organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: 1-Phenyl-3-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: yllctu@yahoo.com.cn

(Received 25 September 2009; accepted 2 October 2009; online 13 October 2009)

In the title compound, C18H18O4, the dihedral angle between the mean planes of the aromatic rings is 7.39 (6)°. The dihedral angles between the linking C—C=C—C plane and the phenyl and benzene rings are 11.27 (5) and 4.20 (5)°, respectively.

Related literature

For background to the properties and applications of chalcones, see: Satish et al., (1995[Satish, G. B., Kaliyamoorthy, P. Z. D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325-330.]), Meng et al., (2004[Meng, C. Q., Zheng, X. S., Ni, L., Ye, Z. H., Simpson, J. E., Worsencroft, K. J., Hotema, M. R., Weingarten, J. W., Gilmore, J. M., Hoong, L. K., Hill, R. R., Marino, E. M., Suen, K. L., Kunsch, C., Wasserman, M. A. & Sikorski, J. A. (2004). Bioorg. Med. Chem. Lett., 14, 1513-1517.]), Indira et al., (2002[Indira, J., Prakash Karat, P. & Sarojini, B. K. J. (2002). J. Cryst. Growth, 242, 209-214.]). For the synthesis, see: Migrdichian (1957[Migrdichian, V. (1957). Org. Synth. 1, 171-173.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.32

  • Monoclinic, P 21 /c

  • a = 8.8921 (10) Å

  • b = 15.114 (3) Å

  • c = 11.618 (3) Å

  • β = 104.289 (10)°

  • V = 1513.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.995

  • 7545 measured reflections

  • 2581 independent reflections

  • 2037 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.108

  • S = 1.01

  • 2581 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, chalcones consisting of –C=C—C(O)- group have been widely researched due to their interesting properties, such as photoreaction (Satish et al., 1995), biological activity (Meng et al., 2004) and non-linear optical properties (Indira et al., 2002). Herein, we report the synthesis and structure of the title compound.

As shown in figure 1, the C(1)—C(6) phenyl ring is taken as plane 1, another C(10)—C(15) one as plane 2 and the central C(7)—C(8)=C(9)—C(10) as plane 3, with the dihedral angles between them, A12, A13 and A23, of 7.39, 11.27 and 4.20 °, respectively, showing the two phenyl rings are rotated oppositely with respect to the central part of plane 3. The torsional angle C(7)—C(8)=C(9)—C(10) is 177.5 ° and the phenone O(1) atom deviates from plane 3 by 0.13 Å, suggesting C=O is not coplanar with this plane.

Related literature top

For background on the properties and applications of chalcones, see: Satish et al., (1995), Meng et al., (2004), Indira et al., (2002). For the synthesis, see: Migrdichian (1957).

Experimental top

The synthesis of the title compound was according to the related literature (Migrdichian et al., (1957)). An aqueous solution of sodium hydroxide (10%, 10 ml) was added to the mixture of acetophenone (0.02 mol) and 2,4,6-trimethoxyphenylaldehyde (0.02 mol) in 95% ethanol (30 ml). The reaction mixture was stirred at room temperature for 5 h, yielding light yellow solid neutralized by hydrochloric acid (10%) and water. Colourless blocks of (I) were obtained by slow evaporation from dry ethanol. Elemental Analysis. Calc. for C18H18O4: C 72.41, H 6.03%; Found: C 72.38, H 6.01%.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

In recent years, chalcones consisting of –C=C—C(O)- group have been widely researched due to their interesting properties, such as photoreaction (Satish et al., 1995), biological activity (Meng et al., 2004) and non-linear optical properties (Indira et al., 2002). Herein, we report the synthesis and structure of the title compound.

As shown in figure 1, the C(1)—C(6) phenyl ring is taken as plane 1, another C(10)—C(15) one as plane 2 and the central C(7)—C(8)=C(9)—C(10) as plane 3, with the dihedral angles between them, A12, A13 and A23, of 7.39, 11.27 and 4.20 °, respectively, showing the two phenyl rings are rotated oppositely with respect to the central part of plane 3. The torsional angle C(7)—C(8)=C(9)—C(10) is 177.5 ° and the phenone O(1) atom deviates from plane 3 by 0.13 Å, suggesting C=O is not coplanar with this plane.

For background on the properties and applications of chalcones, see: Satish et al., (1995), Meng et al., (2004), Indira et al., (2002). For the synthesis, see: Migrdichian (1957).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
1-Phenyl-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H18O4F(000) = 632
Mr = 298.32Dx = 1.310 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2581 reflections
a = 8.8921 (10) Åθ = 2.4–25.0°
b = 15.114 (3) ŵ = 0.09 mm1
c = 11.618 (3) ÅT = 293 K
β = 104.289 (10)°Block, colourless
V = 1513.1 (5) Å30.12 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube2037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.989, Tmax = 0.995k = 1716
7545 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0725P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2581 reflectionsΔρmax = 0.13 e Å3
203 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.329 (18)
Crystal data top
C18H18O4V = 1513.1 (5) Å3
Mr = 298.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8921 (10) ŵ = 0.09 mm1
b = 15.114 (3) ÅT = 293 K
c = 11.618 (3) Å0.12 × 0.10 × 0.05 mm
β = 104.289 (10)°
Data collection top
Bruker SMART CCD
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2037 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.995Rint = 0.037
7545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
2581 reflectionsΔρmin = 0.13 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14370 (15)0.24856 (10)0.22992 (12)0.0564 (4)
H10.15110.21410.29460.068*
C20.25419 (15)0.31225 (11)0.18742 (14)0.0645 (4)
H20.33560.32000.22360.077*
C30.24594 (16)0.36410 (11)0.09297 (14)0.0653 (4)
H30.32020.40760.06590.078*
C40.12883 (17)0.35171 (10)0.03889 (13)0.0654 (4)
H40.12280.38650.02580.078*
C50.01819 (15)0.28718 (9)0.08018 (12)0.0550 (4)
H50.06070.27840.04170.066*
C60.02275 (13)0.23540 (9)0.17773 (10)0.0463 (3)
C70.09868 (14)0.16867 (9)0.23099 (11)0.0505 (3)
C80.22237 (14)0.15192 (9)0.17349 (11)0.0505 (4)
H80.21820.17770.10010.061*
C90.34224 (14)0.10042 (8)0.22297 (10)0.0452 (3)
H90.33610.07430.29410.054*
C100.47889 (13)0.07856 (8)0.18512 (10)0.0405 (3)
C110.51540 (14)0.11331 (8)0.08352 (10)0.0431 (3)
C120.64572 (14)0.08891 (8)0.05099 (10)0.0474 (3)
H120.66670.11220.01750.057*
C130.74710 (13)0.02941 (8)0.11969 (11)0.0460 (3)
C140.72008 (13)0.00523 (8)0.22196 (10)0.0457 (3)
H140.79000.04430.26880.055*
C150.58727 (13)0.01938 (8)0.25291 (10)0.0422 (3)
C160.65272 (16)0.07565 (10)0.42236 (11)0.0592 (4)
H16A0.65720.12750.37570.089*
H16B0.61400.09130.48980.089*
H16C0.75480.05090.44910.089*
C170.44269 (17)0.21138 (9)0.08152 (12)0.0616 (4)
H17A0.53980.24240.06020.092*
H17B0.36100.25210.11570.092*
H17C0.44790.16610.13830.092*
C180.97451 (18)0.05696 (11)0.14022 (14)0.0733 (5)
H18A1.01800.03920.22090.110*
H18B1.05650.06570.10090.110*
H18C0.91810.11120.13930.110*
O10.55255 (10)0.01251 (6)0.35230 (8)0.0566 (3)
O20.41252 (10)0.17263 (6)0.02034 (7)0.0574 (3)
O30.87224 (10)0.01005 (7)0.08024 (8)0.0639 (3)
O40.09522 (11)0.13301 (8)0.32405 (9)0.0787 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (7)0.0676 (9)0.0567 (8)0.0009 (6)0.0171 (6)0.0055 (7)
C20.0418 (7)0.0773 (10)0.0776 (10)0.0068 (7)0.0208 (7)0.0089 (8)
C30.0514 (8)0.0694 (10)0.0725 (10)0.0144 (7)0.0104 (7)0.0030 (8)
C40.0649 (9)0.0683 (9)0.0623 (9)0.0123 (7)0.0144 (7)0.0046 (7)
C50.0487 (7)0.0644 (9)0.0541 (8)0.0055 (6)0.0166 (6)0.0045 (6)
C60.0375 (6)0.0555 (7)0.0446 (7)0.0005 (5)0.0076 (5)0.0105 (6)
C70.0428 (7)0.0661 (8)0.0415 (7)0.0028 (6)0.0083 (5)0.0058 (6)
C80.0442 (7)0.0645 (8)0.0422 (7)0.0074 (6)0.0093 (5)0.0014 (6)
C90.0439 (7)0.0519 (7)0.0395 (6)0.0012 (6)0.0097 (5)0.0049 (5)
C100.0392 (6)0.0437 (7)0.0379 (6)0.0010 (5)0.0081 (5)0.0025 (5)
C110.0436 (7)0.0430 (7)0.0402 (6)0.0021 (5)0.0059 (5)0.0008 (5)
C120.0513 (7)0.0519 (7)0.0413 (7)0.0007 (6)0.0158 (6)0.0063 (5)
C130.0420 (6)0.0506 (7)0.0484 (7)0.0031 (5)0.0169 (5)0.0025 (6)
C140.0428 (7)0.0478 (7)0.0475 (7)0.0064 (5)0.0131 (6)0.0073 (5)
C150.0428 (7)0.0467 (7)0.0380 (6)0.0013 (5)0.0115 (5)0.0022 (5)
C160.0574 (8)0.0705 (9)0.0505 (8)0.0117 (7)0.0149 (6)0.0197 (7)
C170.0695 (9)0.0633 (9)0.0503 (8)0.0047 (7)0.0117 (7)0.0161 (6)
C180.0631 (9)0.0874 (11)0.0802 (10)0.0323 (8)0.0385 (8)0.0277 (9)
O10.0515 (5)0.0748 (6)0.0479 (5)0.0156 (5)0.0209 (4)0.0201 (4)
O20.0562 (6)0.0661 (6)0.0504 (5)0.0162 (4)0.0140 (4)0.0177 (4)
O30.0564 (6)0.0799 (7)0.0647 (6)0.0207 (5)0.0328 (5)0.0226 (5)
O40.0661 (7)0.1169 (9)0.0584 (6)0.0289 (6)0.0255 (5)0.0239 (6)
Geometric parameters (Å, º) top
C1—C61.3733 (18)C11—C121.3556 (17)
C1—C21.3770 (19)C12—C131.3797 (17)
C1—H10.9300C12—H120.9300
C2—C31.365 (2)C13—O31.3362 (14)
C2—H20.9300C13—C141.3727 (17)
C3—C41.355 (2)C14—C151.3682 (15)
C3—H30.9300C14—H140.9300
C4—C51.3843 (19)C15—O11.3554 (14)
C4—H40.9300C16—O11.4172 (15)
C5—C61.3860 (18)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.4954 (18)C16—H16C0.9600
C7—O41.2153 (16)C17—O21.4044 (15)
C7—C81.4431 (17)C17—H17A0.9600
C8—C91.3305 (17)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C9—C101.4292 (16)C18—O31.4232 (16)
C9—H90.9300C18—H18A0.9600
C10—C111.4014 (16)C18—H18B0.9600
C10—C151.4051 (16)C18—H18C0.9600
C11—O21.3594 (14)
C6—C1—C2120.67 (13)C11—C12—C13119.83 (11)
C6—C1—H1119.7C11—C12—H12120.1
C2—C1—H1119.7C13—C12—H12120.1
C3—C2—C1120.96 (13)O3—C13—C14123.49 (11)
C3—C2—H2119.5O3—C13—C12115.14 (11)
C1—C2—H2119.5C14—C13—C12121.36 (11)
C4—C3—C2119.55 (14)C15—C14—C13118.08 (11)
C4—C3—H3120.2C15—C14—H14121.0
C2—C3—H3120.2C13—C14—H14121.0
C3—C4—C5119.89 (14)O1—C15—C14121.34 (11)
C3—C4—H4120.1O1—C15—C10115.78 (10)
C5—C4—H4120.1C14—C15—C10122.88 (10)
C4—C5—C6121.29 (12)O1—C16—H16A109.5
C4—C5—H5119.4O1—C16—H16B109.5
C6—C5—H5119.4H16A—C16—H16B109.5
C1—C6—C5117.61 (12)O1—C16—H16C109.5
C1—C6—C7118.63 (12)H16A—C16—H16C109.5
C5—C6—C7123.73 (11)H16B—C16—H16C109.5
O4—C7—C8121.57 (12)O2—C17—H17A109.5
O4—C7—C6119.54 (12)O2—C17—H17B109.5
C8—C7—C6118.80 (11)H17A—C17—H17B109.5
C9—C8—C7121.57 (12)O2—C17—H17C109.5
C9—C8—H8119.2H17A—C17—H17C109.5
C7—C8—H8119.2H17B—C17—H17C109.5
C8—C9—C10130.82 (12)O3—C18—H18A109.5
C8—C9—H9114.6O3—C18—H18B109.5
C10—C9—H9114.6H18A—C18—H18B109.5
C11—C10—C15116.18 (10)O3—C18—H18C109.5
C11—C10—C9124.32 (11)H18A—C18—H18C109.5
C15—C10—C9119.49 (10)H18B—C18—H18C109.5
O2—C11—C12122.44 (11)C15—O1—C16119.06 (9)
O2—C11—C10115.92 (10)C11—O2—C17119.14 (10)
C12—C11—C10121.64 (11)C13—O3—C18118.25 (10)

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8921 (10), 15.114 (3), 11.618 (3)
β (°) 104.289 (10)
V3)1513.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.989, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
7545, 2581, 2037
Rint0.037
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.01
No. of reflections2581
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The work was supported by Liaocheng University (grant No. X071011) and the National Ministry of Science and Technology of China (grant No. 20501011).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIndira, J., Prakash Karat, P. & Sarojini, B. K. J. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationMeng, C. Q., Zheng, X. S., Ni, L., Ye, Z. H., Simpson, J. E., Worsencroft, K. J., Hotema, M. R., Weingarten, J. W., Gilmore, J. M., Hoong, L. K., Hill, R. R., Marino, E. M., Suen, K. L., Kunsch, C., Wasserman, M. A. & Sikorski, J. A. (2004). Bioorg. Med. Chem. Lett., 14, 1513–1517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMigrdichian, V. (1957). Org. Synth. 1, 171–173.  Google Scholar
First citationSatish, G. B., Kaliyamoorthy, P. Z. D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325–330.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds