organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 7-chloro­methyl-5-(2-chloro­phen­yl)-7-hydr­­oxy-2-methyl­sulfanyl-4,5,6,7-tetra­hydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxyl­ate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: swhuang@mails.ccnu.edu.cn

(Received 22 September 2009; accepted 28 September 2009; online 10 October 2009)

In the title compound, C16H18Cl2N4O3S, the five-membered ring is almost planar [maximum deviation = 0.011 (3) Å] and the six-membered ring adopts an envelope conformation. In the crystal structure, N—H⋯N, O—H⋯N and C—H⋯O inter­actions link mol­ecules into a three-dimensional network.

Related literature

For general background to tetra­hydro triazolo[1,5-a]pyrimi­dine derivatives as potential biologically active compounds, see: Pryadeina et al. (2004[Pryadeina, M. V., Burgart, Ya. V., Saloution, K. M. I., Ulomskii E. N. & Rusinov V. L. (2004). Russ. J. Org. Chem. 40, 902-907.]). For related structures, see: Chen et al. (2005[Chen, Q., Wu, Q.-Y., Hu, X.-W. & Yang, G.-F. (2005). Acta Cryst. E61, o2079-o2080.]); Hu et al. (2005[Hu, X.-W., Chen, Q., Liu, Z.-M. & Yang, G.-F. (2005). Acta Cryst. E61, o2083-o2085.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18Cl2N4O3S

  • Mr = 417.30

  • Triclinic, [P \overline 1]

  • a = 8.4534 (14) Å

  • b = 10.5082 (17) Å

  • c = 12.0846 (19) Å

  • α = 66.660 (3)°

  • β = 79.519 (3)°

  • γ = 84.795 (3)°

  • V = 969.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD diffractometer

  • Absorption correction: none

  • 6772 measured reflections

  • 3759 independent reflections

  • 2661 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.141

  • S = 1.08

  • 3759 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.93 (3) 2.04 (3) 2.969 (3) 172 (2)
O3—H3A⋯N3ii 0.77 (3) 2.05 (3) 2.806 (3) 170 (3)
C16—H16A⋯O3ii 0.96 2.47 3.290 (4) 143
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, tetrahydro triazolo1,5-a]pyrimidine derivatives nave attracted interest as potential biologically active compounds (Pryadeina et al., 2004). In this paper, we present the structure of one such analogue, the title compound, (I) (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges.

The bicyclic triazolopyrimidine system is not on the same plane because they can not form a conjugated system. Ring A (N2-4/C14-15) is close to planarity with a maximum deviation of 0.011Å for C15. Rng B (N1-2/C7-8/C12/C14) dopt envelope conformations with atom C8 displaced by 0.333 (3) Å from the plane of the other ring atoms. The dihedral angle between the Ring (C1-C6) and the ring A is 51.86°.

In the crystal structure, weak N-H···N, O-H···N and C-H···O interactions link the molecules into a three-dimensional network (Fig. 2).

Related literature top

For general background to tetrahydro triazolo[1,5-a]pyrimidine derivatives as potential biologically active compounds, see: Pryadeina et al. (2004). For related structures, see: Chen et al. (2005); Hu et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 4-chloro acetylacetic ester (1 mmol), 2-chloro benzaldehyde (1 mmol), and 3-amino-5-methylthio-1,2,4-triazole (1mmol) in water (3 ml) containing a catalytic amount of TSA was heated under 353 K for 10 h. The resulting mixture was extracted with CH2Cl2 and the extra was dried over sodium sulfate, filtered, the filtrate was condensed under reduced pressure and the residue was purified by chromatography on SiO2 to afford the title compound. Colourless blocks of (I) were grown from an acetone solution at 293K. 1H NMR (CDCl3, 400 MHz): σ 7.03-7.40(m, 4 H), 6.42(s, 1H), 4.99(d, 1H), 4.35(d, 1H), 4.00(q,2 H), 3.91(d, 1H), 3.05(d, 1H), 2.35(s, 3H), 1.03(t,3H).

Refinement top

The N- and O-bound H atoms were located in a difference map and freely refined with fixed isotropic displacement parameters. All other H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

In recent years, tetrahydro triazolo1,5-a]pyrimidine derivatives nave attracted interest as potential biologically active compounds (Pryadeina et al., 2004). In this paper, we present the structure of one such analogue, the title compound, (I) (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges.

The bicyclic triazolopyrimidine system is not on the same plane because they can not form a conjugated system. Ring A (N2-4/C14-15) is close to planarity with a maximum deviation of 0.011Å for C15. Rng B (N1-2/C7-8/C12/C14) dopt envelope conformations with atom C8 displaced by 0.333 (3) Å from the plane of the other ring atoms. The dihedral angle between the Ring (C1-C6) and the ring A is 51.86°.

In the crystal structure, weak N-H···N, O-H···N and C-H···O interactions link the molecules into a three-dimensional network (Fig. 2).

For general background to tetrahydro triazolo[1,5-a]pyrimidine derivatives as potential biologically active compounds, see: Pryadeina et al. (2004). For related structures, see: Chen et al. (2005); Hu et al. (2005). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Ethyl 7-chloromethyl-5-(2-chlorophenyl)-7-hydroxy-2-methylsulfanyl-4,5,6,7-tetrahydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxylate top
Crystal data top
C16H18Cl2N4O3SZ = 2
Mr = 417.30F(000) = 432
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4534 (14) ÅCell parameters from 2018 reflections
b = 10.5082 (17) Åθ = 2.5–24.1°
c = 12.0846 (19) ŵ = 0.47 mm1
α = 66.660 (3)°T = 292 K
β = 79.519 (3)°Block, colourless
γ = 84.795 (3)°0.30 × 0.20 × 0.10 mm
V = 969.0 (3) Å3
Data collection top
Bruker SMART 4K CCD
diffractometer
2661 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
φ and ω scansh = 1010
6772 measured reflectionsk = 1212
3759 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
3759 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H18Cl2N4O3Sγ = 84.795 (3)°
Mr = 417.30V = 969.0 (3) Å3
Triclinic, P1Z = 2
a = 8.4534 (14) ÅMo Kα radiation
b = 10.5082 (17) ŵ = 0.47 mm1
c = 12.0846 (19) ÅT = 292 K
α = 66.660 (3)°0.30 × 0.20 × 0.10 mm
β = 79.519 (3)°
Data collection top
Bruker SMART 4K CCD
diffractometer
2661 reflections with I > 2σ(I)
6772 measured reflectionsRint = 0.025
3759 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
3759 reflectionsΔρmin = 0.33 e Å3
249 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68839 (13)0.60065 (10)0.98954 (7)0.0933 (4)
Cl20.60921 (11)0.36582 (8)0.66235 (7)0.0709 (3)
S11.08176 (11)0.90864 (8)0.17205 (6)0.0681 (3)
C10.6041 (4)0.7582 (3)0.9073 (2)0.0571 (8)
C20.4887 (4)0.8210 (4)0.9701 (3)0.0747 (10)
H20.46010.77821.05430.090*
C30.4181 (4)0.9457 (4)0.9068 (3)0.0775 (11)
H30.34130.98700.94830.093*
C40.4602 (4)1.0087 (3)0.7840 (3)0.0684 (9)
H40.41261.09330.74150.082*
C50.5738 (3)0.9472 (3)0.7221 (2)0.0510 (7)
H50.60180.99190.63800.061*
C60.6471 (3)0.8217 (3)0.7812 (2)0.0414 (6)
C70.7640 (3)0.7517 (2)0.7107 (2)0.0382 (6)
H70.835 (3)0.694 (3)0.758 (2)0.046*
C80.6777 (3)0.6492 (2)0.6789 (2)0.0351 (5)
H80.645 (3)0.574 (2)0.755 (2)0.042*
C90.5292 (3)0.7157 (3)0.6256 (2)0.0441 (6)
C100.2503 (4)0.7571 (4)0.6852 (3)0.0809 (11)
H10A0.19550.71900.64170.097*
H10B0.27090.85410.63490.097*
C110.1517 (4)0.7428 (4)0.8024 (3)0.0821 (11)
H11A0.11880.64840.84610.123*
H11B0.05820.80250.78810.123*
H11C0.21330.76800.84960.123*
C120.7963 (3)0.5897 (2)0.5979 (2)0.0369 (6)
C130.7175 (3)0.5062 (3)0.5449 (2)0.0461 (6)
H13A0.79980.47090.49640.055*
H13B0.64490.56620.49160.055*
C140.8996 (3)0.8292 (2)0.5003 (2)0.0395 (6)
C150.9936 (3)0.8369 (3)0.3248 (2)0.0441 (6)
C161.0255 (5)0.7895 (3)0.1151 (3)0.0830 (11)
H16A1.08320.70330.14770.125*
H16B1.05100.82710.02760.125*
H16C0.91190.77400.13920.125*
N10.8465 (3)0.8568 (2)0.59986 (19)0.0461 (6)
H10.894 (3)0.929 (3)0.608 (2)0.055*
N20.8708 (3)0.7083 (2)0.49519 (17)0.0410 (5)
N30.9342 (3)0.7110 (2)0.37947 (17)0.0417 (5)
N40.9794 (3)0.9135 (2)0.39433 (17)0.0441 (5)
O10.5267 (3)0.7939 (2)0.52207 (17)0.0682 (6)
O20.4005 (2)0.6814 (2)0.71234 (18)0.0611 (6)
O30.9120 (2)0.51348 (18)0.66938 (16)0.0448 (5)
H3A0.953 (4)0.458 (3)0.647 (3)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1212 (8)0.0852 (7)0.0451 (5)0.0024 (6)0.0173 (5)0.0064 (4)
Cl20.0932 (6)0.0500 (5)0.0662 (5)0.0327 (4)0.0159 (4)0.0111 (4)
S10.1055 (7)0.0475 (5)0.0361 (4)0.0024 (4)0.0124 (4)0.0101 (3)
C10.073 (2)0.0615 (19)0.0356 (14)0.0172 (16)0.0008 (14)0.0183 (13)
C20.084 (2)0.101 (3)0.0403 (16)0.028 (2)0.0177 (16)0.0353 (18)
C30.078 (2)0.087 (3)0.081 (2)0.019 (2)0.020 (2)0.056 (2)
C40.068 (2)0.0568 (19)0.084 (2)0.0057 (16)0.0090 (18)0.0391 (17)
C50.0643 (18)0.0407 (16)0.0465 (15)0.0049 (14)0.0028 (13)0.0194 (12)
C60.0477 (15)0.0436 (15)0.0343 (13)0.0110 (12)0.0024 (11)0.0184 (11)
C70.0433 (15)0.0344 (13)0.0332 (12)0.0019 (11)0.0027 (11)0.0104 (10)
C80.0390 (14)0.0291 (12)0.0315 (12)0.0017 (10)0.0041 (10)0.0063 (10)
C90.0513 (16)0.0398 (15)0.0434 (15)0.0048 (12)0.0119 (13)0.0179 (12)
C100.052 (2)0.107 (3)0.089 (3)0.030 (2)0.0287 (18)0.043 (2)
C110.051 (2)0.096 (3)0.109 (3)0.0175 (19)0.021 (2)0.051 (2)
C120.0450 (14)0.0256 (12)0.0385 (13)0.0016 (10)0.0073 (11)0.0102 (10)
C130.0582 (17)0.0355 (14)0.0434 (14)0.0058 (12)0.0109 (12)0.0117 (11)
C140.0477 (15)0.0316 (13)0.0369 (13)0.0033 (11)0.0007 (11)0.0136 (10)
C150.0556 (16)0.0331 (14)0.0355 (13)0.0054 (12)0.0031 (11)0.0107 (11)
C160.141 (3)0.067 (2)0.0378 (16)0.008 (2)0.0113 (18)0.0201 (15)
N10.0583 (14)0.0386 (12)0.0421 (12)0.0177 (11)0.0107 (10)0.0208 (10)
N20.0537 (13)0.0327 (11)0.0351 (11)0.0054 (10)0.0035 (9)0.0150 (8)
N30.0580 (14)0.0316 (11)0.0339 (11)0.0016 (10)0.0019 (9)0.0138 (9)
N40.0567 (14)0.0328 (11)0.0374 (11)0.0029 (10)0.0074 (10)0.0137 (9)
O10.0783 (15)0.0711 (14)0.0463 (12)0.0242 (12)0.0219 (10)0.0138 (10)
O20.0390 (11)0.0711 (14)0.0615 (12)0.0076 (10)0.0113 (9)0.0140 (10)
O30.0513 (11)0.0359 (10)0.0513 (11)0.0109 (8)0.0149 (9)0.0207 (8)
Geometric parameters (Å, º) top
Cl1—C11.725 (3)C10—O21.454 (3)
Cl2—C131.773 (2)C10—C111.465 (5)
S1—C151.740 (2)C10—H10A0.9700
S1—C161.783 (4)C10—H10B0.9700
C1—C61.392 (3)C11—H11A0.9600
C1—C21.404 (4)C11—H11B0.9600
C2—C31.374 (5)C11—H11C0.9600
C2—H20.9300C12—O31.401 (3)
C3—C41.356 (4)C12—N21.456 (3)
C3—H30.9300C12—C131.526 (3)
C4—C51.381 (4)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.378 (4)C14—N41.332 (3)
C5—H50.9300C14—N11.337 (3)
C6—C71.517 (4)C14—N21.342 (3)
C7—N11.458 (3)C15—N31.321 (3)
C7—C81.554 (3)C15—N41.360 (3)
C7—H70.92 (3)C16—H16A0.9600
C8—C91.502 (3)C16—H16B0.9600
C8—C121.539 (3)C16—H16C0.9600
C8—H80.96 (2)N1—H10.93 (3)
C9—O11.198 (3)N2—N31.393 (3)
C9—O21.329 (3)O3—H3A0.77 (3)
C15—S1—C16101.76 (14)C10—C11—H11A109.5
C6—C1—C2120.3 (3)C10—C11—H11B109.5
C6—C1—Cl1121.1 (2)H11A—C11—H11B109.5
C2—C1—Cl1118.6 (2)C10—C11—H11C109.5
C3—C2—C1119.9 (3)H11A—C11—H11C109.5
C3—C2—H2120.0H11B—C11—H11C109.5
C1—C2—H2120.0O3—C12—N2109.8 (2)
C4—C3—C2120.2 (3)O3—C12—C13113.3 (2)
C4—C3—H3119.9N2—C12—C13107.02 (19)
C2—C3—H3119.9O3—C12—C8105.82 (18)
C3—C4—C5120.0 (3)N2—C12—C8106.35 (18)
C3—C4—H4120.0C13—C12—C8114.3 (2)
C5—C4—H4120.0C12—C13—Cl2111.07 (17)
C6—C5—C4122.1 (3)C12—C13—H13A109.4
C6—C5—H5119.0Cl2—C13—H13A109.4
C4—C5—H5119.0C12—C13—H13B109.4
C5—C6—C1117.5 (2)Cl2—C13—H13B109.4
C5—C6—C7121.2 (2)H13A—C13—H13B108.0
C1—C6—C7121.2 (2)N4—C14—N1127.2 (2)
N1—C7—C6109.5 (2)N4—C14—N2110.8 (2)
N1—C7—C8110.5 (2)N1—C14—N2121.9 (2)
C6—C7—C8111.7 (2)N3—C15—N4116.1 (2)
N1—C7—H7112.1 (16)N3—C15—S1124.2 (2)
C6—C7—H7111.0 (16)N4—C15—S1119.66 (19)
C8—C7—H7101.9 (16)S1—C16—H16A109.5
C9—C8—C12113.9 (2)S1—C16—H16B109.5
C9—C8—C7110.8 (2)H16A—C16—H16B109.5
C12—C8—C7110.40 (19)S1—C16—H16C109.5
C9—C8—H8108.1 (15)H16A—C16—H16C109.5
C12—C8—H8107.5 (14)H16B—C16—H16C109.5
C7—C8—H8105.7 (14)C14—N1—C7120.7 (2)
O1—C9—O2124.5 (3)C14—N1—H1118.2 (17)
O1—C9—C8125.5 (3)C7—N1—H1117.4 (16)
O2—C9—C8109.9 (2)C14—N2—N3109.23 (18)
O2—C10—C11107.0 (3)C14—N2—C12124.9 (2)
O2—C10—H10A110.3N3—N2—C12125.74 (19)
C11—C10—H10A110.3C15—N3—N2101.43 (19)
O2—C10—H10B110.3C14—N4—C15102.3 (2)
C11—C10—H10B110.3C9—O2—C10118.2 (2)
H10A—C10—H10B108.6C12—O3—H3A111 (2)
C6—C1—C2—C30.1 (5)N2—C12—C13—Cl2175.47 (17)
Cl1—C1—C2—C3179.3 (3)C8—C12—C13—Cl258.0 (2)
C1—C2—C3—C40.4 (5)C16—S1—C15—N312.5 (3)
C2—C3—C4—C50.3 (5)C16—S1—C15—N4165.8 (2)
C3—C4—C5—C60.3 (5)N4—C14—N1—C7178.5 (2)
C4—C5—C6—C10.7 (4)N2—C14—N1—C74.3 (4)
C4—C5—C6—C7176.2 (3)C6—C7—N1—C14151.3 (2)
C2—C1—C6—C50.6 (4)C8—C7—N1—C1427.9 (3)
Cl1—C1—C6—C5179.8 (2)N4—C14—N2—N30.1 (3)
C2—C1—C6—C7176.3 (3)N1—C14—N2—N3177.5 (2)
Cl1—C1—C6—C72.8 (4)N4—C14—N2—C12175.4 (2)
C5—C6—C7—N130.3 (3)N1—C14—N2—C127.0 (4)
C1—C6—C7—N1152.8 (2)O3—C12—N2—C1482.2 (3)
C5—C6—C7—C892.4 (3)C13—C12—N2—C14154.4 (2)
C1—C6—C7—C884.5 (3)C8—C12—N2—C1431.9 (3)
N1—C7—C8—C974.3 (3)O3—C12—N2—N392.6 (3)
C6—C7—C8—C947.9 (3)C13—C12—N2—N330.8 (3)
N1—C7—C8—C1252.8 (3)C8—C12—N2—N3153.3 (2)
C6—C7—C8—C12175.02 (19)N4—C15—N3—N21.9 (3)
C12—C8—C9—O145.3 (3)S1—C15—N3—N2176.39 (19)
C7—C8—C9—O179.9 (3)C14—N2—N3—C151.1 (3)
C12—C8—C9—O2138.4 (2)C12—N2—N3—C15176.5 (2)
C7—C8—C9—O296.4 (2)N1—C14—N4—C15176.3 (3)
C9—C8—C12—O3170.66 (19)N2—C14—N4—C151.2 (3)
C7—C8—C12—O364.0 (2)N3—C15—N4—C142.0 (3)
C9—C8—C12—N272.6 (2)S1—C15—N4—C14176.38 (19)
C7—C8—C12—N252.8 (2)O1—C9—O2—C108.7 (4)
C9—C8—C12—C1345.3 (3)C8—C9—O2—C10167.6 (3)
C7—C8—C12—C13170.64 (19)C11—C10—O2—C9157.3 (3)
O3—C12—C13—Cl263.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.93 (3)2.04 (3)2.969 (3)172 (2)
O3—H3A···N3ii0.77 (3)2.05 (3)2.806 (3)170 (3)
C16—H16A···O3ii0.962.473.290 (4)143
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H18Cl2N4O3S
Mr417.30
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.4534 (14), 10.5082 (17), 12.0846 (19)
α, β, γ (°)66.660 (3), 79.519 (3), 84.795 (3)
V3)969.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6772, 3759, 2661
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.141, 1.08
No. of reflections3759
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.93 (3)2.04 (3)2.969 (3)172 (2)
O3—H3A···N3ii0.77 (3)2.05 (3)2.806 (3)170 (3)
C16—H16A···O3ii0.962.473.290 (4)143
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20702018).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q., Wu, Q.-Y., Hu, X.-W. & Yang, G.-F. (2005). Acta Cryst. E61, o2079–o2080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, X.-W., Chen, Q., Liu, Z.-M. & Yang, G.-F. (2005). Acta Cryst. E61, o2083–o2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPryadeina, M. V., Burgart, Ya. V., Saloution, K. M. I., Ulomskii E. N. & Rusinov V. L. (2004). Russ. J. Org. Chem. 40, 902–907.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds