organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5Z)-5-(2-Hy­droxy­benzyl­­idene)-2-thioxo-1,3-thia­zolidin-4-one methanol hemisolvate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 September 2009; accepted 29 September 2009; online 3 October 2009)

In the title compound, C10H7NO2S2·0.5CH3OH, the dihedral angle between the aromatic rings is 11.43 (11)° and a short intra­molecular C—H⋯S contact occurs. The methanol solvent mol­ecule is equally disordered over two sets of sites. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur. The methanol solvent mol­ecule connects the dimers through O—H⋯S and O—H⋯O inter­molecular hydrogen bonds. Further stability is afforded by C—H⋯π and ππ inter­actions [centroid–centroid separation = 3.5948 (13) Å].

Related literature

For related structures, see: Barreiro et al. (2007[Barreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des. 7, 1964-1973.]); Delgado et al. (2006[Delgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o382-o385.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7NO2S2·0.5CH4O

  • Mr = 253.33

  • Monoclinic, C 2/c

  • a = 20.4859 (16) Å

  • b = 6.4422 (4) Å

  • c = 18.4377 (15) Å

  • β = 108.724 (4)°

  • V = 2304.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.28 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.947

  • 11803 measured reflections

  • 2636 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.101

  • S = 1.03

  • 2636 reflections

  • 167 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 1.95 2.811 (2) 173
O1—H1O⋯O11ii 0.82 1.95 2.735 (7) 159
O1—H1O⋯O11iii 0.82 2.06 2.871 (7) 169
O11—H11⋯S2i 0.84 (3) 2.80 (5) 3.317 (8) 122 (4)
C6—H6⋯S1 0.93 2.57 3.264 (3) 132
C4—H4⋯Cg2iv 0.93 2.81 3.599 (3) 143
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y-1, z; (iii) [-x, y-1, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 is centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) has been prepared owing to medicinal properties of rhodanine derivatives.

The crystal structure of (II) (Z)-5-(2-Fluorobenzylidene)-2-thioxothiazolidin-4-one (Delgado et al., 2006) and (III) 5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) have been published. The title compound (I) differs from (III) due to solvate i.e methanol instead of dimethylsulfoxide.

The title molecule basically consits of dimers due to intermolecular H-bondings of N—H···O type with R22(8) ring motifs (Bernstein et al., 1995). There exist a strong interamolecular H-bonding of C—H···S type and two weak intramolecular H-bondings of C–H···O (Table 1, Fig. 2) forming a twisted S(6) and two planar S(5) ring motifs. In (I), the 2-Hydroxybenzylidene moiety A (C1—C7/O1) and the rhodanine moiety B (C8/C9/N1/C10/S1/S2/O2) are planar with maximum r.m.s. deviations of 0.0042 and 0.0044 Å, respectively from their mean square planes. The dihedral angle between A/B is 11.35 (10)°. The methanol solvent of crystallization connects the dimers through O—H···S and O—H···O intermolecular H-bondings and form another ring motif R33(10) (Fig. 2). The molecules are stabilized in the form of two dimensional polymeric networks due to C—H···π interaction (Table 1) and ππ interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between Cg1···Cg2i [symmetry code i = x, 1 + y, z] and Cg2—Cg1ii [symmetry code ii = x, -1 + y, z] is 3.5948 (13) Å.

Related literature top

For related structures, see: Barreiro et al. (2007); Delgado et al. (2006). For graph-set notation, see: Bernstein et al. (1995). Cg2 is centroid of the C1–C6 benzene ring.

Experimental top

Rhodanine (0.266 g, 0.2 mol), salicylaldehyde (0.244 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in methanol to affoard light red needles of (I).

Refinement top

The multiplicity factor of C and O atom of methanol was intially refined and later it was fixed to 0.5.

The coordinates of H-atom of hydroxy group were refined. The coordinates of H-atoms of methanol were also refined with constraints. The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 Å for aromatic like H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl H-atoms and x = 1.2 for all othe H atoms.

Structure description top

The title compound (I, Fig. 1) has been prepared owing to medicinal properties of rhodanine derivatives.

The crystal structure of (II) (Z)-5-(2-Fluorobenzylidene)-2-thioxothiazolidin-4-one (Delgado et al., 2006) and (III) 5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) have been published. The title compound (I) differs from (III) due to solvate i.e methanol instead of dimethylsulfoxide.

The title molecule basically consits of dimers due to intermolecular H-bondings of N—H···O type with R22(8) ring motifs (Bernstein et al., 1995). There exist a strong interamolecular H-bonding of C—H···S type and two weak intramolecular H-bondings of C–H···O (Table 1, Fig. 2) forming a twisted S(6) and two planar S(5) ring motifs. In (I), the 2-Hydroxybenzylidene moiety A (C1—C7/O1) and the rhodanine moiety B (C8/C9/N1/C10/S1/S2/O2) are planar with maximum r.m.s. deviations of 0.0042 and 0.0044 Å, respectively from their mean square planes. The dihedral angle between A/B is 11.35 (10)°. The methanol solvent of crystallization connects the dimers through O—H···S and O—H···O intermolecular H-bondings and form another ring motif R33(10) (Fig. 2). The molecules are stabilized in the form of two dimensional polymeric networks due to C—H···π interaction (Table 1) and ππ interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between Cg1···Cg2i [symmetry code i = x, 1 + y, z] and Cg2—Cg1ii [symmetry code ii = x, -1 + y, z] is 3.5948 (13) Å.

For related structures, see: Barreiro et al. (2007); Delgado et al. (2006). For graph-set notation, see: Bernstein et al. (1995). Cg2 is centroid of the C1–C6 benzene ring.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form dimers and dimers are connected to each other with the help of methanol by intermolecular H-bondings. The double dotted lines represent intramolecular H-bondings.
(5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate top
Crystal data top
C10H7NO2S2·0.5CH4OF(000) = 1048
Mr = 253.33Dx = 1.460 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2636 reflections
a = 20.4859 (16) Åθ = 2.1–27.5°
b = 6.4422 (4) ŵ = 0.45 mm1
c = 18.4377 (15) ÅT = 296 K
β = 108.724 (4)°Cut needle, light red
V = 2304.5 (3) Å30.28 × 0.15 × 0.12 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2636 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.50 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 2226
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 58
Tmin = 0.925, Tmax = 0.947l = 2322
11803 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.2743P]
where P = (Fo2 + 2Fc2)/3
2636 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.30 e Å3
8 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H7NO2S2·0.5CH4OV = 2304.5 (3) Å3
Mr = 253.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.4859 (16) ŵ = 0.45 mm1
b = 6.4422 (4) ÅT = 296 K
c = 18.4377 (15) Å0.28 × 0.15 × 0.12 mm
β = 108.724 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1562 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.947Rint = 0.040
11803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0448 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
2636 reflectionsΔρmin = 0.28 e Å3
167 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.15938 (4)0.58242 (10)0.00444 (4)0.0600 (2)
S20.14589 (4)0.94002 (13)0.11023 (5)0.0802 (3)
O10.06021 (9)0.1385 (3)0.18770 (11)0.0619 (7)
O20.01091 (8)0.7729 (2)0.06117 (9)0.0516 (6)
N10.06936 (9)0.8655 (3)0.02055 (10)0.0467 (7)
C10.14189 (11)0.2372 (3)0.12922 (12)0.0389 (7)
C20.12016 (12)0.0955 (3)0.17442 (12)0.0428 (8)
C30.15870 (12)0.0790 (4)0.20299 (13)0.0485 (8)
C40.21827 (13)0.1171 (4)0.18715 (13)0.0531 (9)
C50.24140 (13)0.0198 (4)0.14359 (14)0.0566 (9)
C60.20350 (13)0.1944 (4)0.11522 (13)0.0512 (9)
C70.10043 (11)0.4192 (3)0.10120 (12)0.0422 (8)
C80.10408 (11)0.5631 (3)0.05020 (12)0.0396 (7)
C90.05620 (11)0.7391 (3)0.03308 (12)0.0405 (8)
C100.12115 (12)0.8120 (4)0.04789 (13)0.0502 (8)
O110.0100 (5)0.8280 (6)0.2318 (3)0.066 (3)0.500
C110.014 (2)0.6235 (11)0.262 (3)0.112 (14)0.500
H1N0.045380.975780.036430.0561*
H1O0.049060.039090.208880.0743*
H30.144030.171510.233270.0582*
H40.243440.236700.205980.0637*
H50.282320.005710.133480.0680*
H60.219320.286730.085850.0614*
H70.065210.440090.122070.0507*
H110.035 (3)0.804 (7)0.1868 (16)0.0792*0.500
H11A0.012 (4)0.500 (7)0.244 (5)0.1677*0.500
H11B0.019 (4)0.608 (13)0.316 (4)0.1677*0.500
H11C0.058 (3)0.572 (11)0.265 (5)0.1677*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0676 (4)0.0634 (4)0.0594 (4)0.0280 (4)0.0349 (4)0.0186 (3)
S20.0750 (5)0.0963 (6)0.0837 (6)0.0304 (4)0.0457 (4)0.0451 (5)
O10.0609 (11)0.0550 (11)0.0805 (13)0.0130 (9)0.0376 (10)0.0213 (9)
O20.0495 (10)0.0516 (10)0.0591 (11)0.0152 (8)0.0249 (9)0.0124 (8)
N10.0446 (12)0.0464 (11)0.0511 (12)0.0133 (9)0.0180 (10)0.0116 (10)
C10.0446 (13)0.0359 (12)0.0364 (13)0.0055 (10)0.0131 (10)0.0019 (10)
C20.0448 (13)0.0401 (13)0.0433 (13)0.0031 (11)0.0137 (11)0.0050 (11)
C30.0596 (16)0.0406 (13)0.0448 (14)0.0038 (12)0.0162 (12)0.0050 (11)
C40.0631 (17)0.0431 (14)0.0490 (15)0.0180 (12)0.0124 (13)0.0002 (12)
C50.0598 (16)0.0600 (16)0.0560 (16)0.0212 (13)0.0269 (13)0.0061 (13)
C60.0589 (16)0.0516 (15)0.0481 (15)0.0113 (13)0.0243 (12)0.0067 (12)
C70.0425 (13)0.0409 (13)0.0439 (13)0.0037 (10)0.0148 (11)0.0049 (11)
C80.0422 (13)0.0374 (12)0.0387 (12)0.0049 (10)0.0123 (10)0.0002 (11)
C90.0385 (13)0.0410 (13)0.0394 (13)0.0029 (11)0.0087 (11)0.0007 (11)
C100.0483 (14)0.0550 (15)0.0468 (15)0.0131 (12)0.0146 (12)0.0081 (12)
O110.082 (7)0.067 (2)0.049 (5)0.007 (2)0.022 (5)0.0010 (19)
C110.16 (3)0.063 (3)0.15 (3)0.004 (7)0.10 (2)0.002 (8)
Geometric parameters (Å, º) top
S1—C81.745 (2)C2—C31.378 (3)
S1—C101.744 (3)C3—C41.365 (4)
S2—C101.622 (3)C4—C51.375 (4)
O1—C21.356 (3)C5—C61.372 (4)
O2—C91.219 (3)C7—C81.340 (3)
O1—H1O0.8200C8—C91.466 (3)
O11—C111.45 (2)C3—H30.9300
O11—H110.84 (3)C4—H40.9300
N1—C91.373 (3)C5—H50.9300
N1—C101.357 (3)C6—H60.9300
N1—H1N0.8600C7—H70.9300
C1—C71.443 (3)C11—H11A0.96 (6)
C1—C21.402 (3)C11—H11B0.97 (9)
C1—C61.395 (4)C11—H11C0.95 (8)
C8—S1—C1092.67 (11)O2—C9—C8126.50 (19)
C2—O1—H1O109.00O2—C9—N1123.54 (19)
C11—O11—H11104 (4)S1—C10—S2124.08 (16)
C9—N1—C10118.3 (2)S2—C10—N1126.4 (2)
C10—N1—H1N121.00S1—C10—N1109.52 (17)
C9—N1—H1N121.00C4—C3—H3120.00
C2—C1—C7118.7 (2)C2—C3—H3120.00
C2—C1—C6117.4 (2)C3—C4—H4120.00
C6—C1—C7123.9 (2)C5—C4—H4120.00
O1—C2—C3122.6 (2)C6—C5—H5120.00
O1—C2—C1116.96 (19)C4—C5—H5120.00
C1—C2—C3120.4 (2)C1—C6—H6119.00
C2—C3—C4120.5 (2)C5—C6—H6119.00
C3—C4—C5120.6 (2)C1—C7—H7115.00
C4—C5—C6119.3 (3)C8—C7—H7115.00
C1—C6—C5121.8 (2)O11—C11—H11A123 (6)
C1—C7—C8130.9 (2)O11—C11—H11B113 (6)
S1—C8—C9109.51 (15)O11—C11—H11C123 (6)
C7—C8—C9120.2 (2)H11A—C11—H11B98 (8)
S1—C8—C7130.34 (18)H11A—C11—H11C98 (7)
N1—C9—C8109.96 (19)H11B—C11—H11C97 (8)
C10—S1—C8—C7179.8 (2)C2—C1—C7—C8170.5 (2)
C10—S1—C8—C90.0 (2)C6—C1—C7—C810.7 (4)
C8—S1—C10—S2179.12 (17)O1—C2—C3—C4179.1 (2)
C8—S1—C10—N10.05 (18)C1—C2—C3—C40.5 (3)
C10—N1—C9—O2179.9 (2)C2—C3—C4—C51.2 (4)
C10—N1—C9—C80.1 (3)C3—C4—C5—C60.8 (4)
C9—N1—C10—S10.1 (3)C4—C5—C6—C10.1 (4)
C9—N1—C10—S2179.14 (18)C1—C7—C8—S12.0 (4)
C6—C1—C2—O1180.0 (2)C1—C7—C8—C9178.2 (2)
C6—C1—C2—C30.4 (3)S1—C8—C9—O2179.96 (19)
C7—C1—C2—O11.1 (3)S1—C8—C9—N10.1 (2)
C7—C1—C2—C3179.3 (2)C7—C8—C9—O20.1 (3)
C2—C1—C6—C50.7 (3)C7—C8—C9—N1179.90 (19)
C7—C1—C6—C5179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.861.952.811 (2)173
O1—H1O···O11ii0.821.952.735 (7)159
O1—H1O···O11iii0.822.062.871 (7)169
O11—H11···S2i0.84 (3)2.80 (5)3.317 (8)122 (4)
C6—H6···S10.932.573.264 (3)132
C4—H4···Cg2iv0.932.813.599 (3)143
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x, y1, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H7NO2S2·0.5CH4O
Mr253.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.4859 (16), 6.4422 (4), 18.4377 (15)
β (°) 108.724 (4)
V3)2304.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.28 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.925, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
11803, 2636, 1562
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.101, 1.03
No. of reflections2636
No. of parameters167
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.861.952.811 (2)173
O1—H1O···O11ii0.821.952.735 (7)159
O1—H1O···O11iii0.822.062.871 (7)169
O11—H11···S2i0.84 (3)2.80 (5)3.317 (8)122 (4)
C6—H6···S10.932.573.264 (3)132
C4—H4···Cg2iv0.932.813.599 (3)143
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x, y1, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

MAR greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–111212-PS2–200).

References

First citationBarreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des. 7, 1964–1973.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o382–o385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds