organic compounds
(5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol monosolvate
aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the title compound, C11H9NO3S2·CH4O, the dihedral angle between the aromatic rings is 3.57 (16)° and intramolecular O—H⋯O and C—H⋯S interactions occur. In the crystal, the thiazolidin-4-one molecules are linked by N—H⋯O hydrogen bonds, forming chains. The hydrogen-bond motifs lead to S(5), S(6) and R33(8) ring motifs. There exist C=O⋯π interactions between the heterocyclic rings and π–π interactions between the heterocyclic and benzene rings at distances of 3.455 (2) and 3.602 (2) Å, respectively. The methanol solvent molecule is disordered over two sets of sites in a 0.542 (9):0.458 (9) ratio.
Related literature
For related structures, see: Barreiro et al. (2007); Shahwar et al. (2009). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
https://doi.org/10.1107/S1600536809039567/hb5118sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809039567/hb5118Isup2.hkl
Rhodanine (0.266 g, 0.2 mol), 4-hydroxy-3-methoxybenzaldehyde (0.304 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with
of NaCl. The crude material obtained was recrystalized in methanol to affoard dark brown needles of (I).The coordinates of H1 and H4A attached with O1 and O4A respectively, were refined.
The H-atoms were positioned geometrically with O–H = 0.82, N–H = 0.86, C–H = 0.93 and 0.96 Å for aromatic like and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl and x = 1.2 for all other H atoms.
We have recently reported the
of (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one - methanol (1:0.5) (Shahwar et al., 2009). In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported.The
of (II) 5-(4-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) has been published. The title compound (I) differs from (II) due to attachment of methoxy group adjacent to the hydroxy group and due to solvate i.e methanol instead of dimethylsulfoxide.In the title molecule there exist interamolecular H-bondings of O—H···O, C—H···O and S—H···O types (Table 1, Fig. 1) forming two S(5) and one S(6) ring motif (Bernstein et al., 1995). The role of disordered methanol solvate is to interlink the molecules through O—H···O type of H-bondings forming R33(8) ring motifs (Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains. There exist π–π interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between the centroids Cg1 → Cg2 is 3.455 (2) Å due to symmetry (x, y, ∓1 + z) and for Cg2 → Cg1 is 3.602 (2) Å due to symmetry (1/2 - x, ∓1/2 + y, ∓1/2 + z), respectively. The molecules may also be stabilized due C==O···π interaction (Table 1). The methanol molecule is disordered over two sites with an occupancy ratio of 0.542 (9):0.458 (9).
For related structures, see: Barreiro et al. (2007); Shahwar et al. (2009). For graph-set notation, see: Bernstein et al. (1995). Cg2 is the centroid of the C1–C6 benzene ring.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted line represent the intramolecular H-bond. | |
Fig. 2. The partial packing of (I), which shows that molecules form polymeric chains. |
C11H9NO3S2·CH4O | F(000) = 624 |
Mr = 299.35 | Dx = 1.452 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2472 reflections |
a = 17.731 (2) Å | θ = 2.9–27.1° |
b = 11.7528 (14) Å | µ = 0.40 mm−1 |
c = 6.5715 (6) Å | T = 296 K |
V = 1369.4 (3) Å3 | Cut needle, dark brown |
Z = 4 | 0.26 × 0.13 × 0.12 mm |
Bruker Kappa APEXII CCD diffractometer | 2472 independent reflections |
Radiation source: fine-focus sealed tube | 1807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 7.50 pixels mm-1 | θmax = 27.1°, θmin = 2.9° |
ω scans | h = −22→22 |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | k = −13→15 |
Tmin = 0.942, Tmax = 0.955 | l = −5→8 |
7574 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0145P)2 + 0.2762P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2472 reflections | Δρmax = 0.17 e Å−3 |
185 parameters | Δρmin = −0.21 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 829 Friedal Pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (8) |
C11H9NO3S2·CH4O | V = 1369.4 (3) Å3 |
Mr = 299.35 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 17.731 (2) Å | µ = 0.40 mm−1 |
b = 11.7528 (14) Å | T = 296 K |
c = 6.5715 (6) Å | 0.26 × 0.13 × 0.12 mm |
Bruker Kappa APEXII CCD diffractometer | 2472 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1807 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.955 | Rint = 0.045 |
7574 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | Δρmax = 0.17 e Å−3 |
S = 1.02 | Δρmin = −0.21 e Å−3 |
2472 reflections | Absolute structure: Flack (1983), 829 Friedal Pairs |
185 parameters | Absolute structure parameter: 0.01 (8) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.36194 (4) | 0.02090 (7) | 0.57918 (14) | 0.0440 (3) | |
S2 | 0.41466 (5) | −0.10304 (9) | 0.20833 (15) | 0.0609 (4) | |
O1 | 0.30380 (12) | 0.3234 (2) | 1.4811 (3) | 0.0514 (9) | |
O2 | 0.41511 (11) | 0.2575 (2) | 1.2416 (3) | 0.0540 (9) | |
O3 | 0.15476 (12) | −0.0232 (2) | 0.4387 (3) | 0.0531 (9) | |
N1 | 0.27209 (14) | −0.0654 (2) | 0.3174 (4) | 0.0403 (9) | |
C1 | 0.25139 (18) | 0.1479 (3) | 0.9536 (4) | 0.0352 (10) | |
C2 | 0.32661 (18) | 0.1714 (3) | 1.0013 (5) | 0.0383 (11) | |
C3 | 0.34462 (16) | 0.2296 (3) | 1.1767 (5) | 0.0377 (11) | |
C4 | 0.28684 (17) | 0.2662 (3) | 1.3082 (4) | 0.0373 (11) | |
C5 | 0.21274 (17) | 0.2455 (3) | 1.2609 (5) | 0.0412 (11) | |
C6 | 0.19503 (16) | 0.1858 (3) | 1.0864 (5) | 0.0411 (11) | |
C7 | 0.22722 (18) | 0.0873 (3) | 0.7745 (5) | 0.0410 (11) | |
C8 | 0.26494 (16) | 0.0363 (3) | 0.6206 (4) | 0.0376 (11) | |
C9 | 0.22317 (17) | −0.0188 (3) | 0.4558 (5) | 0.0405 (11) | |
C10 | 0.34766 (17) | −0.0547 (3) | 0.3526 (5) | 0.0392 (11) | |
C11 | 0.47733 (18) | 0.2154 (4) | 1.1321 (6) | 0.0780 (18) | |
O4A | 0.4252 (3) | 0.4356 (7) | 0.5888 (10) | 0.078 (3) | 0.542 (9) |
C12A | 0.5055 (2) | 0.4123 (5) | 0.6066 (13) | 0.096 (2) | 0.542 (9) |
O4B | 0.4343 (2) | 0.3568 (4) | 0.6677 (9) | 0.059 (3) | 0.458 (9) |
C12B | 0.4913 (2) | 0.4044 (4) | 0.6141 (9) | 0.096 (2) | 0.458 (9) |
H1 | 0.3525 (17) | 0.334 (3) | 1.499 (5) | 0.0617* | |
H1N | 0.25564 | −0.10029 | 0.21132 | 0.0483* | |
H2 | 0.36478 | 0.14769 | 0.91393 | 0.0460* | |
H5 | 0.17457 | 0.27152 | 1.34604 | 0.0495* | |
H6 | 0.14477 | 0.17047 | 1.05653 | 0.0492* | |
H7 | 0.17507 | 0.08219 | 0.76231 | 0.0494* | |
H11A | 0.47613 | 0.13375 | 1.13217 | 0.1166* | |
H11B | 0.52316 | 0.24114 | 1.19480 | 0.1166* | |
H11C | 0.47516 | 0.24266 | 0.99447 | 0.1166* | |
H4A | 0.401 (4) | 0.449 (6) | 0.717 (13) | 0.0935* | 0.542 (9) |
H12C | 0.51734 | 0.39385 | 0.74524 | 0.1441* | 0.542 (9) |
H12A | 0.53358 | 0.47831 | 0.56588 | 0.1441* | 0.542 (9) |
H12B | 0.51849 | 0.34937 | 0.52036 | 0.1441* | 0.542 (9) |
H4B | 0.40848 | 0.40061 | 0.73547 | 0.0709* | 0.458 (9) |
H12D | 0.50918 | 0.45230 | 0.72210 | 0.1441* | 0.458 (9) |
H12E | 0.48086 | 0.44993 | 0.49615 | 0.1441* | 0.458 (9) |
H12F | 0.52902 | 0.34877 | 0.58154 | 0.1441* | 0.458 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0445 (4) | 0.0523 (5) | 0.0353 (4) | 0.0038 (4) | −0.0056 (4) | −0.0094 (5) |
S2 | 0.0552 (5) | 0.0804 (8) | 0.0472 (5) | 0.0164 (5) | 0.0008 (5) | −0.0137 (6) |
O1 | 0.0444 (14) | 0.0726 (19) | 0.0372 (13) | 0.0026 (13) | 0.0019 (11) | −0.0231 (12) |
O2 | 0.0383 (13) | 0.0796 (17) | 0.0442 (14) | −0.0046 (12) | 0.0060 (11) | −0.0230 (13) |
O3 | 0.0435 (13) | 0.0691 (18) | 0.0467 (14) | 0.0004 (12) | −0.0084 (11) | −0.0146 (13) |
N1 | 0.0527 (17) | 0.0388 (18) | 0.0293 (14) | 0.0048 (14) | −0.0049 (12) | −0.0101 (13) |
C1 | 0.0417 (17) | 0.0343 (19) | 0.0295 (17) | 0.0022 (14) | 0.0031 (14) | −0.0013 (14) |
C2 | 0.0442 (19) | 0.041 (2) | 0.0297 (17) | 0.0029 (16) | 0.0060 (14) | −0.0062 (16) |
C3 | 0.0389 (17) | 0.040 (2) | 0.0341 (19) | 0.0002 (15) | 0.0035 (15) | −0.0030 (17) |
C4 | 0.047 (2) | 0.037 (2) | 0.0278 (18) | 0.0023 (15) | 0.0007 (15) | −0.0093 (16) |
C5 | 0.0414 (19) | 0.051 (2) | 0.0313 (18) | 0.0070 (17) | 0.0024 (15) | −0.0069 (16) |
C6 | 0.0372 (17) | 0.045 (2) | 0.0410 (18) | 0.0037 (14) | −0.0008 (18) | −0.001 (2) |
C7 | 0.0437 (18) | 0.041 (2) | 0.0383 (19) | 0.0002 (16) | −0.0016 (15) | 0.0005 (17) |
C8 | 0.0464 (17) | 0.039 (2) | 0.0275 (19) | 0.0024 (14) | −0.0081 (14) | −0.0034 (15) |
C9 | 0.048 (2) | 0.037 (2) | 0.0364 (18) | 0.0040 (17) | −0.0041 (16) | −0.0005 (16) |
C10 | 0.047 (2) | 0.038 (2) | 0.0327 (18) | 0.0049 (15) | −0.0088 (15) | −0.0018 (15) |
C11 | 0.044 (2) | 0.113 (4) | 0.077 (3) | −0.005 (2) | 0.0177 (18) | −0.026 (3) |
O4A | 0.048 (3) | 0.119 (6) | 0.067 (4) | 0.004 (3) | 0.005 (3) | −0.039 (5) |
C12A | 0.064 (3) | 0.131 (5) | 0.093 (4) | −0.008 (3) | 0.011 (3) | −0.019 (4) |
O4B | 0.043 (3) | 0.079 (6) | 0.055 (4) | −0.001 (3) | 0.006 (3) | −0.020 (4) |
C12B | 0.064 (3) | 0.131 (5) | 0.093 (4) | −0.008 (3) | 0.011 (3) | −0.019 (4) |
S1—C8 | 1.751 (3) | C3—C4 | 1.408 (4) |
S1—C10 | 1.752 (3) | C4—C5 | 1.372 (4) |
S2—C10 | 1.623 (3) | C5—C6 | 1.381 (5) |
O1—C4 | 1.354 (4) | C7—C8 | 1.353 (4) |
O2—C3 | 1.361 (4) | C8—C9 | 1.463 (4) |
O2—C11 | 1.407 (4) | C2—H2 | 0.9300 |
O3—C9 | 1.219 (4) | C5—H5 | 0.9300 |
O1—H1 | 0.88 (3) | C6—H6 | 0.9300 |
O4A—C12A | 1.455 (7) | C7—H7 | 0.9300 |
O4B—C12B | 1.208 (6) | C11—H11A | 0.9600 |
O4A—H4A | 0.96 (8) | C11—H11B | 0.9600 |
O4B—H4B | 0.8200 | C11—H11C | 0.9600 |
N1—C10 | 1.366 (4) | C12A—H12B | 0.9600 |
N1—C9 | 1.371 (4) | C12A—H12C | 0.9600 |
N1—H1N | 0.8600 | C12A—H12A | 0.9600 |
C1—C2 | 1.398 (5) | C12B—H12D | 0.9600 |
C1—C7 | 1.441 (4) | C12B—H12E | 0.9600 |
C1—C6 | 1.400 (4) | C12B—H12F | 0.9600 |
C2—C3 | 1.378 (5) | ||
C8—S1—C10 | 92.44 (14) | S2—C10—N1 | 126.0 (3) |
C3—O2—C11 | 118.4 (3) | S1—C10—S2 | 124.63 (19) |
C4—O1—H1 | 114 (2) | C3—C2—H2 | 120.00 |
C12A—O4A—H4A | 114 (4) | C1—C2—H2 | 120.00 |
C12B—O4B—H4B | 110.00 | C4—C5—H5 | 120.00 |
C9—N1—C10 | 118.1 (3) | C6—C5—H5 | 120.00 |
C10—N1—H1N | 121.00 | C5—C6—H6 | 119.00 |
C9—N1—H1N | 121.00 | C1—C6—H6 | 119.00 |
C2—C1—C7 | 124.4 (3) | C8—C7—H7 | 113.00 |
C2—C1—C6 | 118.6 (3) | C1—C7—H7 | 113.00 |
C6—C1—C7 | 117.0 (3) | O2—C11—H11C | 109.00 |
C1—C2—C3 | 120.5 (3) | O2—C11—H11A | 110.00 |
O2—C3—C4 | 113.7 (3) | O2—C11—H11B | 109.00 |
O2—C3—C2 | 126.5 (3) | H11B—C11—H11C | 109.00 |
C2—C3—C4 | 119.8 (3) | H11A—C11—H11B | 109.00 |
O1—C4—C5 | 119.4 (3) | H11A—C11—H11C | 109.00 |
C3—C4—C5 | 120.3 (3) | O4A—C12A—H12B | 109.00 |
O1—C4—C3 | 120.4 (3) | O4A—C12A—H12C | 109.00 |
C4—C5—C6 | 119.8 (3) | O4A—C12A—H12A | 109.00 |
C1—C6—C5 | 121.2 (3) | H12A—C12A—H12C | 109.00 |
C1—C7—C8 | 133.1 (3) | H12B—C12A—H12C | 110.00 |
S1—C8—C9 | 109.7 (2) | H12A—C12A—H12B | 109.00 |
S1—C8—C7 | 130.4 (2) | O4B—C12B—H12D | 109.00 |
C7—C8—C9 | 120.0 (3) | O4B—C12B—H12E | 109.00 |
O3—C9—C8 | 126.2 (3) | O4B—C12B—H12F | 109.00 |
N1—C9—C8 | 110.3 (3) | H12D—C12B—H12E | 110.00 |
O3—C9—N1 | 123.5 (3) | H12D—C12B—H12F | 110.00 |
S1—C10—N1 | 109.4 (2) | H12E—C12B—H12F | 110.00 |
C10—S1—C8—C7 | 179.4 (4) | C1—C2—C3—O2 | 179.7 (3) |
C10—S1—C8—C9 | 0.3 (3) | C1—C2—C3—C4 | −0.4 (5) |
C8—S1—C10—S2 | 179.6 (3) | O2—C3—C4—O1 | −0.1 (5) |
C8—S1—C10—N1 | −0.1 (3) | O2—C3—C4—C5 | 179.1 (3) |
C11—O2—C3—C2 | −6.2 (5) | C2—C3—C4—O1 | 180.0 (3) |
C11—O2—C3—C4 | 173.9 (3) | C2—C3—C4—C5 | −0.9 (5) |
C10—N1—C9—O3 | 179.8 (3) | O1—C4—C5—C6 | −179.1 (3) |
C10—N1—C9—C8 | 0.4 (4) | C3—C4—C5—C6 | 1.8 (5) |
C9—N1—C10—S1 | −0.2 (4) | C4—C5—C6—C1 | −1.4 (5) |
C9—N1—C10—S2 | −179.8 (3) | C1—C7—C8—S1 | 1.4 (6) |
C6—C1—C2—C3 | 0.7 (5) | C1—C7—C8—C9 | −179.5 (4) |
C7—C1—C2—C3 | −179.7 (3) | S1—C8—C9—O3 | −179.8 (3) |
C2—C1—C6—C5 | 0.2 (5) | S1—C8—C9—N1 | −0.4 (3) |
C7—C1—C6—C5 | −179.4 (3) | C7—C8—C9—O3 | 1.0 (5) |
C2—C1—C7—C8 | 3.1 (6) | C7—C8—C9—N1 | −179.6 (3) |
C6—C1—C7—C8 | −177.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.88 (3) | 2.21 (3) | 2.641 (3) | 109 (3) |
C2—H2···S1 | 0.93 | 2.66 | 3.349 (3) | 132 |
O1—H1···O4Ai | 0.88 (3) | 1.85 (3) | 2.622 (7) | 145 (3) |
N1—H1N···O1ii | 0.86 | 2.05 | 2.899 (3) | 169 |
O4A—H4A···O3iii | 0.96 (8) | 1.79 (8) | 2.744 (7) | 173 (7) |
C12A—H12A···O3iv | 0.96 | 2.37 | 3.150 (5) | 139 |
Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y−1/2, z−3/2; (iii) −x+1/2, y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C11H9NO3S2·CH4O |
Mr | 299.35 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 17.731 (2), 11.7528 (14), 6.5715 (6) |
V (Å3) | 1369.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.26 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.942, 0.955 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7574, 2472, 1807 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.640 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.070, 1.02 |
No. of reflections | 2472 |
No. of parameters | 185 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.21 |
Absolute structure | Flack (1983), 829 Friedal Pairs |
Absolute structure parameter | 0.01 (8) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.88 (3) | 2.21 (3) | 2.641 (3) | 109 (3) |
C2—H2···S1 | 0.93 | 2.66 | 3.349 (3) | 132 |
O1—H1···O4Ai | 0.88 (3) | 1.85 (3) | 2.622 (7) | 145 (3) |
N1—H1N···O1ii | 0.86 | 2.05 | 2.899 (3) | 169 |
O4A—H4A···O3iii | 0.96 (8) | 1.79 (8) | 2.744 (7) | 173 (7) |
C12A—H12A···O3iv | 0.96 | 2.37 | 3.150 (5) | 139 |
Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y−1/2, z−3/2; (iii) −x+1/2, y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z. |
Acknowledgements
MAR greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–111212-PS2–200).
References
Barreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des. 7, 1964–1973. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009). Acta Cryst. E65, o2637. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have recently reported the crystal structure of (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one - methanol (1:0.5) (Shahwar et al., 2009). In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported.
The crystal structure of (II) 5-(4-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) has been published. The title compound (I) differs from (II) due to attachment of methoxy group adjacent to the hydroxy group and due to solvate i.e methanol instead of dimethylsulfoxide.
In the title molecule there exist interamolecular H-bondings of O—H···O, C—H···O and S—H···O types (Table 1, Fig. 1) forming two S(5) and one S(6) ring motif (Bernstein et al., 1995). The role of disordered methanol solvate is to interlink the molecules through O—H···O type of H-bondings forming R33(8) ring motifs (Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains. There exist π–π interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between the centroids Cg1 → Cg2 is 3.455 (2) Å due to symmetry (x, y, ∓1 + z) and for Cg2 → Cg1 is 3.602 (2) Å due to symmetry (1/2 - x, ∓1/2 + y, ∓1/2 + z), respectively. The molecules may also be stabilized due C==O···π interaction (Table 1). The methanol molecule is disordered over two sites with an occupancy ratio of 0.542 (9):0.458 (9).