organic compounds
9-Benzamidoacridinium chloride
aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn
In the title compound, C20H15N2O+·Cl−, the dihedral angle between the fused-ring system and the benzene ring is 63.10 (7)°. In the crystal, N—H⋯Cl hydrogen bonds link the components and aromatic π–π stacking [shortest centroid–centroid distance = 3.6421 (12) Å] occurs.
Related literature
For background to acridine derivatives, see: Antonini (2002); Carvalho et al. (2005). For the synthesis, see: He et al. (2008); Chandregowda et al. (2009). For related structures, see: Sikorski et al. (2007, 2008); Trzybiníski et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809039439/hb5083sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809039439/hb5083Isup2.hkl
The title compound was prepared according to the reported procedure of He et al.. (2008) & Chandregowda et al.. (2009). Yellow chunks of (I) were obtained by recrystallization from methanol.
H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, & N—H = 0.9025–0.9390 Å and refined as riding with Uiso(H) = 1.2Ueq(C).
Acridine derivatives which show strong antiproliferative activities on human transformed cells, have been considered as promising agents for anticancer and antiparasitic therapy (Antonini et al., 2002) in recent years. Meanwhile Complexes containing acridine moiety are interesting in luminescence study (Carvalho et al., 2005). Therefore they attract more and more chemists' attention. Here we report the synthesis and
of the title compound (Fig. 1).the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007, 2008). Atoms N2/C14/O1 which form dihedral angles with n1/c1/c6/c13/c12/c7 plane and c15 - c20 ring of 55.48 (1) Å and 6.82 (3) Å, respectively,are coplaner. The dihedral angle between the n1/c1/c6/c13/c12/c7 ring and c15 - c20 plane is 61.76 (6) Å.
In the π-π interactions between n1/c1/c6/c13/c12/c7 ring and c1-c6 ring are observed, with a Cg1···Cg2 distance of 3.6234 Å. [symmetry code: (i) –X,-1-Y,-Z] Where Cg1 and Cg2 are n1/c1/c6/c13/c12/c7 and c1-c6 centroid, respectively (Table 1).
weak Cl—H···N hydrogen bonds link the two cations and anions in ion pairs.For background to acridine derivatives, see: Antonini (2002); Carvalho et al. (2005). For the synthesis, see: He et al. (2008); Chandregowda et al. (2009). For related structures, see: Sikorski et al. (2007, 2008); Trzybiníski et al. (2009).
Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell
RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. |
C20H15N2O+·Cl− | Z = 2 |
Mr = 334.79 | F(000) = 348 |
Triclinic, P1 | Dx = 1.413 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9601 (17) Å | Cell parameters from 2420 reflections |
b = 9.0084 (17) Å | θ = 3.2–27.5° |
c = 10.8775 (18) Å | µ = 0.25 mm−1 |
α = 79.168 (7)° | T = 93 K |
β = 65.855 (5)° | Chunk, yellow |
γ = 86.927 (7)° | 0.37 × 0.33 × 0.17 mm |
V = 786.6 (2) Å3 |
Rigaku SPIDER diffractometer | 2955 independent reflections |
Radiation source: Rotating Anode | 2538 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 26.0°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→11 |
Tmin = 0.913, Tmax = 0.959 | k = −10→11 |
4772 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0136P)2 + 0.516P] where P = (Fo2 + 2Fc2)/3 |
2955 reflections | (Δ/σ)max < 0.001 |
225 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C20H15N2O+·Cl− | γ = 86.927 (7)° |
Mr = 334.79 | V = 786.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.9601 (17) Å | Mo Kα radiation |
b = 9.0084 (17) Å | µ = 0.25 mm−1 |
c = 10.8775 (18) Å | T = 93 K |
α = 79.168 (7)° | 0.37 × 0.33 × 0.17 mm |
β = 65.855 (5)° |
Rigaku SPIDER diffractometer | 2955 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2538 reflections with I > 2σ(I) |
Tmin = 0.913, Tmax = 0.959 | Rint = 0.020 |
4772 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.27 e Å−3 |
2955 reflections | Δρmin = −0.22 e Å−3 |
225 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.78153 (5) | 0.85506 (5) | −0.03376 (4) | 0.01909 (12) | |
O1 | 0.39684 (14) | 0.63975 (13) | 0.49853 (12) | 0.0187 (3) | |
N1 | 0.34182 (17) | 0.35116 (16) | 0.16256 (14) | 0.0143 (3) | |
N2 | 0.54610 (18) | 0.68607 (16) | 0.26770 (15) | 0.0153 (3) | |
C1 | 0.5768 (2) | 0.46569 (18) | 0.16353 (17) | 0.0139 (4) | |
C2 | 0.7475 (2) | 0.45912 (19) | 0.13000 (17) | 0.0161 (4) | |
H2 | 0.7988 | 0.5317 | 0.1541 | 0.019* | |
C3 | 0.8384 (2) | 0.34982 (19) | 0.06364 (18) | 0.0178 (4) | |
H3 | 0.9524 | 0.3469 | 0.0422 | 0.021* | |
C4 | 0.7652 (2) | 0.2403 (2) | 0.02605 (18) | 0.0185 (4) | |
H4 | 0.8306 | 0.1652 | −0.0205 | 0.022* | |
C5 | 0.6021 (2) | 0.24183 (19) | 0.05601 (17) | 0.0165 (4) | |
H5 | 0.5538 | 0.1687 | 0.0301 | 0.020* | |
C6 | 0.5053 (2) | 0.35355 (18) | 0.12623 (17) | 0.0142 (4) | |
C7 | 0.2393 (2) | 0.44990 (18) | 0.23448 (17) | 0.0140 (4) | |
C8 | 0.0696 (2) | 0.4369 (2) | 0.27045 (18) | 0.0176 (4) | |
H8 | 0.0268 | 0.3567 | 0.2478 | 0.021* | |
C9 | −0.0322 (2) | 0.5401 (2) | 0.33778 (18) | 0.0194 (4) | |
H9 | −0.1468 | 0.5297 | 0.3649 | 0.023* | |
C10 | 0.0313 (2) | 0.6631 (2) | 0.36779 (18) | 0.0197 (4) | |
H10 | −0.0406 | 0.7372 | 0.4106 | 0.024* | |
C11 | 0.1935 (2) | 0.67615 (19) | 0.33612 (18) | 0.0172 (4) | |
H11 | 0.2338 | 0.7592 | 0.3571 | 0.021* | |
C12 | 0.3043 (2) | 0.56678 (18) | 0.27180 (17) | 0.0141 (4) | |
C13 | 0.4735 (2) | 0.57227 (18) | 0.23643 (17) | 0.0139 (4) | |
C14 | 0.5083 (2) | 0.70877 (18) | 0.39917 (18) | 0.0145 (4) | |
C15 | 0.6172 (2) | 0.82148 (18) | 0.41153 (17) | 0.0139 (4) | |
C16 | 0.7367 (2) | 0.91166 (19) | 0.30042 (18) | 0.0175 (4) | |
H16 | 0.7528 | 0.9047 | 0.2098 | 0.021* | |
C17 | 0.8326 (2) | 1.01193 (19) | 0.32150 (19) | 0.0198 (4) | |
H17 | 0.9140 | 1.0735 | 0.2453 | 0.024* | |
C18 | 0.8099 (2) | 1.02228 (19) | 0.45330 (19) | 0.0187 (4) | |
H18 | 0.8765 | 1.0902 | 0.4674 | 0.022* | |
C19 | 0.6903 (2) | 0.93372 (19) | 0.56455 (19) | 0.0190 (4) | |
H19 | 0.6746 | 0.9412 | 0.6550 | 0.023* | |
C20 | 0.5936 (2) | 0.83416 (19) | 0.54403 (18) | 0.0165 (4) | |
H20 | 0.5109 | 0.7743 | 0.6206 | 0.020* | |
H1N | 0.298 (2) | 0.278 (2) | 0.1340 (19) | 0.023 (5)* | |
H2N | 0.633 (2) | 0.736 (2) | 0.197 (2) | 0.024 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0200 (2) | 0.0198 (2) | 0.0173 (2) | −0.00404 (17) | −0.00573 (19) | −0.00612 (18) |
O1 | 0.0190 (7) | 0.0196 (6) | 0.0160 (7) | −0.0045 (5) | −0.0056 (6) | −0.0020 (5) |
N1 | 0.0175 (8) | 0.0134 (7) | 0.0137 (8) | −0.0022 (6) | −0.0077 (6) | −0.0023 (6) |
N2 | 0.0160 (8) | 0.0165 (8) | 0.0128 (8) | −0.0038 (6) | −0.0040 (7) | −0.0045 (6) |
C1 | 0.0177 (9) | 0.0131 (8) | 0.0103 (9) | −0.0006 (7) | −0.0060 (7) | −0.0001 (7) |
C2 | 0.0183 (9) | 0.0165 (9) | 0.0147 (9) | −0.0034 (7) | −0.0083 (8) | −0.0011 (7) |
C3 | 0.0164 (10) | 0.0183 (9) | 0.0166 (10) | 0.0015 (7) | −0.0058 (8) | −0.0008 (8) |
C4 | 0.0230 (10) | 0.0168 (9) | 0.0139 (9) | 0.0029 (7) | −0.0062 (8) | −0.0027 (7) |
C5 | 0.0228 (10) | 0.0141 (9) | 0.0143 (9) | −0.0002 (7) | −0.0090 (8) | −0.0029 (7) |
C6 | 0.0175 (10) | 0.0143 (8) | 0.0102 (9) | −0.0022 (7) | −0.0061 (7) | 0.0010 (7) |
C7 | 0.0175 (9) | 0.0139 (8) | 0.0104 (9) | −0.0008 (7) | −0.0061 (7) | −0.0004 (7) |
C8 | 0.0194 (10) | 0.0198 (9) | 0.0155 (9) | −0.0030 (7) | −0.0094 (8) | −0.0018 (8) |
C9 | 0.0144 (9) | 0.0277 (10) | 0.0166 (9) | −0.0007 (8) | −0.0074 (8) | −0.0028 (8) |
C10 | 0.0203 (10) | 0.0234 (10) | 0.0159 (10) | 0.0054 (8) | −0.0077 (8) | −0.0055 (8) |
C11 | 0.0215 (10) | 0.0169 (9) | 0.0156 (9) | 0.0009 (7) | −0.0096 (8) | −0.0039 (8) |
C12 | 0.0170 (9) | 0.0143 (8) | 0.0109 (9) | −0.0013 (7) | −0.0060 (7) | −0.0007 (7) |
C13 | 0.0188 (10) | 0.0126 (8) | 0.0101 (8) | −0.0030 (7) | −0.0064 (7) | 0.0004 (7) |
C14 | 0.0159 (9) | 0.0130 (8) | 0.0166 (9) | 0.0033 (7) | −0.0085 (8) | −0.0040 (7) |
C15 | 0.0148 (9) | 0.0121 (8) | 0.0169 (9) | 0.0024 (7) | −0.0078 (8) | −0.0045 (7) |
C16 | 0.0202 (10) | 0.0186 (9) | 0.0150 (9) | −0.0005 (7) | −0.0070 (8) | −0.0058 (8) |
C17 | 0.0201 (10) | 0.0181 (9) | 0.0187 (10) | −0.0039 (8) | −0.0044 (8) | −0.0042 (8) |
C18 | 0.0200 (10) | 0.0164 (9) | 0.0238 (10) | 0.0003 (7) | −0.0118 (8) | −0.0064 (8) |
C19 | 0.0261 (10) | 0.0183 (9) | 0.0171 (10) | 0.0026 (8) | −0.0123 (8) | −0.0063 (8) |
C20 | 0.0205 (10) | 0.0141 (8) | 0.0150 (9) | −0.0002 (7) | −0.0077 (8) | −0.0015 (7) |
O1—C14 | 1.218 (2) | C8—H8 | 0.9500 |
N1—C6 | 1.352 (2) | C9—C10 | 1.419 (2) |
N1—C7 | 1.354 (2) | C9—H9 | 0.9500 |
N1—H1N | 0.939 (19) | C10—C11 | 1.356 (2) |
N2—C14 | 1.381 (2) | C10—H10 | 0.9500 |
N2—C13 | 1.405 (2) | C11—C12 | 1.425 (2) |
N2—H2N | 0.902 (19) | C11—H11 | 0.9500 |
C1—C13 | 1.414 (2) | C12—C13 | 1.404 (2) |
C1—C2 | 1.421 (2) | C14—C15 | 1.505 (2) |
C1—C6 | 1.425 (2) | C15—C16 | 1.390 (2) |
C2—C3 | 1.362 (2) | C15—C20 | 1.395 (2) |
C2—H2 | 0.9500 | C16—C17 | 1.389 (2) |
C3—C4 | 1.418 (2) | C16—H16 | 0.9500 |
C3—H3 | 0.9500 | C17—C18 | 1.384 (2) |
C4—C5 | 1.360 (2) | C17—H17 | 0.9500 |
C4—H4 | 0.9500 | C18—C19 | 1.385 (2) |
C5—C6 | 1.415 (2) | C18—H18 | 0.9500 |
C5—H5 | 0.9500 | C19—C20 | 1.387 (2) |
C7—C8 | 1.412 (2) | C19—H19 | 0.9500 |
C7—C12 | 1.426 (2) | C20—H20 | 0.9500 |
C8—C9 | 1.361 (2) | ||
C6—N1—C7 | 123.57 (14) | C11—C10—C9 | 120.77 (16) |
C6—N1—H1N | 117.6 (11) | C11—C10—H10 | 119.6 |
C7—N1—H1N | 118.8 (11) | C9—C10—H10 | 119.6 |
C14—N2—C13 | 124.05 (15) | C10—C11—C12 | 120.82 (16) |
C14—N2—H2N | 120.0 (12) | C10—C11—H11 | 119.6 |
C13—N2—H2N | 115.3 (12) | C12—C11—H11 | 119.6 |
C13—C1—C2 | 123.94 (15) | C13—C12—C11 | 124.12 (15) |
C13—C1—C6 | 118.42 (15) | C13—C12—C7 | 118.46 (15) |
C2—C1—C6 | 117.58 (15) | C11—C12—C7 | 117.32 (15) |
C3—C2—C1 | 120.64 (16) | C12—C13—N2 | 121.44 (15) |
C3—C2—H2 | 119.7 | C12—C13—C1 | 120.60 (15) |
C1—C2—H2 | 119.7 | N2—C13—C1 | 117.93 (15) |
C2—C3—C4 | 120.88 (17) | O1—C14—N2 | 122.22 (15) |
C2—C3—H3 | 119.6 | O1—C14—C15 | 122.34 (15) |
C4—C3—H3 | 119.6 | N2—C14—C15 | 115.42 (15) |
C5—C4—C3 | 120.67 (16) | C16—C15—C20 | 119.27 (15) |
C5—C4—H4 | 119.7 | C16—C15—C14 | 124.14 (15) |
C3—C4—H4 | 119.7 | C20—C15—C14 | 116.59 (15) |
C4—C5—C6 | 119.29 (16) | C17—C16—C15 | 120.21 (16) |
C4—C5—H5 | 120.4 | C17—C16—H16 | 119.9 |
C6—C5—H5 | 120.4 | C15—C16—H16 | 119.9 |
N1—C6—C5 | 119.64 (15) | C18—C17—C16 | 120.14 (17) |
N1—C6—C1 | 119.40 (15) | C18—C17—H17 | 119.9 |
C5—C6—C1 | 120.93 (16) | C16—C17—H17 | 119.9 |
N1—C7—C8 | 119.67 (15) | C17—C18—C19 | 120.02 (16) |
N1—C7—C12 | 119.52 (15) | C17—C18—H18 | 120.0 |
C8—C7—C12 | 120.81 (15) | C19—C18—H18 | 120.0 |
C9—C8—C7 | 119.44 (16) | C18—C19—C20 | 120.04 (16) |
C9—C8—H8 | 120.3 | C18—C19—H19 | 120.0 |
C7—C8—H8 | 120.3 | C20—C19—H19 | 120.0 |
C8—C9—C10 | 120.61 (17) | C19—C20—C15 | 120.31 (16) |
C8—C9—H9 | 119.7 | C19—C20—H20 | 119.8 |
C10—C9—H9 | 119.7 | C15—C20—H20 | 119.8 |
C13—C1—C2—C3 | 177.69 (17) | C8—C7—C12—C11 | −5.1 (2) |
C6—C1—C2—C3 | 0.5 (3) | C11—C12—C13—N2 | 2.5 (3) |
C1—C2—C3—C4 | 0.2 (3) | C7—C12—C13—N2 | 178.76 (16) |
C2—C3—C4—C5 | −0.2 (3) | C11—C12—C13—C1 | −175.20 (17) |
C3—C4—C5—C6 | −0.4 (3) | C7—C12—C13—C1 | 1.0 (2) |
C7—N1—C6—C5 | 177.34 (16) | C14—N2—C13—C12 | 61.0 (2) |
C7—N1—C6—C1 | −0.5 (2) | C14—N2—C13—C1 | −121.22 (18) |
C4—C5—C6—N1 | −176.64 (16) | C2—C1—C13—C12 | −176.74 (16) |
C4—C5—C6—C1 | 1.2 (3) | C6—C1—C13—C12 | 0.4 (2) |
C13—C1—C6—N1 | −0.7 (2) | C2—C1—C13—N2 | 5.4 (3) |
C2—C1—C6—N1 | 176.61 (16) | C6—C1—C13—N2 | −177.42 (15) |
C13—C1—C6—C5 | −178.53 (16) | C13—N2—C14—O1 | −7.0 (3) |
C2—C1—C6—C5 | −1.2 (2) | C13—N2—C14—C15 | 171.42 (15) |
C6—N1—C7—C8 | −178.65 (16) | O1—C14—C15—C16 | −174.41 (17) |
C6—N1—C7—C12 | 2.0 (3) | N2—C14—C15—C16 | 7.1 (2) |
N1—C7—C8—C9 | −177.30 (17) | O1—C14—C15—C20 | 5.4 (2) |
C12—C7—C8—C9 | 2.1 (3) | N2—C14—C15—C20 | −173.03 (15) |
C7—C8—C9—C10 | 2.2 (3) | C20—C15—C16—C17 | 0.7 (3) |
C8—C9—C10—C11 | −3.3 (3) | C14—C15—C16—C17 | −179.45 (16) |
C9—C10—C11—C12 | 0.1 (3) | C15—C16—C17—C18 | 0.2 (3) |
C10—C11—C12—C13 | −179.75 (17) | C16—C17—C18—C19 | −0.7 (3) |
C10—C11—C12—C7 | 4.0 (3) | C17—C18—C19—C20 | 0.2 (3) |
N1—C7—C12—C13 | −2.2 (2) | C18—C19—C20—C15 | 0.6 (3) |
C8—C7—C12—C13 | 178.44 (16) | C16—C15—C20—C19 | −1.1 (3) |
N1—C7—C12—C11 | 174.28 (15) | C14—C15—C20—C19 | 179.04 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1i | 0.93 (2) | 2.09 (2) | 3.0167 (17) | 168 (8) |
N2—H2N···Cl1 | 0.90 (2) | 2.37 (2) | 3.2139 (17) | 154 (4) |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C20H15N2O+·Cl− |
Mr | 334.79 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 93 |
a, b, c (Å) | 8.9601 (17), 9.0084 (17), 10.8775 (18) |
α, β, γ (°) | 79.168 (7), 65.855 (5), 86.927 (7) |
V (Å3) | 786.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.37 × 0.33 × 0.17 |
Data collection | |
Diffractometer | Rigaku SPIDER |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.913, 0.959 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4772, 2955, 2538 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.069, 1.00 |
No. of reflections | 2955 |
No. of parameters | 225 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.22 |
Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1i | 0.93 (2) | 2.09 (2) | 3.0167 (17) | 168 (8) |
N2—H2N···Cl1 | 0.90 (2) | 2.37 (2) | 3.2139 (17) | 154 (4) |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the Scientific Research Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of the Sichuan Education Department (grant No. 2006B039).
References
Antonini, I. (2002). Curr. Med. Chem. 9, 1701–1716. Web of Science PubMed CAS Google Scholar
Carvalho, I., Moreira, I. & Gehlen, M. (2005). Polyhedron, 24, 65–73. Google Scholar
Chandregowda, V., Kush, A. & Reddy, G. C. (2009). Eur. J. Med. Chem. 44, 2711–2719. Web of Science CrossRef PubMed CAS Google Scholar
He, Z. C., Bu, X. Y., Eleftheriou, A., Zihlif, M., Qing, Z., Stewar, B. W. & Wakeli, L. P. G. (2008). Bioorg. Med. Chem. 16, 4390–4400. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sikorski, A., Niziołek, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2008). Acta Cryst. E64, o372–o373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770–o771. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acridine derivatives which show strong antiproliferative activities on human transformed cells, have been considered as promising agents for anticancer and antiparasitic therapy (Antonini et al., 2002) in recent years. Meanwhile Complexes containing acridine moiety are interesting in luminescence study (Carvalho et al., 2005). Therefore they attract more and more chemists' attention. Here we report the synthesis and crystal structure of the title compound (Fig. 1).
the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007, 2008). Atoms N2/C14/O1 which form dihedral angles with n1/c1/c6/c13/c12/c7 plane and c15 - c20 ring of 55.48 (1) Å and 6.82 (3) Å, respectively,are coplaner. The dihedral angle between the n1/c1/c6/c13/c12/c7 ring and c15 - c20 plane is 61.76 (6) Å.
In the crystal structure, weak Cl—H···N hydrogen bonds link the two cations and anions in ion pairs. π-π interactions between n1/c1/c6/c13/c12/c7 ring and c1-c6 ring are observed, with a Cg1···Cg2 distance of 3.6234 Å. [symmetry code: (i) –X,-1-Y,-Z] Where Cg1 and Cg2 are n1/c1/c6/c13/c12/c7 and c1-c6 centroid, respectively (Table 1).