organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Bromo­prop­yl)isoindoline-1,3-dione

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China, and bKey Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: hgxywyx@163.com

(Received 18 September 2009; accepted 20 September 2009; online 3 October 2009)

In the title compound, C11H10BrNO2, the dihedral angle between the five- and six-membered rings of the phthalamide system is 1.00 (16)°. There are no significant inter­molecular inter­ations except for van der Waals contacts.

Related literature

For pharmacological background on phthalamides, see: Brańa & Ramos (2001[Brańa, M. F. & Ramos, A. (2001). Curr. Med. Chem. Anticancer Agents, 1, 237-255.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10BrNO2

  • Mr = 268.11

  • Monoclinic, P 21

  • a = 4.8413 (7) Å

  • b = 7.3401 (11) Å

  • c = 15.095 (2) Å

  • β = 91.729 (3)°

  • V = 536.18 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.81 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.29 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.333, Tmax = 0.405

  • 2879 measured reflections

  • 1888 independent reflections

  • 1622 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.060

  • S = 1.00

  • 1888 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 763 Friedel pairs

  • Flack parameter: 0.047 (11)

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Phthalimides are well known cytotoxic DNA intercalating agents and have shown promise as potential anti-cancer agents (e.g. Brańa & Ramos, 2001). Its derivatives, such as bis-naphthalimides etc, represent a promising group of DNA-targeted anticancer agents, and the search for more potent analogues remains a priority. We now report the crystal structure of the title compound, (I).

As shown in Fig.1, the title compound consists of a phthalimide group supporting a bromopropane group. In the structure of (I), C11–O1 [1.210 (4) Å] and C4–O2 [1.208 (3) Å] are typical for a C==O double bond, the S(5) ring of N1/C4/C5/C10/C11 and the aromatic ring is approximatively coplanear, characterized by a dihedral angle of 1.00 (16)°.

Related literature top

For pharmacological background on phthalamides, see: Brańa & Ramos (2001).

Experimental top

To a mixture of 1,3-dibromopropane (46 ml, 0.45 mol) and acetone (100 ml), potassium phthalimide (22.7 g, 0.15 mol) was added in batches with refluxing. After stirring for additional 12 h, the solid was filtered off, the solvent evaporated in vacuo. The residue was recrystallized in ethanol: evaporation gave (I) as colourless blocks (25.45 g, 63.4%).

Refinement top

H atoms were placed geometrically with C—H = 0.93–0.97Å, and refined as riding with Uiso(H)=1.2Ueq(C).

Structure description top

Phthalimides are well known cytotoxic DNA intercalating agents and have shown promise as potential anti-cancer agents (e.g. Brańa & Ramos, 2001). Its derivatives, such as bis-naphthalimides etc, represent a promising group of DNA-targeted anticancer agents, and the search for more potent analogues remains a priority. We now report the crystal structure of the title compound, (I).

As shown in Fig.1, the title compound consists of a phthalimide group supporting a bromopropane group. In the structure of (I), C11–O1 [1.210 (4) Å] and C4–O2 [1.208 (3) Å] are typical for a C==O double bond, the S(5) ring of N1/C4/C5/C10/C11 and the aromatic ring is approximatively coplanear, characterized by a dihedral angle of 1.00 (16)°.

For pharmacological background on phthalamides, see: Brańa & Ramos (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-(3-Bromopropyl)isoindoline-1,3-dione top
Crystal data top
C11H10BrNO2F(000) = 268
Mr = 268.11Dx = 1.661 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1480 reflections
a = 4.8413 (7) Åθ = 2.8–24.1°
b = 7.3401 (11) ŵ = 3.81 mm1
c = 15.095 (2) ÅT = 296 K
β = 91.729 (3)°Block, colourless
V = 536.18 (14) Å30.37 × 0.35 × 0.29 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1888 independent reflections
Radiation source: fine-focus sealed tube1622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 54
Tmin = 0.333, Tmax = 0.405k = 98
2879 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0027P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1888 reflectionsΔρmax = 0.41 e Å3
136 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 763 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.047 (11)
Crystal data top
C11H10BrNO2V = 536.18 (14) Å3
Mr = 268.11Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8413 (7) ŵ = 3.81 mm1
b = 7.3401 (11) ÅT = 296 K
c = 15.095 (2) Å0.37 × 0.35 × 0.29 mm
β = 91.729 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1888 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1622 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 0.405Rint = 0.018
2879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.41 e Å3
S = 1.00Δρmin = 0.25 e Å3
1888 reflectionsAbsolute structure: Flack (1983), 763 Friedel pairs
136 parametersAbsolute structure parameter: 0.047 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6038 (5)0.5266 (4)0.75371 (15)0.0421 (6)
Br10.85905 (7)0.00237 (6)0.598616 (19)0.06409 (14)
O10.9554 (5)0.4693 (4)0.85776 (14)0.0650 (7)
O20.2346 (5)0.6583 (3)0.67773 (15)0.0544 (6)
C10.6620 (7)0.2145 (5)0.5540 (2)0.0525 (8)
H1A0.71940.24050.49430.063*
H1B0.46510.18970.55130.063*
C20.7160 (7)0.3787 (4)0.61137 (19)0.0492 (8)
H2A0.62880.48420.58380.059*
H2B0.91340.40120.61540.059*
C30.6075 (7)0.3556 (4)0.7045 (2)0.0489 (8)
H3A0.42150.30640.70040.059*
H3B0.72280.26850.73680.059*
C40.4095 (6)0.6634 (4)0.7365 (2)0.0415 (7)
C50.4650 (6)0.8063 (4)0.80381 (19)0.0398 (7)
C60.3321 (6)0.9709 (5)0.8172 (2)0.0480 (8)
H6A0.18561.00830.78030.058*
C70.4252 (8)1.0770 (5)0.8873 (2)0.0567 (9)
H7A0.34341.18960.89710.068*
C80.6392 (7)1.0182 (7)0.94342 (19)0.0571 (9)
H8A0.69511.09070.99120.068*
C90.7708 (7)0.8541 (5)0.9298 (2)0.0514 (8)
H9A0.91560.81580.96720.062*
C100.6813 (6)0.7490 (4)0.85924 (19)0.0409 (7)
C110.7744 (7)0.5670 (4)0.82773 (19)0.0464 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0494 (13)0.0407 (19)0.0357 (11)0.0000 (12)0.0045 (10)0.0009 (12)
Br10.0801 (2)0.0547 (2)0.0575 (2)0.0109 (2)0.00154 (15)0.0067 (3)
O10.0724 (15)0.0709 (18)0.0506 (11)0.0190 (15)0.0163 (11)0.0038 (14)
O20.0581 (14)0.0549 (14)0.0491 (13)0.0018 (11)0.0188 (11)0.0052 (11)
C10.061 (2)0.054 (2)0.0415 (17)0.0002 (15)0.0124 (16)0.0022 (15)
C20.067 (2)0.0421 (17)0.0381 (16)0.0027 (15)0.0032 (15)0.0027 (14)
C30.066 (2)0.0390 (18)0.0416 (16)0.0025 (15)0.0022 (15)0.0016 (14)
C40.0398 (17)0.0461 (18)0.0385 (16)0.0046 (14)0.0016 (14)0.0050 (13)
C50.0417 (16)0.0461 (17)0.0316 (14)0.0081 (13)0.0013 (12)0.0027 (12)
C60.0529 (16)0.048 (2)0.0428 (14)0.0023 (16)0.0006 (12)0.0015 (17)
C70.069 (2)0.0488 (18)0.053 (2)0.0096 (16)0.0114 (18)0.0059 (15)
C80.0614 (19)0.069 (3)0.0406 (15)0.019 (2)0.0050 (14)0.015 (2)
C90.0483 (19)0.069 (2)0.0363 (16)0.0116 (17)0.0025 (15)0.0002 (16)
C100.0424 (16)0.0505 (17)0.0300 (14)0.0065 (13)0.0027 (13)0.0042 (13)
C110.0519 (19)0.0556 (19)0.0314 (15)0.0024 (15)0.0024 (14)0.0040 (13)
Geometric parameters (Å, º) top
N1—C41.395 (4)C3—H3B0.9700
N1—C111.401 (4)C4—C51.479 (4)
N1—C31.459 (4)C5—C101.386 (4)
Br1—C11.965 (3)C5—C61.387 (5)
O1—C111.210 (4)C6—C71.379 (5)
O2—C41.208 (3)C6—H6A0.9300
C1—C21.503 (4)C7—C81.387 (5)
C1—H1A0.9700C7—H7A0.9300
C1—H1B0.9700C8—C91.381 (6)
C2—C31.525 (4)C8—H8A0.9300
C2—H2A0.9700C9—C101.374 (4)
C2—H2B0.9700C9—H9A0.9300
C3—H3A0.9700C10—C111.492 (4)
C4—N1—C11112.0 (3)N1—C4—C5106.0 (2)
C4—N1—C3122.9 (2)C10—C5—C6121.5 (3)
C11—N1—C3124.9 (3)C10—C5—C4108.5 (3)
C2—C1—Br1112.2 (2)C6—C5—C4130.0 (3)
C2—C1—H1A109.2C7—C6—C5117.5 (3)
Br1—C1—H1A109.2C7—C6—H6A121.3
C2—C1—H1B109.2C5—C6—H6A121.3
Br1—C1—H1B109.2C6—C7—C8120.9 (4)
H1A—C1—H1B107.9C6—C7—H7A119.5
C1—C2—C3112.6 (3)C8—C7—H7A119.5
C1—C2—H2A109.1C9—C8—C7121.3 (3)
C3—C2—H2A109.1C9—C8—H8A119.3
C1—C2—H2B109.1C7—C8—H8A119.3
C3—C2—H2B109.1C10—C9—C8117.9 (3)
H2A—C2—H2B107.8C10—C9—H9A121.0
N1—C3—C2112.5 (3)C8—C9—H9A121.0
N1—C3—H3A109.1C9—C10—C5120.8 (3)
C2—C3—H3A109.1C9—C10—C11131.2 (3)
N1—C3—H3B109.1C5—C10—C11108.0 (3)
C2—C3—H3B109.1O1—C11—N1125.2 (3)
H3A—C3—H3B107.8O1—C11—C10129.3 (3)
O2—C4—N1124.6 (3)N1—C11—C10105.5 (3)
O2—C4—C5129.4 (3)
Br1—C1—C2—C364.1 (4)C7—C8—C9—C100.8 (5)
C4—N1—C3—C274.3 (4)C8—C9—C10—C50.2 (5)
C11—N1—C3—C2111.8 (3)C8—C9—C10—C11178.9 (3)
C1—C2—C3—N1167.3 (3)C6—C5—C10—C90.2 (4)
C11—N1—C4—O2178.0 (3)C4—C5—C10—C9178.1 (3)
C3—N1—C4—O23.4 (5)C6—C5—C10—C11179.1 (3)
C11—N1—C4—C51.7 (3)C4—C5—C10—C110.9 (3)
C3—N1—C4—C5176.3 (3)C4—N1—C11—O1178.3 (3)
O2—C4—C5—C10178.1 (3)C3—N1—C11—O13.8 (5)
N1—C4—C5—C101.6 (3)C4—N1—C11—C101.1 (3)
O2—C4—C5—C60.0 (5)C3—N1—C11—C10175.6 (3)
N1—C4—C5—C6179.6 (3)C9—C10—C11—O10.5 (5)
C10—C5—C6—C70.7 (4)C5—C10—C11—O1179.3 (3)
C4—C5—C6—C7178.6 (3)C9—C10—C11—N1178.9 (3)
C5—C6—C7—C81.7 (5)C5—C10—C11—N10.1 (3)
C6—C7—C8—C91.7 (5)

Experimental details

Crystal data
Chemical formulaC11H10BrNO2
Mr268.11
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)4.8413 (7), 7.3401 (11), 15.095 (2)
β (°) 91.729 (3)
V3)536.18 (14)
Z2
Radiation typeMo Kα
µ (mm1)3.81
Crystal size (mm)0.37 × 0.35 × 0.29
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.333, 0.405
No. of measured, independent and
observed [I > 2σ(I)] reflections
2879, 1888, 1622
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.060, 1.00
No. of reflections1888
No. of parameters136
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25
Absolute structureFlack (1983), 763 Friedel pairs
Absolute structure parameter0.047 (11)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

References

First citationBrańa, M. F. & Ramos, A. (2001). Curr. Med. Chem. Anticancer Agents, 1, 237–255.  PubMed Google Scholar
First citationBruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds