 ring are observed, with a Cg1···Cg2 distance of 3.6234 Å. [symmetry code: (i) –X,-1-Y,-Z] Where Cg1 and Cg2 are n1/c1/c6/c13/c12/c7 and c1-c6 centroid, respectively (Table 1).

Related literature top

For background to acridine derivatives, see: Antonini (2002); Carvalho et al. (2005). For the synthesis, see: He et al. (2008); Chandregowda et al. (2009). For related structures, see: Sikorski et al. (2007, 2008); Trzybiníski et al. (2009).

Experimental top

The title compound was prepared according to the reported procedure of He et al.. (2008) & Chandregowda et al.. (2009). Yellow chunks of (I) were obtained by recrystallization from methanol.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, & N—H = 0.9025–0.9390 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Acridine derivatives which show strong antiproliferative activities on human transformed cells, have been considered as promising agents for anticancer and antiparasitic therapy (Antonini et al., 2002) in recent years. Meanwhile Complexes containing acridine moiety are interesting in luminescence study (Carvalho et al., 2005). Therefore they attract more and more chemists' attention. Here we report the synthesis and crystal structure of the title compound (Fig. 1).

the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007, 2008). Atoms N2/C14/O1 which form dihedral angles with n1/c1/c6/c13/c12/c7 plane and c15 - c20 ring of 55.48 (1) Å and 6.82 (3) Å, respectively,are coplaner. The dihedral angle between the n1/c1/c6/c13/c12/c7 ring and c15 - c20 plane is 61.76 (6) Å.

In the crystal structure, weak Cl—H···N hydrogen bonds link the two cations and anions in ion pairs. π-π interactions between n1/c1/c6/c13/c12/c7 ring and c1-c6 ring are observed, with a Cg1···Cg2 distance of 3.6234 Å. [symmetry code: (i) –X,-1-Y,-Z] Where Cg1 and Cg2 are n1/c1/c6/c13/c12/c7 and c1-c6 centroid, respectively (Table 1).

For background to acridine derivatives, see: Antonini (2002); Carvalho et al. (2005). For the synthesis, see: He et al. (2008); Chandregowda et al. (2009). For related structures, see: Sikorski et al. (2007, 2008); Trzybiníski et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
9-Benzamidoacridinium chloride top
Crystal data top
C20H15N2O+·ClZ = 2
Mr = 334.79F(000) = 348
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9601 (17) ÅCell parameters from 2420 reflections
b = 9.0084 (17) Åθ = 3.2–27.5°
c = 10.8775 (18) ŵ = 0.25 mm1
α = 79.168 (7)°T = 93 K
β = 65.855 (5)°Chunk, yellow
γ = 86.927 (7)°0.37 × 0.33 × 0.17 mm
V = 786.6 (2) Å3
Data collection top
Rigaku SPIDER
diffractometer
2955 independent reflections
Radiation source: Rotating Anode2538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 811
Tmin = 0.913, Tmax = 0.959k = 1011
4772 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0136P)2 + 0.516P]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H15N2O+·Clγ = 86.927 (7)°
Mr = 334.79V = 786.6 (2) Å3
Triclinic, P1Z = 2
a = 8.9601 (17) ÅMo Kα radiation
b = 9.0084 (17) ŵ = 0.25 mm1
c = 10.8775 (18) ÅT = 93 K
α = 79.168 (7)°0.37 × 0.33 × 0.17 mm
β = 65.855 (5)°
Data collection top
Rigaku SPIDER
diffractometer
2955 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2538 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.959Rint = 0.020
4772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.27 e Å3
2955 reflectionsΔρmin = 0.22 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78153 (5)0.85506 (5)0.03376 (4)0.01909 (12)
O10.39684 (14)0.63975 (13)0.49853 (12)0.0187 (3)
N10.34182 (17)0.35116 (16)0.16256 (14)0.0143 (3)
N20.54610 (18)0.68607 (16)0.26770 (15)0.0153 (3)
C10.5768 (2)0.46569 (18)0.16353 (17)0.0139 (4)
C20.7475 (2)0.45912 (19)0.13000 (17)0.0161 (4)
H20.79880.53170.15410.019*
C30.8384 (2)0.34982 (19)0.06364 (18)0.0178 (4)
H30.95240.34690.04220.021*
C40.7652 (2)0.2403 (2)0.02605 (18)0.0185 (4)
H40.83060.16520.02050.022*
C50.6021 (2)0.24183 (19)0.05601 (17)0.0165 (4)
H50.55380.16870.03010.020*
C60.5053 (2)0.35355 (18)0.12623 (17)0.0142 (4)
C70.2393 (2)0.44990 (18)0.23448 (17)0.0140 (4)
C80.0696 (2)0.4369 (2)0.27045 (18)0.0176 (4)
H80.02680.35670.24780.021*
C90.0322 (2)0.5401 (2)0.33778 (18)0.0194 (4)
H90.14680.52970.36490.023*
C100.0313 (2)0.6631 (2)0.36779 (18)0.0197 (4)
H100.04060.73720.41060.024*
C110.1935 (2)0.67615 (19)0.33612 (18)0.0172 (4)
H110.23380.75920.35710.021*
C120.3043 (2)0.56678 (18)0.27180 (17)0.0141 (4)
C130.4735 (2)0.57227 (18)0.23643 (17)0.0139 (4)
C140.5083 (2)0.70877 (18)0.39917 (18)0.0145 (4)
C150.6172 (2)0.82148 (18)0.41153 (17)0.0139 (4)
C160.7367 (2)0.91166 (19)0.30042 (18)0.0175 (4)
H160.75280.90470.20980.021*
C170.8326 (2)1.01193 (19)0.32150 (19)0.0198 (4)
H170.91401.07350.24530.024*
C180.8099 (2)1.02228 (19)0.45330 (19)0.0187 (4)
H180.87651.09020.46740.022*
C190.6903 (2)0.93372 (19)0.56455 (19)0.0190 (4)
H190.67460.94120.65500.023*
C200.5936 (2)0.83416 (19)0.54403 (18)0.0165 (4)
H200.51090.77430.62060.020*
H1N0.298 (2)0.278 (2)0.1340 (19)0.023 (5)*
H2N0.633 (2)0.736 (2)0.197 (2)0.024 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0200 (2)0.0198 (2)0.0173 (2)0.00404 (17)0.00573 (19)0.00612 (18)
O10.0190 (7)0.0196 (6)0.0160 (7)0.0045 (5)0.0056 (6)0.0020 (5)
N10.0175 (8)0.0134 (7)0.0137 (8)0.0022 (6)0.0077 (6)0.0023 (6)
N20.0160 (8)0.0165 (8)0.0128 (8)0.0038 (6)0.0040 (7)0.0045 (6)
C10.0177 (9)0.0131 (8)0.0103 (9)0.0006 (7)0.0060 (7)0.0001 (7)
C20.0183 (9)0.0165 (9)0.0147 (9)0.0034 (7)0.0083 (8)0.0011 (7)
C30.0164 (10)0.0183 (9)0.0166 (10)0.0015 (7)0.0058 (8)0.0008 (8)
C40.0230 (10)0.0168 (9)0.0139 (9)0.0029 (7)0.0062 (8)0.0027 (7)
C50.0228 (10)0.0141 (9)0.0143 (9)0.0002 (7)0.0090 (8)0.0029 (7)
C60.0175 (10)0.0143 (8)0.0102 (9)0.0022 (7)0.0061 (7)0.0010 (7)
C70.0175 (9)0.0139 (8)0.0104 (9)0.0008 (7)0.0061 (7)0.0004 (7)
C80.0194 (10)0.0198 (9)0.0155 (9)0.0030 (7)0.0094 (8)0.0018 (8)
C90.0144 (9)0.0277 (10)0.0166 (9)0.0007 (8)0.0074 (8)0.0028 (8)
C100.0203 (10)0.0234 (10)0.0159 (10)0.0054 (8)0.0077 (8)0.0055 (8)
C110.0215 (10)0.0169 (9)0.0156 (9)0.0009 (7)0.0096 (8)0.0039 (8)
C120.0170 (9)0.0143 (8)0.0109 (9)0.0013 (7)0.0060 (7)0.0007 (7)
C130.0188 (10)0.0126 (8)0.0101 (8)0.0030 (7)0.0064 (7)0.0004 (7)
C140.0159 (9)0.0130 (8)0.0166 (9)0.0033 (7)0.0085 (8)0.0040 (7)
C150.0148 (9)0.0121 (8)0.0169 (9)0.0024 (7)0.0078 (8)0.0045 (7)
C160.0202 (10)0.0186 (9)0.0150 (9)0.0005 (7)0.0070 (8)0.0058 (8)
C170.0201 (10)0.0181 (9)0.0187 (10)0.0039 (8)0.0044 (8)0.0042 (8)
C180.0200 (10)0.0164 (9)0.0238 (10)0.0003 (7)0.0118 (8)0.0064 (8)
C190.0261 (10)0.0183 (9)0.0171 (10)0.0026 (8)0.0123 (8)0.0063 (8)
C200.0205 (10)0.0141 (8)0.0150 (9)0.0002 (7)0.0077 (8)0.0015 (7)
Geometric parameters (Å, º) top
O1—C141.218 (2)C8—H80.9500
N1—C61.352 (2)C9—C101.419 (2)
N1—C71.354 (2)C9—H90.9500
N1—H1N0.939 (19)C10—C111.356 (2)
N2—C141.381 (2)C10—H100.9500
N2—C131.405 (2)C11—C121.425 (2)
N2—H2N0.902 (19)C11—H110.9500
C1—C131.414 (2)C12—C131.404 (2)
C1—C21.421 (2)C14—C151.505 (2)
C1—C61.425 (2)C15—C161.390 (2)
C2—C31.362 (2)C15—C201.395 (2)
C2—H20.9500C16—C171.389 (2)
C3—C41.418 (2)C16—H160.9500
C3—H30.9500C17—C181.384 (2)
C4—C51.360 (2)C17—H170.9500
C4—H40.9500C18—C191.385 (2)
C5—C61.415 (2)C18—H180.9500
C5—H50.9500C19—C201.387 (2)
C7—C81.412 (2)C19—H190.9500
C7—C121.426 (2)C20—H200.9500
C8—C91.361 (2)
C6—N1—C7123.57 (14)C11—C10—C9120.77 (16)
C6—N1—H1N117.6 (11)C11—C10—H10119.6
C7—N1—H1N118.8 (11)C9—C10—H10119.6
C14—N2—C13124.05 (15)C10—C11—C12120.82 (16)
C14—N2—H2N120.0 (12)C10—C11—H11119.6
C13—N2—H2N115.3 (12)C12—C11—H11119.6
C13—C1—C2123.94 (15)C13—C12—C11124.12 (15)
C13—C1—C6118.42 (15)C13—C12—C7118.46 (15)
C2—C1—C6117.58 (15)C11—C12—C7117.32 (15)
C3—C2—C1120.64 (16)C12—C13—N2121.44 (15)
C3—C2—H2119.7C12—C13—C1120.60 (15)
C1—C2—H2119.7N2—C13—C1117.93 (15)
C2—C3—C4120.88 (17)O1—C14—N2122.22 (15)
C2—C3—H3119.6O1—C14—C15122.34 (15)
C4—C3—H3119.6N2—C14—C15115.42 (15)
C5—C4—C3120.67 (16)C16—C15—C20119.27 (15)
C5—C4—H4119.7C16—C15—C14124.14 (15)
C3—C4—H4119.7C20—C15—C14116.59 (15)
C4—C5—C6119.29 (16)C17—C16—C15120.21 (16)
C4—C5—H5120.4C17—C16—H16119.9
C6—C5—H5120.4C15—C16—H16119.9
N1—C6—C5119.64 (15)C18—C17—C16120.14 (17)
N1—C6—C1119.40 (15)C18—C17—H17119.9
C5—C6—C1120.93 (16)C16—C17—H17119.9
N1—C7—C8119.67 (15)C17—C18—C19120.02 (16)
N1—C7—C12119.52 (15)C17—C18—H18120.0
C8—C7—C12120.81 (15)C19—C18—H18120.0
C9—C8—C7119.44 (16)C18—C19—C20120.04 (16)
C9—C8—H8120.3C18—C19—H19120.0
C7—C8—H8120.3C20—C19—H19120.0
C8—C9—C10120.61 (17)C19—C20—C15120.31 (16)
C8—C9—H9119.7C19—C20—H20119.8
C10—C9—H9119.7C15—C20—H20119.8
C13—C1—C2—C3177.69 (17)C8—C7—C12—C115.1 (2)
C6—C1—C2—C30.5 (3)C11—C12—C13—N22.5 (3)
C1—C2—C3—C40.2 (3)C7—C12—C13—N2178.76 (16)
C2—C3—C4—C50.2 (3)C11—C12—C13—C1175.20 (17)
C3—C4—C5—C60.4 (3)C7—C12—C13—C11.0 (2)
C7—N1—C6—C5177.34 (16)C14—N2—C13—C1261.0 (2)
C7—N1—C6—C10.5 (2)C14—N2—C13—C1121.22 (18)
C4—C5—C6—N1176.64 (16)C2—C1—C13—C12176.74 (16)
C4—C5—C6—C11.2 (3)C6—C1—C13—C120.4 (2)
C13—C1—C6—N10.7 (2)C2—C1—C13—N25.4 (3)
C2—C1—C6—N1176.61 (16)C6—C1—C13—N2177.42 (15)
C13—C1—C6—C5178.53 (16)C13—N2—C14—O17.0 (3)
C2—C1—C6—C51.2 (2)C13—N2—C14—C15171.42 (15)
C6—N1—C7—C8178.65 (16)O1—C14—C15—C16174.41 (17)
C6—N1—C7—C122.0 (3)N2—C14—C15—C167.1 (2)
N1—C7—C8—C9177.30 (17)O1—C14—C15—C205.4 (2)
C12—C7—C8—C92.1 (3)N2—C14—C15—C20173.03 (15)
C7—C8—C9—C102.2 (3)C20—C15—C16—C170.7 (3)
C8—C9—C10—C113.3 (3)C14—C15—C16—C17179.45 (16)
C9—C10—C11—C120.1 (3)C15—C16—C17—C180.2 (3)
C10—C11—C12—C13179.75 (17)C16—C17—C18—C190.7 (3)
C10—C11—C12—C74.0 (3)C17—C18—C19—C200.2 (3)
N1—C7—C12—C132.2 (2)C18—C19—C20—C150.6 (3)
C8—C7—C12—C13178.44 (16)C16—C15—C20—C191.1 (3)
N1—C7—C12—C11174.28 (15)C14—C15—C20—C19179.04 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.93 (2)2.09 (2)3.0167 (17)168 (8)
N2—H2N···Cl10.90 (2)2.37 (2)3.2139 (17)154 (4)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H15N2O+·Cl
Mr334.79
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)8.9601 (17), 9.0084 (17), 10.8775 (18)
α, β, γ (°)79.168 (7), 65.855 (5), 86.927 (7)
V3)786.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.37 × 0.33 × 0.17
Data collection
DiffractometerRigaku SPIDER
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
4772, 2955, 2538
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.069, 1.00
No. of reflections2955
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.93 (2)2.09 (2)3.0167 (17)168 (8)
N2—H2N···Cl10.90 (2)2.37 (2)3.2139 (17)154 (4)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Scientific Research Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of the Sichuan Education Department (grant No. 2006B039).

References

First citationAntonini, I. (2002). Curr. Med. Chem. 9, 1701–1716.  Web of Science PubMed CAS Google Scholar
First citationCarvalho, I., Moreira, I. & Gehlen, M. (2005). Polyhedron, 24, 65–73.  Google Scholar
First citationChandregowda, V., Kush, A. & Reddy, G. C. (2009). Eur. J. Med. Chem. 44, 2711–2719.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, Z. C., Bu, X. Y., Eleftheriou, A., Zihlif, M., Qing, Z., Stewar, B. W. & Wakeli, L. P. G. (2008). Bioorg. Med. Chem. 16, 4390–4400.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770–o771.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds