organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-1-methoxyxanthen-9-one monohydrate

aHainan Provincial Key Laboratory of Tropical Pharmaceutical Herb Chemistry, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
*Correspondence e-mail: hchr116@hainnu.edu.cn

(Received 10 September 2009; accepted 28 September 2009; online 23 October 2009)

In the title compound, C14H10O4·H2O, isolated from the roots of Calophyllum membranaceum, the xanthene ring system is almost planar (r.m.s. deviation = 0.008 Å). In the crystal structure, inter­molecular O—H⋯O and O—H⋯(O,O) hydrogen bonds connect the mol­ecules.

Related literature

For medicinal and botanical background, see: Zou et al. (2005[Zou, J., Jin, D. Z., Chen, W. L., Wang, J., Liu, Q. F., Zhu, X. Z. & Zhao, W. M. (2005). J. Nat. Prod. 68, 1514-1518.]); Chen et al. (2008[Chen, G. Y., Zhu, G. Y., Han, C. R., Zhao, J., Song, X. P. & Fong, W. F. (2008). Arkivoc, 13, 249-254.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O4·H2O

  • Mr = 260.24

  • Monoclinic, P 21 /c

  • a = 8.8008 (6) Å

  • b = 7.0856 (4) Å

  • c = 19.4596 (9) Å

  • β = 102.402 (4)°

  • V = 1185.16 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.38 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.974

  • 8151 measured reflections

  • 2919 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.164

  • S = 1.04

  • 2919 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1W 0.82 1.90 2.7126 (16) 174
O1W—H1A⋯O2i 0.83 (3) 2.03 (3) 2.857 (2) 174 (3)
O1W—H1B⋯O4ii 0.81 (3) 2.34 (3) 2.9540 (19) 134 (2)
O1W—H1B⋯O3ii 0.81 (3) 2.37 (3) 3.1195 (17) 155 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Secondary metabolites in the plants of Calophyllum membranaceum are mainly xanthones, coumarins and flavonids (Zou et al., 2005; Chen et al., 2008). The plants in this family were used in folk medicine such as, for rheumatism, arthritis, lumbago and wounds (Zou et al., 2005). The title xanthones was isolated from the 75% EtOH extract of the roots of Calophyllum membranaceum which were collected from Lingshui County, Hainan Province, P. R. China. We have undertaken the X-ray crystal structure analysis of the title xanthone in order to establish its molecular structure and relative stereochemistry.

The xanthene ring system of (I) (C1-C13/O1) is almost planar, with all atoms lying within 0.008 (8)Å of the mean plane.

In the crystal, molecules are linked by intermolecular O–H···O hydrogen bonds into chains (Fig.2). The hydrogen bonds and angles are listed in Table 1.

Related literature top

For medicinal and botanical background, see: Zou et al. (2005); Chen et al. (2008).

Experimental top

Air-dried roots of Calophyllum membranaceum (15.00 kg) were ground and percolated (3 × 2.5 h) with 75% EtOH at 333 K, which was suspended in 1.5 l water and then partitioned with petroleum ether, chloroform, ethyl acetate and n-hexane, successively, yielding a petroleum ether extract, a chloroform extract, an ethyl acetate extract and a n-BuOH extract, respectively. The chloroform extract was subjected to a silica gel CC column using petroleum ether as first eluent and then increasing the polarity with EtOAc, to afford 15 fractions (A—N). Fraction C was further separated by column chromatography with a gradient of CHCl3—CH3OH to give the title xanthone. The crude product was dissolved in small amount of anhydrous methanol to obtain colourless blocks of (I) by slow evaporation of a methanol solution at 298 K.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Structure description top

Secondary metabolites in the plants of Calophyllum membranaceum are mainly xanthones, coumarins and flavonids (Zou et al., 2005; Chen et al., 2008). The plants in this family were used in folk medicine such as, for rheumatism, arthritis, lumbago and wounds (Zou et al., 2005). The title xanthones was isolated from the 75% EtOH extract of the roots of Calophyllum membranaceum which were collected from Lingshui County, Hainan Province, P. R. China. We have undertaken the X-ray crystal structure analysis of the title xanthone in order to establish its molecular structure and relative stereochemistry.

The xanthene ring system of (I) (C1-C13/O1) is almost planar, with all atoms lying within 0.008 (8)Å of the mean plane.

In the crystal, molecules are linked by intermolecular O–H···O hydrogen bonds into chains (Fig.2). The hydrogen bonds and angles are listed in Table 1.

For medicinal and botanical background, see: Zou et al. (2005); Chen et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I): displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the molecular packing. Dashed lines indicate hydrogen bonds.
2-Hydroxy-1-methoxyxanthen-9-one monohydrate top
Crystal data top
C14H10O4·H2OF(000) = 544
Mr = 260.24Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2919 reflections
a = 8.8008 (6) Åθ = 2.1–28.2°
b = 7.0856 (4) ŵ = 0.11 mm1
c = 19.4596 (9) ÅT = 295 K
β = 102.402 (4)°Block, colourless
V = 1185.16 (12) Å30.38 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2919 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 0 pixels mm-1θmax = 28.2°, θmin = 2.1°
ω scansh = 611
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 89
Tmin = 0.959, Tmax = 0.974l = 2525
8151 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.2871P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2919 reflectionsΔρmax = 0.26 e Å3
181 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.095 (8)
Crystal data top
C14H10O4·H2OV = 1185.16 (12) Å3
Mr = 260.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8008 (6) ŵ = 0.11 mm1
b = 7.0856 (4) ÅT = 295 K
c = 19.4596 (9) Å0.38 × 0.26 × 0.24 mm
β = 102.402 (4)°
Data collection top
Bruker SMART CCD
diffractometer
2919 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2269 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.974Rint = 0.080
8151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
2919 reflectionsΔρmin = 0.36 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65861 (11)0.14472 (16)0.26194 (6)0.0409 (3)
O20.24707 (14)0.1457 (2)0.33085 (6)0.0577 (4)
O30.09211 (11)0.10250 (16)0.19163 (6)0.0412 (3)
O40.11784 (12)0.12437 (18)0.05791 (5)0.0459 (3)
H4A0.13860.11220.01900.069*
O1W0.16228 (15)0.0842 (3)0.07501 (6)0.0581 (4)
H1A0.181 (3)0.166 (4)0.1024 (17)0.097 (10)*
H1B0.080 (3)0.039 (4)0.0954 (14)0.079 (8)*
C10.65891 (18)0.1459 (2)0.33241 (8)0.0377 (3)
C20.8053 (2)0.1522 (2)0.37783 (9)0.0491 (4)
H2A0.89550.15480.36020.059*
C30.8131 (2)0.1546 (3)0.44946 (10)0.0577 (5)
H3A0.90960.15750.48050.069*
C40.6771 (3)0.1527 (3)0.47583 (9)0.0593 (5)
H4B0.68370.15500.52420.071*
C50.5341 (2)0.1475 (2)0.43070 (9)0.0497 (4)
H5A0.44450.14640.44870.060*
C60.52170 (18)0.1439 (2)0.35728 (7)0.0367 (3)
C70.36878 (17)0.1408 (2)0.30878 (7)0.0360 (3)
C80.37350 (15)0.13504 (18)0.23329 (7)0.0299 (3)
C90.23858 (15)0.12734 (19)0.17825 (7)0.0316 (3)
C100.25162 (16)0.12938 (19)0.10794 (7)0.0343 (3)
C110.39927 (17)0.1332 (2)0.09150 (7)0.0374 (3)
H11A0.40750.13310.04460.045*
C120.53188 (17)0.1372 (2)0.14382 (8)0.0372 (3)
H12A0.62930.13850.13250.045*
C130.51916 (16)0.13944 (19)0.21397 (7)0.0318 (3)
C140.0097 (2)0.2739 (3)0.19948 (11)0.0578 (5)
H14A0.09040.24340.20860.087*
H14B0.00350.34680.15700.087*
H14C0.06810.34570.23810.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (5)0.0548 (7)0.0354 (6)0.0022 (4)0.0027 (4)0.0018 (4)
O20.0468 (6)0.0962 (10)0.0337 (6)0.0072 (6)0.0163 (5)0.0084 (6)
O30.0315 (5)0.0527 (7)0.0412 (6)0.0061 (4)0.0118 (4)0.0017 (4)
O40.0377 (6)0.0689 (8)0.0284 (5)0.0012 (5)0.0010 (4)0.0009 (4)
O1W0.0456 (7)0.0910 (11)0.0357 (6)0.0150 (7)0.0044 (5)0.0005 (6)
C10.0426 (7)0.0330 (7)0.0337 (7)0.0023 (5)0.0000 (6)0.0023 (5)
C20.0439 (8)0.0466 (9)0.0490 (9)0.0025 (7)0.0071 (7)0.0036 (7)
C30.0627 (11)0.0509 (10)0.0459 (9)0.0027 (8)0.0187 (8)0.0028 (7)
C40.0798 (13)0.0582 (11)0.0317 (8)0.0053 (9)0.0063 (8)0.0023 (7)
C50.0643 (10)0.0517 (10)0.0304 (7)0.0039 (7)0.0042 (7)0.0028 (6)
C60.0453 (8)0.0339 (7)0.0285 (7)0.0035 (5)0.0029 (5)0.0022 (5)
C70.0400 (7)0.0387 (7)0.0296 (7)0.0042 (5)0.0082 (5)0.0030 (5)
C80.0315 (6)0.0306 (6)0.0276 (6)0.0029 (5)0.0062 (5)0.0006 (5)
C90.0307 (6)0.0333 (7)0.0315 (7)0.0026 (5)0.0081 (5)0.0002 (5)
C100.0347 (7)0.0370 (7)0.0298 (6)0.0018 (5)0.0039 (5)0.0014 (5)
C110.0415 (7)0.0442 (8)0.0286 (7)0.0004 (6)0.0119 (6)0.0021 (5)
C120.0341 (7)0.0448 (8)0.0355 (7)0.0009 (6)0.0138 (5)0.0008 (6)
C130.0302 (6)0.0325 (7)0.0324 (7)0.0016 (5)0.0055 (5)0.0013 (5)
C140.0417 (8)0.0675 (12)0.0693 (11)0.0063 (8)0.0235 (8)0.0022 (9)
Geometric parameters (Å, º) top
O1—C11.3708 (18)C4—H4B0.9300
O1—C131.3737 (16)C5—C61.409 (2)
O2—C71.2372 (17)C5—H5A0.9300
O3—C91.3801 (16)C6—C71.469 (2)
O3—C141.439 (2)C7—C81.4790 (18)
O4—C101.3576 (17)C8—C131.4116 (18)
O4—H4A0.8200C8—C91.4191 (18)
O1W—H1A0.83 (3)C9—C101.3973 (19)
O1W—H1B0.81 (3)C10—C111.4036 (19)
C1—C61.394 (2)C11—C121.375 (2)
C1—C21.398 (2)C11—H11A0.9300
C2—C31.381 (3)C12—C131.3935 (19)
C2—H2A0.9300C12—H12A0.9300
C3—C41.400 (3)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.371 (3)C14—H14C0.9600
C1—O1—C13119.30 (11)C13—C8—C9117.41 (12)
C9—O3—C14115.13 (12)C13—C8—C7118.99 (12)
C10—O4—H4A109.5C9—C8—C7123.59 (12)
H1A—O1W—H1B104 (3)O3—C9—C10117.56 (12)
O1—C1—C6122.10 (13)O3—C9—C8121.77 (12)
O1—C1—C2115.87 (14)C10—C9—C8120.48 (12)
C6—C1—C2122.02 (14)O4—C10—C9117.45 (12)
C3—C2—C1118.55 (17)O4—C10—C11122.66 (13)
C3—C2—H2A120.7C9—C10—C11119.88 (12)
C1—C2—H2A120.7C12—C11—C10120.79 (12)
C2—C3—C4120.59 (16)C12—C11—H11A119.6
C2—C3—H3A119.7C10—C11—H11A119.6
C4—C3—H3A119.7C11—C12—C13119.46 (12)
C5—C4—C3120.29 (16)C11—C12—H12A120.3
C5—C4—H4B119.9C13—C12—H12A120.3
C3—C4—H4B119.9O1—C13—C12114.70 (12)
C4—C5—C6120.70 (17)O1—C13—C8123.34 (12)
C4—C5—H5A119.6C12—C13—C8121.95 (13)
C6—C5—H5A119.6O3—C14—H14A109.5
C1—C6—C5117.85 (14)O3—C14—H14B109.5
C1—C6—C7121.30 (13)H14A—C14—H14B109.5
C5—C6—C7120.84 (14)O3—C14—H14C109.5
O2—C7—C6121.24 (13)H14A—C14—H14C109.5
O2—C7—C8123.82 (13)H14B—C14—H14C109.5
C6—C7—C8114.92 (12)
C13—O1—C1—C60.65 (19)C14—O3—C9—C1093.42 (16)
C13—O1—C1—C2179.73 (12)C14—O3—C9—C891.70 (16)
O1—C1—C2—C3179.71 (14)C13—C8—C9—O3173.03 (12)
C6—C1—C2—C30.6 (2)C7—C8—C9—O37.70 (19)
C1—C2—C3—C40.7 (3)C13—C8—C9—C101.70 (18)
C2—C3—C4—C50.3 (3)C7—C8—C9—C10177.57 (12)
C3—C4—C5—C60.1 (3)O3—C9—C10—O45.96 (18)
O1—C1—C6—C5179.30 (13)C8—C9—C10—O4179.09 (12)
C2—C1—C6—C50.3 (2)O3—C9—C10—C11172.99 (12)
O1—C1—C6—C70.2 (2)C8—C9—C10—C111.96 (19)
C2—C1—C6—C7178.83 (13)O4—C10—C11—C12179.64 (13)
C4—C5—C6—C10.1 (2)C9—C10—C11—C120.7 (2)
C4—C5—C6—C7179.18 (15)C10—C11—C12—C130.7 (2)
C1—C6—C7—O2177.43 (14)C1—O1—C13—C12179.55 (12)
C5—C6—C7—O21.6 (2)C1—O1—C13—C80.03 (18)
C1—C6—C7—C81.57 (19)C11—C12—C13—O1179.57 (12)
C5—C6—C7—C8179.36 (13)C11—C12—C13—C80.9 (2)
O2—C7—C8—C13176.82 (14)C9—C8—C13—O1179.21 (12)
C6—C7—C8—C132.15 (17)C7—C8—C13—O11.49 (19)
O2—C7—C8—C92.4 (2)C9—C8—C13—C120.28 (19)
C6—C7—C8—C9178.59 (12)C7—C8—C13—C12179.03 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1W0.821.902.7126 (16)174
O1W—H1A···O2i0.83 (3)2.03 (3)2.857 (2)174 (3)
O1W—H1B···O4ii0.81 (3)2.34 (3)2.9540 (19)134 (2)
O1W—H1B···O3ii0.81 (3)2.37 (3)3.1195 (17)155 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC14H10O4·H2O
Mr260.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.8008 (6), 7.0856 (4), 19.4596 (9)
β (°) 102.402 (4)
V3)1185.16 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.959, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
8151, 2919, 2269
Rint0.080
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.164, 1.04
No. of reflections2919
No. of parameters181
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1W0.821.902.7126 (16)174
O1W—H1A···O2i0.83 (3)2.03 (3)2.857 (2)174 (3)
O1W—H1B···O4ii0.81 (3)2.34 (3)2.9540 (19)134 (2)
O1W—H1B···O3ii0.81 (3)2.37 (3)3.1195 (17)155 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20862005), the Program for New Century Excellent Talents in Universities (NCET-08–0656) and the Natural Science Foundation of Hainan Province, China (No. 070207). We thank Bingjing Xin and Tingting Zhang for collecting the crystal data.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, G. Y., Zhu, G. Y., Han, C. R., Zhao, J., Song, X. P. & Fong, W. F. (2008). Arkivoc, 13, 249–254.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, J., Jin, D. Z., Chen, W. L., Wang, J., Liu, Q. F., Zhu, X. Z. & Zhao, W. M. (2005). J. Nat. Prod. 68, 1514–1518.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds