metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-N′-acetyl-1-oxido­naphthalene-2-carbohydrazidato(3−)]tetra­pyridine­tricopper(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 13 September 2009; accepted 23 October 2009; online 28 October 2009)

There are two half-mol­ecules in the asymmetric unit of the title compound, [Cu3(C13H9N2O3)2(C5H5N)4], and crystallographic inversion symmetry completes each trinuclear mol­ecule. In both mol­ecules, the central Cu atom (site symmetry [\overline{1}]) adopts a distorted trans-CuO2N4 octa­hedral geometry, arising from its coordination by two N,O-bidentate aroylhydrazine ligands and two pyridine mol­ecules. The peripheral Cu atoms adopt trans-CuN2O2 square-planar coordinations arising from an N,O,O-tri­dentate ligand (that also bonds to the central Cu atom) and a pyridine mol­ecule.

Related literature

For related compounds, see: Patole et al. (2003[Patole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51-55.]); Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A. C., Janiak, C. & Hassan, H. M. (2007). Inorg. Chim. Acta, 360, 1599-1608.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C13H9N2O3)2(C5H5N)4]

  • Mr = 989.47

  • Monoclinic, P 21 /c

  • a = 24.080 (3) Å

  • b = 9.8572 (11) Å

  • c = 19.373 (2) Å

  • β = 111.371 (2)°

  • V = 4282.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 298 K

  • 0.34 × 0.33 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.729

  • 21184 measured reflections

  • 7546 independent reflections

  • 3457 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.112

  • S = 1.00

  • 7546 reflections

  • 573 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 2.022 (3)
Cu1—N2 2.061 (4)
Cu1—N3 2.172 (5)
Cu2—N1 1.832 (4)
Cu2—O2 1.838 (4)
Cu2—O3 1.875 (4)
Cu2—N4 1.951 (5)
Cu3—O4 2.025 (3)
Cu3—N6 2.068 (4)
Cu3—N7 2.176 (5)
Cu4—O5 1.827 (4)
Cu4—N5 1.828 (4)
Cu4—O6 1.861 (4)
Cu4—N8 1.944 (4)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of aroylhydrazine complexes have been prepared and studied due to their diverse molecular architectures and quite interesting chemical properties. However, researches on the copper(II) complexes with N-acetyl-1 -hydroxy-2-naphthoylhydrazide have not reported. So we have synthesized a new complex(Fig.1), which has been characterized by X-ray diffraction and elemental analysis. The triple-deprotonated N-acetyl-1-hydroxy-2- naphthoylhydrazide bridged the metal ions using hydrazide N—N group and formed the trinuclear copper complex. As can be seen from Fig.1, there are two trinuclear molecules in the unit cell, molecule A and B. Three copper(II) ions are in a straight line with the Cu—Cu—Cu interatomic angle 180 (12)° for A and B. The atomic distance of Cu1—Cu2 and Cu3—Cu4 is 0.4609 nm and 0.491 nm. The coordination geometry of the three Cu atoms exhibit alternating square-planar and octahedral coordination mode. The copper atoms of the center (Cu1 and Cu3) exhibit distorted N4O2 octahedral surroundings. However, for the other terminal copper atoms (Cu2 and Cu4), the coordinationg geometry are square plane. In the crystal packing, the complex molecules are linked into one-dimensional chains by intermolecular C—H···O interactions (Fig. 2)

Related literature top

For related compounds, see: Patole et al. (2003); Pouralimardan et al. (2007). [AUTHOR: Please supply Fig. 2]

Experimental top

Acetic anhydride (0.52 g, 4 mmol) and 1-hydroxy-2-naphthoylhydrazide (0.808 g, 4 mmol)were added to 40 ml of chloroform at ice-water bath. The reaction mixture was slowly warmed to room temperature and stirred for 24 h. After staying for overnight at refrigerator,the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether m.p.:162–167. An amount of 24.4 mg (0.1 mmol) of N-acetyl-1-hydroxy-2- naphthoylhydrazide was dissolved in 10 ml pyridine and 29.9 mg (0.15 mmol) of copper acetate was dissolved in 10 ml DMF. The two solutions were mixed and the combined solution was allowed to stand for 3 weeks, whereupon green blocks of (I) were obtained in 56% yield. Elemental analysis calculated for Cu6C92H76N16O12: C, 55.84; H, 3.87; N, 11.12. Found (%): C, 55.42; H, 4.06; N, 11.47

Refinement top

The H atoms were positioned with idealized geometry (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C).

Structure description top

A large number of aroylhydrazine complexes have been prepared and studied due to their diverse molecular architectures and quite interesting chemical properties. However, researches on the copper(II) complexes with N-acetyl-1 -hydroxy-2-naphthoylhydrazide have not reported. So we have synthesized a new complex(Fig.1), which has been characterized by X-ray diffraction and elemental analysis. The triple-deprotonated N-acetyl-1-hydroxy-2- naphthoylhydrazide bridged the metal ions using hydrazide N—N group and formed the trinuclear copper complex. As can be seen from Fig.1, there are two trinuclear molecules in the unit cell, molecule A and B. Three copper(II) ions are in a straight line with the Cu—Cu—Cu interatomic angle 180 (12)° for A and B. The atomic distance of Cu1—Cu2 and Cu3—Cu4 is 0.4609 nm and 0.491 nm. The coordination geometry of the three Cu atoms exhibit alternating square-planar and octahedral coordination mode. The copper atoms of the center (Cu1 and Cu3) exhibit distorted N4O2 octahedral surroundings. However, for the other terminal copper atoms (Cu2 and Cu4), the coordinationg geometry are square plane. In the crystal packing, the complex molecules are linked into one-dimensional chains by intermolecular C—H···O interactions (Fig. 2)

For related compounds, see: Patole et al. (2003); Pouralimardan et al. (2007). [AUTHOR: Please supply Fig. 2]

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
Bis[µ-N'-acetyl-1-oxidonaphthalene-2- carbohydrazidato(3-)]tetrapyridinetricopper(II) top
Crystal data top
[Cu3(C13H9N2O3)2(C5H5N)4]F(000) = 2020
Mr = 989.47Dx = 1.535 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1024 reflections
a = 24.080 (3) Åθ = 2.4–19.6°
b = 9.8572 (11) ŵ = 1.54 mm1
c = 19.373 (2) ÅT = 298 K
β = 111.371 (2)°Block, green
V = 4282.1 (8) Å30.34 × 0.33 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
7546 independent reflections
Radiation source: fine-focus sealed tube3457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2828
Tmin = 0.623, Tmax = 0.729k = 1111
21184 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0278P)2]
where P = (Fo2 + 2Fc2)/3
7546 reflections(Δ/σ)max < 0.001
573 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu3(C13H9N2O3)2(C5H5N)4]V = 4282.1 (8) Å3
Mr = 989.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 24.080 (3) ŵ = 1.54 mm1
b = 9.8572 (11) ÅT = 298 K
c = 19.373 (2) Å0.34 × 0.33 × 0.22 mm
β = 111.371 (2)°
Data collection top
Bruker SMART CCD
diffractometer
7546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3457 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.729Rint = 0.071
21184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.87 e Å3
7546 reflectionsΔρmin = 0.45 e Å3
573 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.50000.0453 (3)
Cu20.65591 (3)0.82431 (8)0.44280 (4)0.0529 (2)
Cu30.00000.50000.50000.0500 (3)
Cu40.17821 (3)0.50169 (8)0.46069 (4)0.0508 (2)
N10.60961 (18)0.9153 (4)0.4845 (3)0.0399 (12)
N20.54793 (18)0.8834 (5)0.4530 (3)0.0394 (12)
N30.4999 (2)1.1643 (5)0.4252 (3)0.0446 (13)
N40.6990 (2)0.7167 (5)0.3940 (3)0.0478 (13)
N50.11599 (18)0.5382 (4)0.4906 (2)0.0388 (12)
N60.06561 (18)0.4543 (5)0.4584 (3)0.0418 (13)
N70.0429 (2)0.6330 (6)0.4059 (3)0.0501 (14)
N80.2408 (2)0.4511 (5)0.4246 (3)0.0451 (13)
O10.58439 (15)1.0504 (3)0.5647 (2)0.0426 (10)
O20.72474 (15)0.9138 (4)0.4980 (2)0.0481 (11)
O30.58364 (16)0.7416 (4)0.3857 (2)0.0513 (11)
O40.06049 (15)0.6467 (3)0.5487 (2)0.0465 (10)
O50.22834 (15)0.6264 (4)0.5221 (2)0.0474 (11)
O60.12637 (16)0.3725 (4)0.4011 (2)0.0538 (11)
C10.6234 (2)1.0023 (6)0.5407 (3)0.0372 (13)
C20.7310 (2)1.0014 (6)0.5514 (3)0.0466 (15)
C30.6864 (2)1.0462 (6)0.5754 (3)0.0405 (15)
C40.6999 (3)1.1336 (6)0.6364 (3)0.0514 (17)
H40.66971.15900.65300.062*
C50.7568 (3)1.1829 (6)0.6727 (4)0.0651 (19)
H50.76471.23960.71360.078*
C60.8031 (3)1.1473 (7)0.6477 (4)0.0574 (18)
C70.7914 (3)1.0603 (6)0.5877 (4)0.0483 (16)
C80.8371 (3)1.0303 (6)0.5627 (4)0.066 (2)
H80.83040.96870.52410.079*
C90.8920 (3)1.0899 (8)0.5939 (4)0.078 (2)
H90.92161.07170.57490.093*
C100.9035 (3)1.1760 (8)0.6526 (5)0.084 (2)
H100.94111.21490.67370.101*
C110.8610 (3)1.2056 (7)0.6805 (4)0.073 (2)
H110.86941.26370.72080.087*
C120.5393 (2)0.7935 (6)0.4016 (3)0.0435 (16)
C130.4773 (2)0.7425 (6)0.3584 (3)0.0620 (19)
H13A0.46850.75570.30640.093*
H13B0.44900.79170.37310.093*
H13C0.47490.64760.36820.093*
C140.4671 (2)1.1580 (6)0.3536 (4)0.0498 (16)
H140.44261.08290.33630.060*
C150.4673 (3)1.2560 (7)0.3037 (4)0.0596 (18)
H150.44331.24760.25390.072*
C160.5038 (3)1.3675 (7)0.3287 (4)0.068 (2)
H160.50581.43470.29600.082*
C170.5371 (3)1.3767 (7)0.4030 (4)0.068 (2)
H170.56121.45170.42200.082*
C180.5340 (3)1.2731 (7)0.4490 (4)0.0594 (18)
H180.55691.27960.49920.071*
C190.6746 (3)0.6130 (6)0.3518 (4)0.0611 (19)
H190.63640.58700.34760.073*
C200.7029 (3)0.5394 (6)0.3128 (4)0.072 (2)
H200.68330.46800.28230.087*
C210.7591 (3)0.5725 (8)0.3196 (4)0.074 (2)
H210.77890.52470.29410.089*
C220.7856 (3)0.6764 (8)0.3643 (4)0.075 (2)
H220.82450.70050.37070.091*
C230.7548 (3)0.7483 (7)0.4012 (4)0.069 (2)
H230.77380.82030.43170.082*
C240.1094 (2)0.6327 (6)0.5362 (3)0.0374 (14)
C250.2158 (2)0.7108 (6)0.5670 (3)0.0423 (15)
C260.1606 (2)0.7229 (5)0.5741 (3)0.0379 (15)
C270.1513 (2)0.8231 (6)0.6208 (3)0.0480 (16)
H270.11390.83060.62430.058*
C280.1956 (3)0.9092 (6)0.6609 (3)0.0580 (18)
H280.18790.97660.68990.070*
C290.2538 (3)0.8954 (6)0.6583 (3)0.0482 (16)
C300.2642 (2)0.8003 (6)0.6121 (3)0.0435 (16)
C310.3213 (3)0.7890 (6)0.6099 (3)0.0526 (17)
H310.32830.72610.57820.063*
C320.3666 (3)0.8676 (7)0.6529 (4)0.0618 (19)
H320.40440.85760.65090.074*
C330.3570 (3)0.9630 (6)0.6999 (4)0.066 (2)
H330.38831.01660.72980.079*
C340.3015 (3)0.9775 (6)0.7020 (3)0.0625 (19)
H340.29491.04280.73280.075*
C350.0757 (3)0.3711 (6)0.4118 (4)0.0514 (17)
C360.0298 (3)0.2703 (6)0.3697 (4)0.076 (2)
H36A0.00190.26920.38870.115*
H36B0.04760.18190.37520.115*
H36C0.01420.29480.31820.115*
C370.0701 (3)0.5839 (7)0.3374 (4)0.0629 (19)
H370.07250.49040.33040.075*
C380.0951 (3)0.6684 (9)0.2760 (4)0.078 (2)
H380.11410.63150.22910.093*
C390.0914 (3)0.8031 (9)0.2852 (5)0.078 (2)
H390.10740.86050.24460.094*
C400.0644 (3)0.8552 (8)0.3536 (5)0.075 (2)
H400.06210.94850.36100.090*
C410.0400 (3)0.7670 (8)0.4130 (4)0.064 (2)
H410.02070.80360.45990.077*
C420.2397 (3)0.3316 (7)0.3913 (4)0.0597 (18)
H420.20730.27430.38350.072*
C430.2849 (3)0.2897 (7)0.3679 (4)0.068 (2)
H430.28240.20710.34380.082*
C440.3327 (3)0.3711 (8)0.3810 (4)0.071 (2)
H440.36460.34260.36830.085*
C450.3342 (3)0.4934 (9)0.4123 (4)0.085 (2)
H450.36590.55230.41930.102*
C460.2876 (3)0.5295 (7)0.4337 (4)0.068 (2)
H460.28910.61380.45590.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0385 (6)0.0540 (7)0.0438 (7)0.0005 (6)0.0153 (5)0.0042 (6)
Cu20.0459 (5)0.0645 (5)0.0503 (5)0.0058 (4)0.0198 (4)0.0013 (5)
Cu30.0378 (6)0.0606 (7)0.0526 (7)0.0037 (6)0.0178 (5)0.0091 (7)
Cu40.0426 (5)0.0622 (5)0.0497 (5)0.0004 (4)0.0194 (4)0.0064 (5)
N10.024 (3)0.053 (3)0.042 (3)0.004 (2)0.012 (2)0.005 (3)
N20.030 (3)0.051 (3)0.037 (3)0.002 (2)0.012 (2)0.000 (3)
N30.039 (3)0.055 (4)0.042 (3)0.002 (3)0.018 (3)0.005 (3)
N40.045 (3)0.053 (4)0.047 (4)0.009 (3)0.019 (3)0.005 (3)
N50.033 (3)0.047 (3)0.036 (3)0.007 (2)0.013 (2)0.006 (3)
N60.032 (3)0.055 (3)0.038 (3)0.007 (2)0.012 (3)0.013 (3)
N70.038 (3)0.063 (4)0.052 (4)0.001 (3)0.020 (3)0.005 (3)
N80.044 (3)0.051 (3)0.046 (3)0.001 (3)0.022 (3)0.003 (3)
O10.032 (2)0.056 (3)0.043 (3)0.0000 (18)0.016 (2)0.009 (2)
O20.034 (2)0.068 (3)0.044 (3)0.004 (2)0.017 (2)0.005 (2)
O30.037 (2)0.065 (3)0.052 (3)0.000 (2)0.016 (2)0.015 (2)
O40.036 (2)0.056 (3)0.052 (3)0.007 (2)0.022 (2)0.016 (2)
O50.035 (2)0.058 (3)0.051 (3)0.007 (2)0.017 (2)0.015 (2)
O60.043 (3)0.069 (3)0.053 (3)0.009 (2)0.023 (2)0.026 (2)
C10.035 (3)0.039 (3)0.034 (4)0.006 (3)0.007 (3)0.013 (3)
C20.045 (4)0.051 (4)0.041 (4)0.005 (4)0.012 (3)0.015 (4)
C30.037 (4)0.045 (4)0.036 (4)0.000 (3)0.010 (3)0.004 (3)
C40.041 (4)0.057 (4)0.055 (5)0.011 (3)0.017 (4)0.013 (4)
C50.064 (5)0.070 (5)0.058 (5)0.016 (4)0.019 (4)0.017 (4)
C60.047 (4)0.070 (5)0.053 (5)0.009 (4)0.015 (4)0.001 (4)
C70.038 (4)0.055 (4)0.051 (4)0.002 (3)0.016 (4)0.012 (4)
C80.049 (4)0.083 (5)0.067 (5)0.005 (4)0.022 (4)0.004 (4)
C90.032 (4)0.114 (7)0.088 (6)0.012 (4)0.024 (4)0.008 (5)
C100.042 (5)0.113 (7)0.083 (6)0.026 (5)0.007 (5)0.008 (6)
C110.050 (5)0.092 (6)0.066 (5)0.013 (4)0.009 (4)0.008 (4)
C120.035 (4)0.053 (4)0.043 (4)0.002 (3)0.016 (3)0.000 (4)
C130.043 (4)0.079 (5)0.066 (5)0.009 (3)0.023 (4)0.028 (4)
C140.040 (4)0.053 (4)0.052 (5)0.002 (3)0.012 (4)0.003 (4)
C150.056 (5)0.074 (5)0.048 (5)0.010 (4)0.017 (4)0.014 (4)
C160.074 (6)0.069 (6)0.070 (6)0.019 (4)0.037 (5)0.035 (5)
C170.075 (5)0.045 (4)0.076 (6)0.008 (4)0.018 (5)0.007 (5)
C180.068 (5)0.064 (5)0.043 (4)0.005 (4)0.017 (4)0.002 (4)
C190.061 (5)0.054 (5)0.075 (6)0.008 (4)0.034 (4)0.004 (4)
C200.080 (6)0.072 (5)0.071 (5)0.014 (4)0.035 (5)0.006 (4)
C210.079 (6)0.083 (6)0.076 (6)0.032 (5)0.048 (5)0.009 (5)
C220.067 (5)0.092 (6)0.088 (6)0.003 (5)0.052 (5)0.018 (5)
C230.057 (5)0.093 (6)0.066 (5)0.004 (4)0.034 (4)0.012 (4)
C240.033 (4)0.048 (4)0.029 (4)0.004 (3)0.007 (3)0.006 (3)
C250.037 (4)0.043 (4)0.044 (4)0.006 (3)0.012 (3)0.007 (3)
C260.038 (4)0.035 (4)0.039 (4)0.000 (3)0.012 (3)0.006 (3)
C270.040 (4)0.048 (4)0.050 (4)0.001 (3)0.008 (3)0.008 (4)
C280.065 (5)0.051 (4)0.058 (5)0.004 (4)0.022 (4)0.018 (4)
C290.043 (4)0.053 (4)0.043 (4)0.001 (3)0.009 (3)0.004 (4)
C300.039 (4)0.047 (4)0.042 (4)0.004 (3)0.012 (3)0.002 (3)
C310.045 (4)0.052 (4)0.061 (5)0.002 (3)0.020 (4)0.007 (4)
C320.036 (4)0.064 (5)0.079 (5)0.004 (4)0.012 (4)0.003 (4)
C330.049 (5)0.058 (5)0.073 (5)0.022 (4)0.000 (4)0.010 (4)
C340.053 (5)0.066 (5)0.058 (5)0.010 (4)0.009 (4)0.019 (4)
C350.039 (4)0.063 (5)0.049 (4)0.007 (3)0.012 (4)0.015 (4)
C360.052 (5)0.090 (6)0.093 (6)0.014 (4)0.034 (4)0.035 (5)
C370.064 (5)0.071 (5)0.058 (5)0.003 (4)0.029 (4)0.006 (5)
C380.067 (5)0.118 (7)0.047 (5)0.012 (5)0.019 (4)0.002 (6)
C390.062 (6)0.093 (7)0.082 (7)0.018 (5)0.029 (5)0.024 (6)
C400.060 (5)0.068 (6)0.096 (7)0.013 (4)0.030 (5)0.013 (6)
C410.049 (5)0.070 (5)0.071 (6)0.003 (4)0.021 (4)0.002 (5)
C420.058 (5)0.056 (5)0.070 (5)0.006 (4)0.030 (4)0.001 (4)
C430.087 (6)0.060 (5)0.073 (5)0.029 (4)0.048 (5)0.013 (4)
C440.052 (5)0.103 (6)0.072 (6)0.020 (4)0.041 (4)0.001 (5)
C450.071 (5)0.119 (7)0.089 (6)0.022 (5)0.058 (5)0.031 (6)
C460.069 (5)0.076 (5)0.072 (5)0.022 (4)0.041 (4)0.025 (4)
Geometric parameters (Å, º) top
Cu1—O12.022 (3)C13—H13B0.9600
Cu1—O1i2.022 (3)C13—H13C0.9600
Cu1—N2i2.061 (4)C14—C151.368 (7)
Cu1—N22.061 (4)C14—H140.9300
Cu1—N3i2.172 (5)C15—C161.381 (8)
Cu1—N32.172 (5)C15—H150.9300
Cu2—N11.832 (4)C16—C171.371 (8)
Cu2—O21.838 (4)C16—H160.9300
Cu2—O31.875 (4)C17—C181.374 (8)
Cu2—N41.951 (5)C17—H170.9300
Cu3—O42.025 (3)C18—H180.9300
Cu3—O4ii2.025 (3)C19—C201.391 (7)
Cu3—N6ii2.068 (4)C19—H190.9300
Cu3—N62.068 (4)C20—C211.351 (8)
Cu3—N7ii2.176 (5)C20—H200.9300
Cu3—N72.176 (5)C21—C221.343 (8)
Cu4—O51.827 (4)C21—H210.9300
Cu4—N51.828 (4)C22—C231.395 (7)
Cu4—O61.861 (4)C22—H220.9300
Cu4—N81.944 (4)C23—H230.9300
N1—C11.330 (6)C24—C261.479 (7)
N1—N21.420 (5)C25—C261.390 (7)
N2—C121.292 (6)C25—C301.469 (7)
N3—C141.324 (7)C26—C271.412 (7)
N3—C181.327 (7)C27—C281.363 (7)
N4—C191.307 (7)C27—H270.9300
N4—C231.338 (6)C28—C291.429 (7)
N5—C241.333 (6)C28—H280.9300
N5—N61.412 (5)C29—C301.380 (7)
N6—C351.307 (6)C29—C341.407 (7)
N7—C411.327 (7)C30—C311.396 (7)
N7—C371.339 (7)C31—C321.349 (7)
N8—C461.324 (6)C31—H310.9300
N8—C421.339 (7)C32—C331.386 (8)
O1—C11.281 (5)C32—H320.9300
O2—C21.312 (6)C33—C341.360 (7)
O3—C121.318 (6)C33—H330.9300
O4—C241.293 (5)C34—H340.9300
O5—C251.316 (6)C35—C361.488 (7)
O6—C351.310 (6)C36—H36A0.9600
C1—C31.483 (7)C36—H36B0.9600
C2—C31.390 (7)C36—H36C0.9600
C2—C71.484 (7)C37—C381.396 (9)
C3—C41.401 (7)C37—H370.9300
C4—C51.381 (7)C38—C391.338 (9)
C4—H40.9300C38—H380.9300
C5—C61.412 (7)C39—C401.347 (9)
C5—H50.9300C39—H390.9300
C6—C71.388 (8)C40—C411.389 (8)
C6—C111.425 (8)C40—H400.9300
C7—C81.386 (7)C41—H410.9300
C8—C91.369 (8)C42—C431.386 (7)
C8—H80.9300C42—H420.9300
C9—C101.364 (9)C43—C441.348 (8)
C9—H90.9300C43—H430.9300
C10—C111.352 (8)C44—C451.344 (8)
C10—H100.9300C44—H440.9300
C11—H110.9300C45—C461.377 (7)
C12—C131.507 (7)C45—H450.9300
C13—H13A0.9600C46—H460.9300
O1—Cu1—O1i180.0C12—C13—H13A109.5
O1—Cu1—N2i100.79 (16)C12—C13—H13B109.5
O1i—Cu1—N2i79.21 (16)H13A—C13—H13B109.5
O1—Cu1—N279.21 (16)C12—C13—H13C109.5
O1i—Cu1—N2100.79 (16)H13A—C13—H13C109.5
N2i—Cu1—N2180.0H13B—C13—H13C109.5
O1—Cu1—N3i90.77 (16)N3—C14—C15123.6 (6)
O1i—Cu1—N3i89.23 (16)N3—C14—H14118.2
N2i—Cu1—N3i89.18 (16)C15—C14—H14118.2
N2—Cu1—N3i90.82 (16)C14—C15—C16118.7 (6)
O1—Cu1—N389.23 (16)C14—C15—H15120.6
O1i—Cu1—N390.77 (16)C16—C15—H15120.6
N2i—Cu1—N390.82 (16)C17—C16—C15118.3 (6)
N2—Cu1—N389.18 (16)C17—C16—H16120.9
N3i—Cu1—N3180.0C15—C16—H16120.9
N1—Cu2—O294.20 (19)C16—C17—C18118.9 (7)
N1—Cu2—O383.68 (18)C16—C17—H17120.6
O2—Cu2—O3177.07 (17)C18—C17—H17120.6
N1—Cu2—N4174.8 (2)N3—C18—C17123.2 (6)
O2—Cu2—N491.0 (2)N3—C18—H18118.4
O3—Cu2—N491.2 (2)C17—C18—H18118.4
O4—Cu3—O4ii180.0N4—C19—C20123.4 (6)
O4—Cu3—N6ii100.66 (16)N4—C19—H19118.3
O4ii—Cu3—N6ii79.34 (16)C20—C19—H19118.3
O4—Cu3—N679.34 (16)C21—C20—C19119.5 (7)
O4ii—Cu3—N6100.65 (16)C21—C20—H20120.2
N6ii—Cu3—N6180.0C19—C20—H20120.2
O4—Cu3—N7ii89.92 (18)C22—C21—C20118.0 (6)
O4ii—Cu3—N7ii90.09 (18)C22—C21—H21121.0
N6ii—Cu3—N7ii90.11 (17)C20—C21—H21121.0
N6—Cu3—N7ii89.89 (17)C21—C22—C23120.2 (7)
O4—Cu3—N790.09 (18)C21—C22—H22119.9
O4ii—Cu3—N789.91 (18)C23—C22—H22119.9
N6ii—Cu3—N789.89 (17)N4—C23—C22122.0 (6)
N6—Cu3—N790.11 (17)N4—C23—H23119.0
N7ii—Cu3—N7180.0C22—C23—H23119.0
O5—Cu4—N594.84 (18)O4—C24—N5122.4 (5)
O5—Cu4—O6177.88 (16)O4—C24—C26119.6 (5)
N5—Cu4—O683.66 (18)N5—C24—C26118.0 (5)
O5—Cu4—N889.54 (19)O5—C25—C26125.3 (5)
N5—Cu4—N8175.6 (2)O5—C25—C30116.7 (5)
O6—Cu4—N891.94 (19)C26—C25—C30118.1 (5)
C1—N1—N2113.8 (4)C25—C26—C27120.2 (5)
C1—N1—Cu2131.8 (4)C25—C26—C24123.6 (5)
N2—N1—Cu2114.3 (4)C27—C26—C24116.2 (5)
C12—N2—N1109.4 (4)C28—C27—C26121.9 (5)
C12—N2—Cu1139.8 (4)C28—C27—H27119.1
N1—N2—Cu1110.7 (3)C26—C27—H27119.1
C14—N3—C18117.3 (6)C27—C28—C29119.7 (6)
C14—N3—Cu1121.3 (5)C27—C28—H28120.2
C18—N3—Cu1121.4 (4)C29—C28—H28120.2
C19—N4—C23116.9 (5)C30—C29—C34118.7 (6)
C19—N4—Cu2122.1 (4)C30—C29—C28119.9 (6)
C23—N4—Cu2121.0 (5)C34—C29—C28121.4 (6)
C24—N5—N6114.3 (4)C29—C30—C31119.1 (6)
C24—N5—Cu4131.1 (4)C29—C30—C25120.1 (5)
N6—N5—Cu4114.6 (3)C31—C30—C25120.7 (6)
C35—N6—N5109.1 (4)C32—C31—C30121.3 (6)
C35—N6—Cu3140.1 (4)C32—C31—H31119.4
N5—N6—Cu3110.9 (3)C30—C31—H31119.4
C41—N7—C37116.7 (6)C31—C32—C33120.3 (6)
C41—N7—Cu3121.5 (5)C31—C32—H32119.8
C37—N7—Cu3121.6 (5)C33—C32—H32119.8
C46—N8—C42116.4 (5)C34—C33—C32119.4 (6)
C46—N8—Cu4122.4 (4)C34—C33—H33120.3
C42—N8—Cu4121.1 (4)C32—C33—H33120.3
C1—O1—Cu1112.9 (3)C33—C34—C29121.1 (6)
C2—O2—Cu2126.5 (3)C33—C34—H34119.4
C12—O3—Cu2110.5 (4)C29—C34—H34119.4
C24—O4—Cu3112.7 (3)N6—C35—O6121.4 (5)
C25—O5—Cu4126.8 (3)N6—C35—C36120.6 (5)
C35—O6—Cu4111.2 (4)O6—C35—C36118.0 (5)
O1—C1—N1122.6 (5)C35—C36—H36A109.5
O1—C1—C3119.4 (5)C35—C36—H36B109.5
N1—C1—C3117.9 (5)H36A—C36—H36B109.5
O2—C2—C3126.3 (5)C35—C36—H36C109.5
O2—C2—C7116.3 (5)H36A—C36—H36C109.5
C3—C2—C7117.4 (6)H36B—C36—H36C109.5
C2—C3—C4120.5 (6)N7—C37—C38122.2 (7)
C2—C3—C1122.9 (6)N7—C37—H37118.9
C4—C3—C1116.5 (5)C38—C37—H37118.9
C5—C4—C3121.9 (6)C39—C38—C37119.4 (8)
C5—C4—H4119.1C39—C38—H38120.3
C3—C4—H4119.1C37—C38—H38120.3
C4—C5—C6119.9 (6)C38—C39—C40119.6 (8)
C4—C5—H5120.1C38—C39—H39120.2
C6—C5—H5120.1C40—C39—H39120.2
C7—C6—C5119.8 (6)C39—C40—C41118.9 (8)
C7—C6—C11119.3 (6)C39—C40—H40120.6
C5—C6—C11120.8 (7)C41—C40—H40120.6
C8—C7—C6118.7 (6)N7—C41—C40123.2 (7)
C8—C7—C2121.1 (6)N7—C41—H41118.4
C6—C7—C2120.2 (6)C40—C41—H41118.4
C9—C8—C7121.1 (7)N8—C42—C43122.6 (6)
C9—C8—H8119.5N8—C42—H42118.7
C7—C8—H8119.5C43—C42—H42118.7
C10—C9—C8120.3 (7)C44—C43—C42118.7 (7)
C10—C9—H9119.9C44—C43—H43120.6
C8—C9—H9119.9C42—C43—H43120.6
C11—C10—C9121.0 (7)C45—C44—C43119.9 (6)
C11—C10—H10119.5C45—C44—H44120.1
C9—C10—H10119.5C43—C44—H44120.1
C10—C11—C6119.6 (7)C44—C45—C46118.5 (7)
C10—C11—H11120.2C44—C45—H45120.7
C6—C11—H11120.2C46—C45—H45120.7
N2—C12—O3122.0 (5)N8—C46—C45123.8 (6)
N2—C12—C13120.4 (5)N8—C46—H46118.1
O3—C12—C13117.6 (5)C45—C46—H46118.1
O2—Cu2—N1—C17.1 (5)N1—C1—C3—C4177.5 (5)
O3—Cu2—N1—C1175.0 (5)C2—C3—C4—C52.9 (9)
N4—Cu2—N1—C1164.5 (19)C1—C3—C4—C5179.0 (5)
O2—Cu2—N1—N2175.8 (3)C3—C4—C5—C61.1 (9)
O3—Cu2—N1—N22.2 (3)C4—C5—C6—C71.5 (9)
N4—Cu2—N1—N213 (2)C4—C5—C6—C11174.9 (6)
C1—N1—N2—C12176.7 (5)C5—C6—C7—C8178.0 (6)
Cu2—N1—N2—C121.0 (5)C11—C6—C7—C81.6 (9)
C1—N1—N2—Cu15.7 (5)C5—C6—C7—C21.9 (9)
Cu2—N1—N2—Cu1176.6 (2)C11—C6—C7—C2178.3 (5)
O1—Cu1—N2—C12176.3 (6)O2—C2—C7—C84.1 (8)
O1i—Cu1—N2—C123.7 (6)C3—C2—C7—C8174.2 (5)
N3i—Cu1—N2—C1285.7 (6)O2—C2—C7—C6176.0 (5)
N3—Cu1—N2—C1294.3 (6)C3—C2—C7—C65.6 (8)
O1—Cu1—N2—N17.2 (3)C6—C7—C8—C93.1 (9)
O1i—Cu1—N2—N1172.8 (3)C2—C7—C8—C9176.7 (6)
N3i—Cu1—N2—N197.8 (3)C7—C8—C9—C102.9 (11)
N3—Cu1—N2—N182.2 (3)C8—C9—C10—C110.9 (12)
O1—Cu1—N3—C14151.1 (4)C9—C10—C11—C60.6 (11)
O1i—Cu1—N3—C1428.9 (4)C7—C6—C11—C100.3 (10)
N2i—Cu1—N3—C14108.1 (4)C5—C6—C11—C10176.1 (6)
N2—Cu1—N3—C1471.9 (4)N1—N2—C12—O31.7 (7)
O1—Cu1—N3—C1826.9 (4)Cu1—N2—C12—O3178.2 (4)
O1i—Cu1—N3—C18153.1 (4)N1—N2—C12—C13179.3 (5)
N2i—Cu1—N3—C1873.9 (4)Cu1—N2—C12—C132.8 (9)
N2—Cu1—N3—C18106.1 (4)Cu2—O3—C12—N23.4 (6)
N1—Cu2—N4—C191 (2)Cu2—O3—C12—C13177.6 (4)
O2—Cu2—N4—C19170.2 (5)C18—N3—C14—C150.9 (9)
O3—Cu2—N4—C1911.8 (5)Cu1—N3—C14—C15177.2 (4)
N1—Cu2—N4—C23177 (2)N3—C14—C15—C160.4 (9)
O2—Cu2—N4—C2311.3 (5)C14—C15—C16—C171.8 (9)
O3—Cu2—N4—C23166.7 (5)C15—C16—C17—C181.8 (10)
O5—Cu4—N5—C245.5 (5)C14—N3—C18—C170.8 (9)
O6—Cu4—N5—C24176.0 (5)Cu1—N3—C18—C17177.3 (4)
N8—Cu4—N5—C24178 (60)C16—C17—C18—N30.6 (10)
O5—Cu4—N5—N6176.4 (3)C23—N4—C19—C202.5 (9)
O6—Cu4—N5—N62.1 (3)Cu2—N4—C19—C20176.0 (5)
N8—Cu4—N5—N64 (3)N4—C19—C20—C211.9 (10)
C24—N5—N6—C35176.4 (5)C19—C20—C21—C220.0 (11)
Cu4—N5—N6—C352.0 (5)C20—C21—C22—C231.0 (11)
C24—N5—N6—Cu34.1 (5)C19—N4—C23—C221.3 (9)
Cu4—N5—N6—Cu3177.5 (2)Cu2—N4—C23—C22177.2 (5)
O4—Cu3—N6—C35175.5 (7)C21—C22—C23—N40.4 (11)
O4ii—Cu3—N6—C354.5 (7)Cu3—O4—C24—N55.6 (6)
N7ii—Cu3—N6—C3594.6 (6)Cu3—O4—C24—C26173.7 (4)
N7—Cu3—N6—C3585.4 (6)N6—N5—C24—O40.9 (7)
O4—Cu3—N6—N55.2 (3)Cu4—N5—C24—O4177.2 (4)
O4ii—Cu3—N6—N5174.8 (3)N6—N5—C24—C26178.4 (4)
N7ii—Cu3—N6—N584.7 (3)Cu4—N5—C24—C263.5 (7)
N7—Cu3—N6—N595.3 (3)Cu4—O5—C25—C262.1 (8)
O4—Cu3—N7—C4126.7 (4)Cu4—O5—C25—C30178.9 (3)
O4ii—Cu3—N7—C41153.3 (4)O5—C25—C26—C27176.0 (5)
N6ii—Cu3—N7—C4173.9 (4)C30—C25—C26—C272.9 (8)
N6—Cu3—N7—C41106.1 (4)O5—C25—C26—C245.6 (9)
N7ii—Cu3—N7—C41153 (100)C30—C25—C26—C24175.4 (5)
O4—Cu3—N7—C37148.8 (4)O4—C24—C26—C25176.6 (5)
O4ii—Cu3—N7—C3731.2 (4)N5—C24—C26—C252.7 (8)
N6ii—Cu3—N7—C37110.6 (5)O4—C24—C26—C271.8 (7)
N6—Cu3—N7—C3769.4 (5)N5—C24—C26—C27178.9 (5)
N7ii—Cu3—N7—C3731 (100)C25—C26—C27—C280.9 (9)
O5—Cu4—N8—C4617.8 (5)C24—C26—C27—C28177.5 (5)
N5—Cu4—N8—C46170 (2)C26—C27—C28—C292.4 (9)
O6—Cu4—N8—C46163.7 (5)C27—C28—C29—C303.7 (9)
O5—Cu4—N8—C42159.7 (5)C27—C28—C29—C34176.5 (6)
N5—Cu4—N8—C4213 (3)C34—C29—C30—C310.2 (8)
O6—Cu4—N8—C4218.8 (5)C28—C29—C30—C31179.6 (5)
N2i—Cu1—O1—C1172.1 (3)C34—C29—C30—C25178.6 (5)
N2—Cu1—O1—C17.9 (3)C28—C29—C30—C251.6 (8)
N3i—Cu1—O1—C198.6 (4)O5—C25—C30—C29177.4 (5)
N3—Cu1—O1—C181.4 (4)C26—C25—C30—C291.6 (8)
N1—Cu2—O2—C25.0 (5)O5—C25—C30—C313.8 (8)
O3—Cu2—O2—C248 (3)C26—C25—C30—C31177.2 (5)
N4—Cu2—O2—C2174.3 (4)C29—C30—C31—C321.0 (9)
N1—Cu2—O3—C122.9 (4)C25—C30—C31—C32177.8 (6)
O2—Cu2—O3—C1241 (3)C30—C31—C32—C330.7 (10)
N4—Cu2—O3—C12178.0 (4)C31—C32—C33—C340.5 (10)
N6ii—Cu3—O4—C24174.3 (3)C32—C33—C34—C291.3 (10)
N6—Cu3—O4—C245.7 (3)C30—C29—C34—C330.9 (9)
N7ii—Cu3—O4—C2484.2 (4)C28—C29—C34—C33179.3 (6)
N7—Cu3—O4—C2495.8 (4)N5—N6—C35—O60.6 (8)
N5—Cu4—O5—C252.6 (4)Cu3—N6—C35—O6178.7 (4)
O6—Cu4—O5—C2548 (5)N5—N6—C35—C36179.9 (5)
N8—Cu4—O5—C25178.0 (4)Cu3—N6—C35—C360.6 (10)
O5—Cu4—O6—C3544 (5)Cu4—O6—C35—N61.0 (7)
N5—Cu4—O6—C351.7 (4)Cu4—O6—C35—C36178.3 (5)
N8—Cu4—O6—C35177.8 (4)C41—N7—C37—C380.8 (9)
Cu1—O1—C1—N17.6 (6)Cu3—N7—C37—C38176.5 (4)
Cu1—O1—C1—C3171.2 (4)N7—C37—C38—C390.7 (10)
N2—N1—C1—O11.2 (7)C37—C38—C39—C400.9 (10)
Cu2—N1—C1—O1176.0 (4)C38—C39—C40—C411.2 (11)
N2—N1—C1—C3177.6 (4)C37—N7—C41—C401.2 (9)
Cu2—N1—C1—C35.2 (8)Cu3—N7—C41—C40176.9 (5)
Cu2—O2—C2—C31.6 (8)C39—C40—C41—N71.4 (10)
Cu2—O2—C2—C7179.9 (3)C46—N8—C42—C430.6 (9)
O2—C2—C3—C4175.7 (5)Cu4—N8—C42—C43177.0 (5)
C7—C2—C3—C46.0 (8)N8—C42—C43—C441.7 (10)
O2—C2—C3—C12.2 (9)C42—C43—C44—C453.7 (11)
C7—C2—C3—C1176.0 (5)C43—C44—C45—C463.2 (11)
O1—C1—C3—C2178.3 (5)C42—N8—C46—C451.1 (10)
N1—C1—C3—C20.5 (8)Cu4—N8—C46—C45176.5 (5)
O1—C1—C3—C43.7 (7)C44—C45—C46—N80.8 (11)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu3(C13H9N2O3)2(C5H5N)4]
Mr989.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)24.080 (3), 9.8572 (11), 19.373 (2)
β (°) 111.371 (2)
V3)4282.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.34 × 0.33 × 0.22
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.623, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
21184, 7546, 3457
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.112, 1.00
No. of reflections7546
No. of parameters573
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.45

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O12.022 (3)Cu3—O42.025 (3)
Cu1—N22.061 (4)Cu3—N62.068 (4)
Cu1—N32.172 (5)Cu3—N72.176 (5)
Cu2—N11.832 (4)Cu4—O51.827 (4)
Cu2—O21.838 (4)Cu4—N51.828 (4)
Cu2—O31.875 (4)Cu4—O61.861 (4)
Cu2—N41.951 (5)Cu4—N81.944 (4)
 

Acknowledgements

We acknowledge the National Natural Foundation of China (grant No. 20671048) for financial support.

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatole, J., Sandbhor, U., Padhye, S., Deobagkar, D. N., Anson, C. E. & Powell, A. (2003). Bioorg. Med. Chem. Lett. 13, 51–55.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPouralimardan, O., Chamayou, A. C., Janiak, C. & Hassan, H. M. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds