organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5E)-5-(4-Hydr­­oxy-3-meth­oxy­benzyl­­idene)-2-thioxo-1,3-thia­zolidin-4-one methanol monosolvate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 24 September 2009; accepted 29 September 2009; online 3 October 2009)

In the title compound, C11H9NO3S2·CH4O, the dihedral angle between the aromatic rings is 3.57 (16)° and intra­molecular O—H⋯O and C—H⋯S inter­actions occur. In the crystal, the thia­zolidin-4-one mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains. The hydrogen-bond motifs lead to S(5), S(6) and R33(8) ring motifs. There exist C=O⋯π inter­actions between the heterocyclic rings and ππ inter­actions between the heterocyclic and benzene rings at distances of 3.455 (2) and 3.602 (2) Å, respectively. The methanol solvent mol­ecule is disordered over two sets of sites in a 0.542 (9):0.458 (9) ratio.

Related literature

For related structures, see: Barreiro et al. (2007[Barreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des. 7, 1964-1973.]); Shahwar et al. (2009[Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009). Acta Cryst. E65, o2637.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO3S2·CH4O

  • Mr = 299.35

  • Orthorhombic, P n a 21

  • a = 17.731 (2) Å

  • b = 11.7528 (14) Å

  • c = 6.5715 (6) Å

  • V = 1369.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.26 × 0.13 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.955

  • 7574 measured reflections

  • 2472 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.070

  • S = 1.02

  • 2472 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 829 Friedal Pairs

  • Flack parameter: 0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.88 (3) 2.21 (3) 2.641 (3) 109 (3)
C2—H2⋯S1 0.93 2.66 3.349 (3) 132
O1—H1⋯O4Ai 0.88 (3) 1.85 (3) 2.622 (7) 145 (3)
N1—H1N⋯O1ii 0.86 2.05 2.899 (3) 169
O4A—H4A⋯O3iii 0.96 (8) 1.79 (8) 2.744 (7) 173 (7)
C12A—H12A⋯O3iv 0.96 2.37 3.150 (5) 139
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]. Cg2 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have recently reported the crystal structure of (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one - methanol (1:0.5) (Shahwar et al., 2009). In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported.

The crystal structure of (II) 5-(4-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) has been published. The title compound (I) differs from (II) due to attachment of methoxy group adjacent to the hydroxy group and due to solvate i.e methanol instead of dimethylsulfoxide.

In the title molecule there exist interamolecular H-bondings of O—H···O, C—H···O and S—H···O types (Table 1, Fig. 1) forming two S(5) and one S(6) ring motif (Bernstein et al., 1995). The role of disordered methanol solvate is to interlink the molecules through O—H···O type of H-bondings forming R33(8) ring motifs (Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains. There exist ππ interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between the centroids Cg1 Cg2 is 3.455 (2) Å due to symmetry (x, y, 1 + z) and for Cg2 Cg1 is 3.602 (2) Å due to symmetry (1/2 - x, 1/2 + y, 1/2 + z), respectively. The molecules may also be stabilized due C==O···π interaction (Table 1). The methanol molecule is disordered over two sites with an occupancy ratio of 0.542 (9):0.458 (9).

Related literature top

For related structures, see: Barreiro et al. (2007); Shahwar et al. (2009). For graph-set notation, see: Bernstein et al. (1995). Cg2 is the centroid of the C1–C6 benzene ring.

Experimental top

Rhodanine (0.266 g, 0.2 mol), 4-hydroxy-3-methoxybenzaldehyde (0.304 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in methanol to affoard dark brown needles of (I).

Refinement top

The coordinates of H1 and H4A attached with O1 and O4A respectively, were refined.

The H-atoms were positioned geometrically with O–H = 0.82, N–H = 0.86, C–H = 0.93 and 0.96 Å for aromatic like and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Structure description top

We have recently reported the crystal structure of (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one - methanol (1:0.5) (Shahwar et al., 2009). In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported.

The crystal structure of (II) 5-(4-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) has been published. The title compound (I) differs from (II) due to attachment of methoxy group adjacent to the hydroxy group and due to solvate i.e methanol instead of dimethylsulfoxide.

In the title molecule there exist interamolecular H-bondings of O—H···O, C—H···O and S—H···O types (Table 1, Fig. 1) forming two S(5) and one S(6) ring motif (Bernstein et al., 1995). The role of disordered methanol solvate is to interlink the molecules through O—H···O type of H-bondings forming R33(8) ring motifs (Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains. There exist ππ interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between the centroids Cg1 Cg2 is 3.455 (2) Å due to symmetry (x, y, 1 + z) and for Cg2 Cg1 is 3.602 (2) Å due to symmetry (1/2 - x, 1/2 + y, 1/2 + z), respectively. The molecules may also be stabilized due C==O···π interaction (Table 1). The methanol molecule is disordered over two sites with an occupancy ratio of 0.542 (9):0.458 (9).

For related structures, see: Barreiro et al. (2007); Shahwar et al. (2009). For graph-set notation, see: Bernstein et al. (1995). Cg2 is the centroid of the C1–C6 benzene ring.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted line represent the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form polymeric chains.
(5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol monosolvate top
Crystal data top
C11H9NO3S2·CH4OF(000) = 624
Mr = 299.35Dx = 1.452 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2472 reflections
a = 17.731 (2) Åθ = 2.9–27.1°
b = 11.7528 (14) ŵ = 0.40 mm1
c = 6.5715 (6) ÅT = 296 K
V = 1369.4 (3) Å3Cut needle, dark brown
Z = 40.26 × 0.13 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2472 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 7.50 pixels mm-1θmax = 27.1°, θmin = 2.9°
ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1315
Tmin = 0.942, Tmax = 0.955l = 58
7574 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0145P)2 + 0.2762P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2472 reflectionsΔρmax = 0.17 e Å3
185 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 829 Friedal Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C11H9NO3S2·CH4OV = 1369.4 (3) Å3
Mr = 299.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.731 (2) ŵ = 0.40 mm1
b = 11.7528 (14) ÅT = 296 K
c = 6.5715 (6) Å0.26 × 0.13 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1807 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.955Rint = 0.045
7574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.21 e Å3
2472 reflectionsAbsolute structure: Flack (1983), 829 Friedal Pairs
185 parametersAbsolute structure parameter: 0.01 (8)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.36194 (4)0.02090 (7)0.57918 (14)0.0440 (3)
S20.41466 (5)0.10304 (9)0.20833 (15)0.0609 (4)
O10.30380 (12)0.3234 (2)1.4811 (3)0.0514 (9)
O20.41511 (11)0.2575 (2)1.2416 (3)0.0540 (9)
O30.15476 (12)0.0232 (2)0.4387 (3)0.0531 (9)
N10.27209 (14)0.0654 (2)0.3174 (4)0.0403 (9)
C10.25139 (18)0.1479 (3)0.9536 (4)0.0352 (10)
C20.32661 (18)0.1714 (3)1.0013 (5)0.0383 (11)
C30.34462 (16)0.2296 (3)1.1767 (5)0.0377 (11)
C40.28684 (17)0.2662 (3)1.3082 (4)0.0373 (11)
C50.21274 (17)0.2455 (3)1.2609 (5)0.0412 (11)
C60.19503 (16)0.1858 (3)1.0864 (5)0.0411 (11)
C70.22722 (18)0.0873 (3)0.7745 (5)0.0410 (11)
C80.26494 (16)0.0363 (3)0.6206 (4)0.0376 (11)
C90.22317 (17)0.0188 (3)0.4558 (5)0.0405 (11)
C100.34766 (17)0.0547 (3)0.3526 (5)0.0392 (11)
C110.47733 (18)0.2154 (4)1.1321 (6)0.0780 (18)
O4A0.4252 (3)0.4356 (7)0.5888 (10)0.078 (3)0.542 (9)
C12A0.5055 (2)0.4123 (5)0.6066 (13)0.096 (2)0.542 (9)
O4B0.4343 (2)0.3568 (4)0.6677 (9)0.059 (3)0.458 (9)
C12B0.4913 (2)0.4044 (4)0.6141 (9)0.096 (2)0.458 (9)
H10.3525 (17)0.334 (3)1.499 (5)0.0617*
H1N0.255640.100290.211320.0483*
H20.364780.147690.913930.0460*
H50.174570.271521.346040.0495*
H60.144770.170471.056530.0492*
H70.175070.082190.762310.0494*
H11A0.476130.133751.132170.1166*
H11B0.523160.241141.194800.1166*
H11C0.475160.242660.994470.1166*
H4A0.401 (4)0.449 (6)0.717 (13)0.0935*0.542 (9)
H12C0.517340.393850.745240.1441*0.542 (9)
H12A0.533580.478310.565880.1441*0.542 (9)
H12B0.518490.349370.520360.1441*0.542 (9)
H4B0.408480.400610.735470.0709*0.458 (9)
H12D0.509180.452300.722100.1441*0.458 (9)
H12E0.480860.449930.496150.1441*0.458 (9)
H12F0.529020.348770.581540.1441*0.458 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (4)0.0523 (5)0.0353 (4)0.0038 (4)0.0056 (4)0.0094 (5)
S20.0552 (5)0.0804 (8)0.0472 (5)0.0164 (5)0.0008 (5)0.0137 (6)
O10.0444 (14)0.0726 (19)0.0372 (13)0.0026 (13)0.0019 (11)0.0231 (12)
O20.0383 (13)0.0796 (17)0.0442 (14)0.0046 (12)0.0060 (11)0.0230 (13)
O30.0435 (13)0.0691 (18)0.0467 (14)0.0004 (12)0.0084 (11)0.0146 (13)
N10.0527 (17)0.0388 (18)0.0293 (14)0.0048 (14)0.0049 (12)0.0101 (13)
C10.0417 (17)0.0343 (19)0.0295 (17)0.0022 (14)0.0031 (14)0.0013 (14)
C20.0442 (19)0.041 (2)0.0297 (17)0.0029 (16)0.0060 (14)0.0062 (16)
C30.0389 (17)0.040 (2)0.0341 (19)0.0002 (15)0.0035 (15)0.0030 (17)
C40.047 (2)0.037 (2)0.0278 (18)0.0023 (15)0.0007 (15)0.0093 (16)
C50.0414 (19)0.051 (2)0.0313 (18)0.0070 (17)0.0024 (15)0.0069 (16)
C60.0372 (17)0.045 (2)0.0410 (18)0.0037 (14)0.0008 (18)0.001 (2)
C70.0437 (18)0.041 (2)0.0383 (19)0.0002 (16)0.0016 (15)0.0005 (17)
C80.0464 (17)0.039 (2)0.0275 (19)0.0024 (14)0.0081 (14)0.0034 (15)
C90.048 (2)0.037 (2)0.0364 (18)0.0040 (17)0.0041 (16)0.0005 (16)
C100.047 (2)0.038 (2)0.0327 (18)0.0049 (15)0.0088 (15)0.0018 (15)
C110.044 (2)0.113 (4)0.077 (3)0.005 (2)0.0177 (18)0.026 (3)
O4A0.048 (3)0.119 (6)0.067 (4)0.004 (3)0.005 (3)0.039 (5)
C12A0.064 (3)0.131 (5)0.093 (4)0.008 (3)0.011 (3)0.019 (4)
O4B0.043 (3)0.079 (6)0.055 (4)0.001 (3)0.006 (3)0.020 (4)
C12B0.064 (3)0.131 (5)0.093 (4)0.008 (3)0.011 (3)0.019 (4)
Geometric parameters (Å, º) top
S1—C81.751 (3)C3—C41.408 (4)
S1—C101.752 (3)C4—C51.372 (4)
S2—C101.623 (3)C5—C61.381 (5)
O1—C41.354 (4)C7—C81.353 (4)
O2—C31.361 (4)C8—C91.463 (4)
O2—C111.407 (4)C2—H20.9300
O3—C91.219 (4)C5—H50.9300
O1—H10.88 (3)C6—H60.9300
O4A—C12A1.455 (7)C7—H70.9300
O4B—C12B1.208 (6)C11—H11A0.9600
O4A—H4A0.96 (8)C11—H11B0.9600
O4B—H4B0.8200C11—H11C0.9600
N1—C101.366 (4)C12A—H12B0.9600
N1—C91.371 (4)C12A—H12C0.9600
N1—H1N0.8600C12A—H12A0.9600
C1—C21.398 (5)C12B—H12D0.9600
C1—C71.441 (4)C12B—H12E0.9600
C1—C61.400 (4)C12B—H12F0.9600
C2—C31.378 (5)
C8—S1—C1092.44 (14)S2—C10—N1126.0 (3)
C3—O2—C11118.4 (3)S1—C10—S2124.63 (19)
C4—O1—H1114 (2)C3—C2—H2120.00
C12A—O4A—H4A114 (4)C1—C2—H2120.00
C12B—O4B—H4B110.00C4—C5—H5120.00
C9—N1—C10118.1 (3)C6—C5—H5120.00
C10—N1—H1N121.00C5—C6—H6119.00
C9—N1—H1N121.00C1—C6—H6119.00
C2—C1—C7124.4 (3)C8—C7—H7113.00
C2—C1—C6118.6 (3)C1—C7—H7113.00
C6—C1—C7117.0 (3)O2—C11—H11C109.00
C1—C2—C3120.5 (3)O2—C11—H11A110.00
O2—C3—C4113.7 (3)O2—C11—H11B109.00
O2—C3—C2126.5 (3)H11B—C11—H11C109.00
C2—C3—C4119.8 (3)H11A—C11—H11B109.00
O1—C4—C5119.4 (3)H11A—C11—H11C109.00
C3—C4—C5120.3 (3)O4A—C12A—H12B109.00
O1—C4—C3120.4 (3)O4A—C12A—H12C109.00
C4—C5—C6119.8 (3)O4A—C12A—H12A109.00
C1—C6—C5121.2 (3)H12A—C12A—H12C109.00
C1—C7—C8133.1 (3)H12B—C12A—H12C110.00
S1—C8—C9109.7 (2)H12A—C12A—H12B109.00
S1—C8—C7130.4 (2)O4B—C12B—H12D109.00
C7—C8—C9120.0 (3)O4B—C12B—H12E109.00
O3—C9—C8126.2 (3)O4B—C12B—H12F109.00
N1—C9—C8110.3 (3)H12D—C12B—H12E110.00
O3—C9—N1123.5 (3)H12D—C12B—H12F110.00
S1—C10—N1109.4 (2)H12E—C12B—H12F110.00
C10—S1—C8—C7179.4 (4)C1—C2—C3—O2179.7 (3)
C10—S1—C8—C90.3 (3)C1—C2—C3—C40.4 (5)
C8—S1—C10—S2179.6 (3)O2—C3—C4—O10.1 (5)
C8—S1—C10—N10.1 (3)O2—C3—C4—C5179.1 (3)
C11—O2—C3—C26.2 (5)C2—C3—C4—O1180.0 (3)
C11—O2—C3—C4173.9 (3)C2—C3—C4—C50.9 (5)
C10—N1—C9—O3179.8 (3)O1—C4—C5—C6179.1 (3)
C10—N1—C9—C80.4 (4)C3—C4—C5—C61.8 (5)
C9—N1—C10—S10.2 (4)C4—C5—C6—C11.4 (5)
C9—N1—C10—S2179.8 (3)C1—C7—C8—S11.4 (6)
C6—C1—C2—C30.7 (5)C1—C7—C8—C9179.5 (4)
C7—C1—C2—C3179.7 (3)S1—C8—C9—O3179.8 (3)
C2—C1—C6—C50.2 (5)S1—C8—C9—N10.4 (3)
C7—C1—C6—C5179.4 (3)C7—C8—C9—O31.0 (5)
C2—C1—C7—C83.1 (6)C7—C8—C9—N1179.6 (3)
C6—C1—C7—C8177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.88 (3)2.21 (3)2.641 (3)109 (3)
C2—H2···S10.932.663.349 (3)132
O1—H1···O4Ai0.88 (3)1.85 (3)2.622 (7)145 (3)
N1—H1N···O1ii0.862.052.899 (3)169
O4A—H4A···O3iii0.96 (8)1.79 (8)2.744 (7)173 (7)
C12A—H12A···O3iv0.962.373.150 (5)139
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC11H9NO3S2·CH4O
Mr299.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)17.731 (2), 11.7528 (14), 6.5715 (6)
V3)1369.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.26 × 0.13 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.942, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7574, 2472, 1807
Rint0.045
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.070, 1.02
No. of reflections2472
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21
Absolute structureFlack (1983), 829 Friedal Pairs
Absolute structure parameter0.01 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.88 (3)2.21 (3)2.641 (3)109 (3)
C2—H2···S10.932.663.349 (3)132
O1—H1···O4Ai0.88 (3)1.85 (3)2.622 (7)145 (3)
N1—H1N···O1ii0.862.052.899 (3)169
O4A—H4A···O3iii0.96 (8)1.79 (8)2.744 (7)173 (7)
C12A—H12A···O3iv0.962.373.150 (5)139
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

MAR greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–111212-PS2–200).

References

First citationBarreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des. 7, 1964–1973.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009). Acta Cryst. E65, o2637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds