metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ4-succinato-tetra­kis[aqua­phenanthrolinecopper(II)] tetra­nitrate tetra­hydrate

aDepartment of Chemistry, Kasetsart University, Bangkok 10903, Thailand, and bDepartment of Physics, Thammasat University, Rangsit, Pathumthani 12121, Thailand
*Correspondence e-mail: fscists@ku.ac.th

(Received 21 September 2009; accepted 29 September 2009; online 3 October 2009)

In the title compound, [Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2O, the complete tetra­cation is generated by crystallographic inversion symmetry. Both unique Cu2+ ions are coordinated by an N,N′-bidentate phenanthroline mol­ecule, two O-monodentate bis-bridging succinate dianions and a water mol­ecule, resulting in distorted CuN2O3 square-based pyramidal geometries for the metal ions, with the water mol­ecule occupying the apical site. In the crystal, the components are linked by O—H⋯O hydrogen bonds and aromatic ππ stacking inter­actions [minimum centroid–centroid separation = 3.537 (2) Å].

Related literature

For related structures, see: McCann et al. (1998[McCann, S., McCann, M., Casey, R. M. T., Jackman, M., Devereux, M., McKee, V., & (1998). Inorg. Chim. Acta, 279, 24-29.]); Padmanabhan et al. (2005[Padmanabhan, M., Kumary, S. M., Huang, X. & Li, J. (2005). Inorg. Chim. Acta, 358, 3537-3544.]); Ghosh et al. (2007[Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chem. 46, 3057-3071.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2O

  • Mr = 1599.29

  • Monoclinic, P 21 /c

  • a = 8.9180 (1) Å

  • b = 34.1090 (2) Å

  • c = 10.3620 (2) Å

  • β = 96.031 (1)°

  • V = 3134.51 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: none

  • 23089 measured reflections

  • 8980 independent reflections

  • 7772 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.191

  • S = 1.05

  • 8980 reflections

  • 463 parameters

  • 101 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.88 e Å−3

  • Δρmin = −1.59 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.948 (3)
Cu1—O5 1.966 (3)
Cu1—N2 2.011 (3)
Cu1—N1 2.015 (3)
Cu1—O4 2.240 (3)
Cu2—O1 1.946 (3)
Cu2—O6 1.952 (3)
Cu2—N4 2.007 (3)
Cu2—N3 2.025 (3)
Cu2—O3 2.160 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H4⋯O14 0.73 (7) 1.99 (7) 2.707 (7) 169 (7)
O3—H16⋯O13 0.70 (6) 2.07 (6) 2.772 (6) 177 (9)
O4—H23⋯O12 0.82 (6) 2.27 (6) 3.015 (7) 153 (5)
O4—H24⋯O10i 0.82 (5) 2.03 (6) 2.816 (6) 161 (8)
O13—H13C⋯O5ii 0.77 (7) 2.24 (7) 3.000 (5) 167 (7)
O13—H13D⋯O10iii 0.71 (7) 2.23 (7) 2.899 (7) 159 (8)
O14—H14B⋯O9iv 0.83 (7) 2.15 (6) 2.846 (13) 142 (6)
O14—H14C⋯O7v 0.82 (9) 2.10 (9) 2.874 (14) 158 (10)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z; (iii) x+1, y, z-1; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The moleculular structure of the title compound, (I), consists of a tetranuclear [Cu4(phen)4(suc)2(H2O)4].4+ species and uncoordinated water molecules and nitrate anions. Each Cu(II) ion (Table 1) exhibits a distorted square pyramidal coordination geometry through one apical water oxygen atom, two phen N atoms and two carboxylate O atoms from two succinate dianions which act as bis bridging ligands toward the Cu1 and Cu2 atoms (Fig. 1). The Cu1···Cu2 distance is 3.0318 (4) Å. The succinate ions also bridge two Cu(II) ions (Cu1' and Cu2'). The Cu1 and Cu2' distance separated by the bridging succinate anion is 6.396 Å. The face-to-face π-π interactions between the phenanthroline ring enhance the stability of the structure.

The apical water molecules form hydrogen bonds with nitrate O atoms (O···O distances of 2.810–2.920 Å) and uncoordinated water O atoms (O···O distances of 2.709–2.768Å): Table 2.

Related literature top

For related structures, see: McCann et al. (1998); Padmanabhan et al. (2005); Ghosh et al. (2007).

Experimental top

The solvothermal systhesis was carried out in telflon-lined stainless steel autoclave. A mixture of Cu(NO3)2.2H2O, phenantholine and succinic acid (mole ratio 1:1:1) in (H2O)/MeOH (2:1) was heated at 423 K for 72 h. Green slabs of (I) in a green solution were obtained.

Refinement top

All the H atoms were located in a difference map and their positions and Uiso(H) value were freely refined.

Structure description top

The moleculular structure of the title compound, (I), consists of a tetranuclear [Cu4(phen)4(suc)2(H2O)4].4+ species and uncoordinated water molecules and nitrate anions. Each Cu(II) ion (Table 1) exhibits a distorted square pyramidal coordination geometry through one apical water oxygen atom, two phen N atoms and two carboxylate O atoms from two succinate dianions which act as bis bridging ligands toward the Cu1 and Cu2 atoms (Fig. 1). The Cu1···Cu2 distance is 3.0318 (4) Å. The succinate ions also bridge two Cu(II) ions (Cu1' and Cu2'). The Cu1 and Cu2' distance separated by the bridging succinate anion is 6.396 Å. The face-to-face π-π interactions between the phenanthroline ring enhance the stability of the structure.

The apical water molecules form hydrogen bonds with nitrate O atoms (O···O distances of 2.810–2.920 Å) and uncoordinated water O atoms (O···O distances of 2.709–2.768Å): Table 2.

For related structures, see: McCann et al. (1998); Padmanabhan et al. (2005); Ghosh et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.
Di-µ4-succinato-tetrakis[aquaphenanthrolinecopper(II)] tetranitrate tetrahydrate top
Crystal data top
[Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2OZ = 2
Mr = 1599.29F(000) = 1632
Monoclinic, P21/cDx = 1.694 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9180 (1) ÅCell parameters from 23295 reflections
b = 34.1090 (2) ŵ = 1.44 mm1
c = 10.3620 (2) ÅT = 293 K
β = 96.031 (1)°Slab, green
V = 3134.51 (7) Å30.20 × 0.19 × 0.10 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
7772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 30.5°, θmin = 1.2°
ω scansh = 129
23089 measured reflectionsk = 3748
8980 independent reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1023P)2 + 8.0138P]
where P = (Fo2 + 2Fc2)/3
8980 reflections(Δ/σ)max < 0.001
463 parametersΔρmax = 2.88 e Å3
101 restraintsΔρmin = 1.59 e Å3
Crystal data top
[Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2OV = 3134.51 (7) Å3
Mr = 1599.29Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9180 (1) ŵ = 1.44 mm1
b = 34.1090 (2) ÅT = 293 K
c = 10.3620 (2) Å0.20 × 0.19 × 0.10 mm
β = 96.031 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
7772 reflections with I > 2σ(I)
23089 measured reflectionsRint = 0.018
8980 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064101 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.88 e Å3
8980 reflectionsΔρmin = 1.59 e Å3
463 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28697 (5)0.045902 (12)0.25937 (4)0.02773 (12)
Cu20.45414 (5)0.092420 (12)0.07025 (4)0.02759 (12)
O10.5954 (3)0.05491 (8)0.1565 (3)0.0403 (6)
O20.4661 (3)0.01290 (8)0.2689 (3)0.0384 (6)
O30.6118 (4)0.11127 (12)0.0618 (3)0.0431 (7)
O40.1350 (5)0.01289 (11)0.3799 (4)0.0577 (9)
O50.2091 (3)0.02148 (9)0.0939 (3)0.0366 (6)
O60.3553 (4)0.05135 (8)0.0390 (3)0.0396 (6)
O70.1911 (12)0.2391 (4)0.0691 (10)0.191 (2)
O80.1382 (12)0.2708 (4)0.2187 (10)0.191 (2)
O90.3494 (12)0.2700 (4)0.1619 (9)0.191 (2)
O100.0018 (6)0.06202 (15)0.6390 (5)0.0804 (7)
O110.1232 (6)0.11331 (15)0.5928 (5)0.0804 (7)
O120.0996 (6)0.07141 (15)0.4439 (5)0.0804 (7)
O130.8466 (5)0.06449 (13)0.1270 (4)0.0529 (8)
O140.6181 (10)0.18964 (17)0.1023 (7)0.105 (2)
N10.1424 (3)0.09146 (9)0.2426 (3)0.0281 (5)
N20.3661 (3)0.07455 (9)0.4221 (3)0.0299 (6)
N30.2987 (3)0.13232 (9)0.0008 (3)0.0313 (6)
N40.5046 (3)0.13445 (8)0.2033 (3)0.0285 (5)
N50.0754 (7)0.08168 (19)0.5574 (6)0.0804 (7)
N60.2256 (16)0.2581 (4)0.1483 (12)0.191 (2)
C10.0277 (4)0.09854 (12)0.1527 (4)0.0348 (7)
H10.00700.08060.08560.042*
C20.0628 (5)0.13195 (14)0.1556 (5)0.0442 (9)
H20.14220.13590.09120.053*
C30.0343 (5)0.15882 (13)0.2536 (5)0.0441 (9)
H30.09190.18150.25470.053*
C40.0829 (4)0.15163 (11)0.3524 (4)0.0357 (7)
C50.1192 (6)0.17666 (13)0.4627 (5)0.0502 (11)
H50.06310.19930.47110.060*
C60.2326 (6)0.16796 (14)0.5539 (4)0.0524 (11)
H60.25400.18490.62370.063*
C70.3218 (5)0.13296 (12)0.5464 (4)0.0396 (8)
C80.4391 (6)0.12140 (15)0.6398 (4)0.0508 (11)
H80.46560.13690.71240.061*
C90.5138 (6)0.08717 (15)0.6231 (4)0.0507 (11)
H90.59030.07900.68520.061*
C100.4754 (5)0.06441 (13)0.5126 (4)0.0404 (8)
H100.52840.04130.50210.049*
C110.2887 (4)0.10818 (11)0.4393 (3)0.0302 (6)
C120.1680 (4)0.11755 (10)0.3420 (3)0.0287 (6)
C130.1976 (5)0.12984 (14)0.1039 (4)0.0409 (8)
H130.19500.10750.15550.049*
C140.0944 (5)0.16024 (16)0.1369 (5)0.0503 (11)
H140.02560.15800.21050.060*
C150.0946 (5)0.19314 (14)0.0612 (5)0.0495 (10)
H150.02500.21310.08180.059*
C160.2019 (5)0.19638 (12)0.0489 (4)0.0401 (8)
C170.2115 (6)0.22905 (12)0.1378 (5)0.0513 (11)
H170.14250.24950.12420.062*
C180.3176 (6)0.23065 (12)0.2398 (6)0.0529 (11)
H180.32240.25240.29410.063*
C190.4237 (5)0.19925 (11)0.2661 (4)0.0385 (8)
C200.5367 (6)0.19841 (13)0.3722 (5)0.0478 (10)
H200.54820.21940.42950.057*
C210.6289 (5)0.16652 (14)0.3902 (4)0.0446 (9)
H210.70460.16600.45910.053*
C220.6097 (4)0.13465 (12)0.3049 (4)0.0346 (7)
H220.67230.11290.31950.042*
C230.4138 (4)0.16638 (10)0.1835 (4)0.0300 (6)
C240.3028 (4)0.16508 (10)0.0740 (3)0.0303 (6)
C250.5830 (4)0.02380 (10)0.2196 (3)0.0288 (6)
C260.7229 (4)0.00119 (11)0.2433 (3)0.0307 (7)
C270.2562 (4)0.02685 (10)0.0151 (3)0.0276 (6)
C280.1862 (4)0.00277 (12)0.1284 (4)0.0319 (7)
H13D0.865 (7)0.0669 (19)0.191 (7)0.054 (19)*
H13C0.840 (8)0.042 (2)0.128 (7)0.07 (2)*
H40.624 (7)0.132 (2)0.075 (6)0.055 (18)*
H160.671 (7)0.0999 (18)0.081 (6)0.047 (16)*
H240.101 (10)0.0089 (12)0.393 (9)0.11 (3)*
H230.080 (6)0.0256 (17)0.422 (5)0.065 (19)*
H28B0.173 (7)0.0210 (18)0.092 (6)0.057 (16)*
H26B0.704 (7)0.0255 (19)0.270 (6)0.058 (16)*
H26A0.773 (6)0.0080 (14)0.316 (5)0.039 (12)*
H28A0.098 (7)0.0156 (19)0.140 (6)0.065 (18)*
H14B0.669 (8)0.200 (2)0.155 (6)0.10 (3)*
H14C0.679 (10)0.198 (3)0.044 (8)0.09 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0279 (2)0.0305 (2)0.0247 (2)0.00133 (15)0.00241 (15)0.00501 (15)
Cu20.0291 (2)0.0243 (2)0.0287 (2)0.00061 (14)0.00019 (15)0.00122 (14)
O10.0387 (14)0.0304 (13)0.0505 (16)0.0070 (11)0.0019 (12)0.0056 (11)
O20.0359 (13)0.0400 (14)0.0402 (14)0.0100 (11)0.0079 (11)0.0007 (11)
O30.0407 (16)0.0469 (19)0.0435 (16)0.0031 (14)0.0136 (13)0.0056 (14)
O40.072 (2)0.0434 (18)0.063 (2)0.0140 (17)0.0327 (19)0.0013 (16)
O50.0366 (13)0.0438 (15)0.0298 (12)0.0025 (11)0.0053 (10)0.0122 (11)
O60.0477 (16)0.0338 (13)0.0368 (14)0.0110 (11)0.0018 (12)0.0077 (11)
O70.146 (4)0.276 (7)0.139 (4)0.073 (4)0.043 (3)0.078 (4)
O80.146 (4)0.276 (7)0.139 (4)0.073 (4)0.043 (3)0.078 (4)
O90.146 (4)0.276 (7)0.139 (4)0.073 (4)0.043 (3)0.078 (4)
O100.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)0.0016 (13)0.0012 (13)
O110.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)0.0016 (13)0.0012 (13)
O120.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)0.0016 (13)0.0012 (13)
O130.062 (2)0.051 (2)0.048 (2)0.0071 (17)0.0155 (17)0.0016 (16)
O140.169 (7)0.059 (3)0.089 (4)0.035 (4)0.023 (5)0.007 (3)
N10.0273 (13)0.0322 (14)0.0246 (12)0.0023 (10)0.0023 (10)0.0017 (10)
N20.0325 (14)0.0333 (14)0.0235 (12)0.0018 (11)0.0004 (11)0.0009 (11)
N30.0293 (14)0.0331 (14)0.0307 (14)0.0010 (11)0.0004 (11)0.0028 (11)
N40.0275 (13)0.0258 (13)0.0316 (14)0.0000 (10)0.0008 (11)0.0001 (10)
N50.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)0.0016 (13)0.0012 (13)
N60.146 (4)0.276 (7)0.139 (4)0.073 (4)0.043 (3)0.078 (4)
C10.0276 (16)0.0421 (19)0.0333 (17)0.0040 (14)0.0037 (13)0.0033 (14)
C20.0297 (18)0.053 (2)0.048 (2)0.0044 (16)0.0056 (16)0.0041 (19)
C30.0336 (18)0.038 (2)0.060 (3)0.0081 (15)0.0050 (17)0.0029 (18)
C40.0380 (18)0.0296 (16)0.0399 (19)0.0033 (14)0.0060 (15)0.0033 (14)
C50.064 (3)0.0328 (19)0.055 (3)0.0055 (19)0.010 (2)0.0127 (18)
C60.076 (3)0.041 (2)0.040 (2)0.001 (2)0.004 (2)0.0183 (18)
C70.052 (2)0.0382 (19)0.0274 (16)0.0061 (16)0.0000 (15)0.0065 (14)
C80.067 (3)0.055 (3)0.0281 (18)0.009 (2)0.0080 (18)0.0079 (17)
C90.057 (3)0.060 (3)0.0311 (19)0.001 (2)0.0140 (18)0.0008 (18)
C100.044 (2)0.045 (2)0.0307 (17)0.0021 (16)0.0045 (15)0.0051 (15)
C110.0355 (17)0.0324 (16)0.0225 (14)0.0036 (13)0.0025 (12)0.0024 (12)
C120.0289 (15)0.0295 (15)0.0279 (15)0.0003 (12)0.0043 (12)0.0034 (12)
C130.0392 (19)0.051 (2)0.0314 (17)0.0005 (17)0.0034 (15)0.0014 (16)
C140.043 (2)0.065 (3)0.040 (2)0.004 (2)0.0099 (17)0.010 (2)
C150.044 (2)0.048 (2)0.054 (3)0.0117 (19)0.0056 (19)0.015 (2)
C160.0401 (19)0.0319 (18)0.048 (2)0.0054 (15)0.0032 (16)0.0113 (16)
C170.056 (3)0.0281 (18)0.068 (3)0.0121 (17)0.001 (2)0.0058 (19)
C180.062 (3)0.0242 (17)0.072 (3)0.0041 (17)0.004 (2)0.0074 (19)
C190.042 (2)0.0251 (16)0.048 (2)0.0041 (14)0.0037 (16)0.0028 (15)
C200.053 (2)0.040 (2)0.049 (2)0.0090 (18)0.0010 (19)0.0123 (18)
C210.041 (2)0.050 (2)0.040 (2)0.0082 (17)0.0066 (16)0.0077 (17)
C220.0298 (16)0.0386 (18)0.0343 (17)0.0006 (13)0.0018 (13)0.0008 (14)
C230.0308 (16)0.0243 (14)0.0346 (16)0.0019 (12)0.0018 (13)0.0015 (12)
C240.0302 (15)0.0274 (15)0.0335 (16)0.0011 (12)0.0044 (13)0.0052 (12)
C250.0325 (16)0.0280 (15)0.0248 (14)0.0066 (12)0.0026 (12)0.0060 (11)
C260.0326 (16)0.0332 (17)0.0250 (15)0.0076 (13)0.0036 (12)0.0022 (13)
C270.0254 (14)0.0275 (15)0.0287 (15)0.0053 (11)0.0021 (11)0.0070 (12)
C280.0272 (15)0.0353 (17)0.0320 (16)0.0006 (13)0.0024 (12)0.0101 (14)
Geometric parameters (Å, º) top
Cu1—O21.948 (3)C4—C121.398 (5)
Cu1—O51.966 (3)C4—C51.437 (6)
Cu1—N22.011 (3)C5—C61.342 (7)
Cu1—N12.015 (3)C5—H50.9300
Cu1—O42.240 (3)C6—C71.441 (6)
Cu1—Cu23.0322 (6)C6—H60.9300
Cu2—O11.946 (3)C7—C111.401 (5)
Cu2—O61.952 (3)C7—C81.405 (6)
Cu2—N42.007 (3)C8—C91.364 (7)
Cu2—N32.025 (3)C8—H80.9300
Cu2—O32.160 (3)C9—C101.396 (6)
O1—C251.258 (5)C9—H90.9300
O2—C251.264 (5)C10—H100.9300
O3—H40.73 (7)C11—C121.432 (5)
O3—H160.70 (6)C13—C141.405 (6)
O4—H240.82 (5)C13—H130.9300
O4—H230.82 (6)C14—C151.369 (7)
O5—C271.259 (4)C14—H140.9300
O6—C271.260 (5)C15—C161.415 (6)
O7—N61.114 (14)C15—H150.9300
O8—N61.099 (14)C16—C241.403 (5)
O9—N61.199 (14)C16—C171.443 (7)
O10—N51.216 (8)C17—C181.344 (7)
O11—N51.231 (8)C17—H170.9300
O12—N51.224 (8)C18—C191.436 (6)
O13—H13D0.70 (7)C18—H180.9300
O13—H13C0.75 (8)C19—C231.407 (5)
O14—H14B0.83 (7)C19—C201.411 (6)
O14—H14C0.82 (8)C20—C211.364 (7)
N1—C11.331 (4)C20—H200.9300
N1—C121.362 (4)C21—C221.400 (6)
N2—C101.326 (5)C21—H210.9300
N2—C111.360 (5)C22—H220.9300
N3—C131.327 (5)C23—C241.426 (5)
N3—C241.358 (5)C25—C261.510 (5)
N4—C221.334 (5)C26—C28i1.510 (5)
N4—C231.359 (4)C26—H26B0.90 (6)
C1—C21.399 (6)C26—H26A0.89 (5)
C1—H10.9300C27—C281.513 (4)
C2—C31.371 (7)C28—C26i1.510 (5)
C2—H20.9300C28—H28B0.91 (6)
C3—C41.406 (6)C28—H28A0.90 (7)
C3—H30.9300
O2—Cu1—O590.69 (12)C5—C6—C7121.6 (4)
O2—Cu1—N291.42 (12)C5—C6—H6119.2
O5—Cu1—N2175.95 (12)C7—C6—H6119.2
O2—Cu1—N1164.53 (12)C11—C7—C8117.1 (4)
O5—Cu1—N195.00 (12)C11—C7—C6118.1 (4)
N2—Cu1—N182.10 (12)C8—C7—C6124.8 (4)
O2—Cu1—O4102.84 (14)C9—C8—C7119.4 (4)
O5—Cu1—O495.40 (14)C9—C8—H8120.3
N2—Cu1—O487.49 (14)C7—C8—H8120.3
N1—Cu1—O490.95 (14)C8—C9—C10120.0 (4)
O2—Cu1—Cu283.04 (9)C8—C9—H9120.0
O5—Cu1—Cu279.10 (9)C10—C9—H9120.0
N2—Cu1—Cu297.73 (9)N2—C10—C9122.3 (4)
N1—Cu1—Cu283.93 (8)N2—C10—H10118.9
O4—Cu1—Cu2172.09 (12)C9—C10—H10118.9
O1—Cu2—O691.46 (13)N2—C11—C7123.0 (3)
O1—Cu2—N493.81 (12)N2—C11—C12116.7 (3)
O6—Cu2—N4164.98 (13)C7—C11—C12120.2 (3)
O1—Cu2—N3173.84 (13)N1—C12—C4123.5 (3)
O6—Cu2—N391.23 (13)N1—C12—C11116.2 (3)
N4—Cu2—N382.25 (12)C4—C12—C11120.3 (3)
O1—Cu2—O393.07 (14)N3—C13—C14121.4 (4)
O6—Cu2—O397.50 (14)N3—C13—H13119.3
N4—Cu2—O396.25 (14)C14—C13—H13119.3
N3—Cu2—O392.07 (14)C15—C14—C13120.3 (4)
O1—Cu2—Cu172.40 (9)C15—C14—H14119.9
O6—Cu2—Cu177.09 (9)C13—C14—H14119.9
N4—Cu2—Cu191.12 (9)C14—C15—C16119.1 (4)
N3—Cu2—Cu1102.83 (9)C14—C15—H15120.5
O3—Cu2—Cu1164.16 (11)C16—C15—H15120.5
C25—O1—Cu2134.9 (3)C24—C16—C15117.2 (4)
C25—O2—Cu1121.1 (2)C24—C16—C17118.4 (4)
Cu2—O3—H4122 (5)C15—C16—C17124.4 (4)
Cu2—O3—H16125 (5)C18—C17—C16121.5 (4)
H4—O3—H16110 (7)C18—C17—H17119.2
Cu1—O4—H24144 (7)C16—C17—H17119.2
Cu1—O4—H23118 (5)C17—C18—C19121.0 (4)
H24—O4—H2398 (7)C17—C18—H18119.5
C27—O5—Cu1126.8 (2)C19—C18—H18119.5
C27—O6—Cu2130.2 (2)C23—C19—C20116.8 (4)
H13D—O13—H13C97 (7)C23—C19—C18118.7 (4)
H14B—O14—H14C88 (8)C20—C19—C18124.4 (4)
C1—N1—C12117.8 (3)C21—C20—C19119.6 (4)
C1—N1—Cu1129.7 (3)C21—C20—H20120.2
C12—N1—Cu1112.5 (2)C19—C20—H20120.2
C10—N2—C11118.2 (3)C20—C21—C22120.0 (4)
C10—N2—Cu1129.3 (3)C20—C21—H21120.0
C11—N2—Cu1112.4 (2)C22—C21—H21120.0
C13—N3—C24119.2 (3)N4—C22—C21122.1 (4)
C13—N3—Cu2129.1 (3)N4—C22—H22119.0
C24—N3—Cu2111.7 (2)C21—C22—H22119.0
C22—N4—C23118.2 (3)N4—C23—C19123.3 (3)
C22—N4—Cu2129.3 (3)N4—C23—C24116.6 (3)
C23—N4—Cu2112.4 (2)C19—C23—C24120.1 (3)
O10—N5—O12122.5 (7)N3—C24—C16122.8 (3)
O10—N5—O11117.0 (6)N3—C24—C23117.0 (3)
O12—N5—O11120.4 (6)C16—C24—C23120.1 (3)
O8—N6—O7119.1 (16)O1—C25—O2125.4 (3)
O8—N6—O9112.7 (14)O1—C25—C26116.4 (3)
O7—N6—O9127.8 (14)O2—C25—C26118.1 (3)
N1—C1—C2122.4 (4)C25—C26—C28i113.2 (3)
N1—C1—H1118.8C25—C26—H26B113 (4)
C2—C1—H1118.8C28i—C26—H26B110 (4)
C3—C2—C1119.9 (4)C25—C26—H26A106 (3)
C3—C2—H2120.1C28i—C26—H26A114 (3)
C1—C2—H2120.1H26B—C26—H26A99 (5)
C2—C3—C4119.2 (4)O5—C27—O6125.5 (3)
C2—C3—H3120.4O5—C27—C28117.9 (3)
C4—C3—H3120.4O6—C27—C28116.6 (3)
C12—C4—C3117.2 (4)C26i—C28—C27114.8 (3)
C12—C4—C5118.5 (4)C26i—C28—H28B114 (4)
C3—C4—C5124.3 (4)C27—C28—H28B103 (4)
C6—C5—C4121.3 (4)C26i—C28—H28A116 (4)
C6—C5—H5119.4C27—C28—H28A97 (4)
C4—C5—H5119.4H28B—C28—H28A110 (5)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O140.73 (7)1.99 (7)2.707 (7)169 (7)
O3—H16···O130.70 (6)2.07 (6)2.772 (6)177 (9)
O4—H23···O120.82 (6)2.27 (6)3.015 (7)153 (5)
O4—H24···O10ii0.82 (5)2.03 (6)2.816 (6)161 (8)
O13—H13C···O5i0.77 (7)2.24 (7)3.000 (5)167 (7)
O13—H13D···O10iii0.71 (7)2.23 (7)2.899 (7)159 (8)
O14—H14B···O9iv0.83 (7)2.15 (6)2.846 (13)142 (6)
O14—H14C···O7v0.82 (9)2.10 (9)2.874 (14)158 (10)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z1; (iv) x+1, y+1/2, z1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2O
Mr1599.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9180 (1), 34.1090 (2), 10.3620 (2)
β (°) 96.031 (1)
V3)3134.51 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.20 × 0.19 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23089, 8980, 7772
Rint0.018
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.191, 1.05
No. of reflections8980
No. of parameters463
No. of restraints101
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.88, 1.59

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.948 (3)Cu2—O11.946 (3)
Cu1—O51.966 (3)Cu2—O61.952 (3)
Cu1—N22.011 (3)Cu2—N42.007 (3)
Cu1—N12.015 (3)Cu2—N32.025 (3)
Cu1—O42.240 (3)Cu2—O32.160 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O140.73 (7)1.99 (7)2.707 (7)169 (7)
O3—H16···O130.70 (6)2.07 (6)2.772 (6)177 (9)
O4—H23···O120.82 (6)2.27 (6)3.015 (7)153 (5)
O4—H24···O10i0.82 (5)2.03 (6)2.816 (6)161 (8)
O13—H13C···O5ii0.77 (7)2.24 (7)3.000 (5)167 (7)
O13—H13D···O10iii0.71 (7)2.23 (7)2.899 (7)159 (8)
O14—H14B···O9iv0.83 (7)2.15 (6)2.846 (13)142 (6)
O14—H14C···O7v0.82 (9)2.10 (9)2.874 (14)158 (10)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z1; (iv) x+1, y+1/2, z1/2; (v) x+1, y, z.
 

Acknowledgements

The authors thank the Royal Golden Jubilee PhD Program (RGJ) for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chem. 46, 3057–3071.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcCann, S., McCann, M., Casey, R. M. T., Jackman, M., Devereux, M., McKee, V., & (1998). Inorg. Chim. Acta, 279, 24–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationPadmanabhan, M., Kumary, S. M., Huang, X. & Li, J. (2005). Inorg. Chim. Acta, 358, 3537–3544.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds