metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2-hydr­­oxy-5-sulfonatobenzoato-κO1)bis­­(2-phenyl-1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene-κ2N7,N8)zinc(II)

aSchool of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: yys@ujs.edu.cn

(Received 25 September 2009; accepted 26 September 2009; online 3 October 2009)

In the title compound, [Zn(C7H4O6S)(C19H12N4)2(H2O)], the ZnII ion is coordinated by two N,N′-bidentate 2-phenyl-1H-1,3,7,8-tetra­azacyclo­penta­[l]phenanthrene ligands, one O-monodentate 5-sulfosalicylate dianion and a water mol­ecule. This results in a distorted cis-ZnO2N4 octa­hedral coordination geometry for the metal ion. In the crystal, mol­ecules are expanded into a three-dimensional supra­molecular motif via O—H⋯O, O—H⋯N and N—H⋯(O,S) hydrogen bonds. In addition, ππ stacking inter­actions between the aromatic rings of the polycyclic ligands consolidate the sturcture [shortest centroid–centroid distance = 3.501 (2) Å].

Related literature

For related structures, see: Che et al. (2008[Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.]); Li et al. (2009[Li, C.-X., Li, X.-Y., Liu, C.-B., Yan, Y.-S. & Che, G.-B. (2009). Acta Cryst. E65, m53.]); Liu et al. (2009[Liu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, o1308.]). For the synthesis of the ligand, see: Steck & Day (1943[Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4O6S)(C19H12N4)2(H2O)]

  • Mr = 892.20

  • Monoclinic, P 21 /n

  • a = 8.3257 (8) Å

  • b = 25.926 (2) Å

  • c = 18.3271 (13) Å

  • β = 101.259 (8)°

  • V = 3879.8 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.94 mm−1

  • T = 292 K

  • 0.27 × 0.26 × 0.23 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]) Tmin = 0.621, Tmax = 0.640

  • 15767 measured reflections

  • 6808 independent reflections

  • 4337 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.132

  • S = 0.97

  • 6808 reflections

  • 575 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn—O1 2.080 (3)
Zn—OW1 2.196 (3)
Zn—N1 2.177 (3)
Zn—N2 2.184 (3)
Zn—N5 2.141 (3)
Zn—N6 2.120 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3C⋯O2 0.82 1.82 2.547 (4) 147
OW1—H1WA⋯O2 0.86 (2) 1.90 (3) 2.712 (4) 157 (5)
OW1—H1WB⋯N7i 0.840 (19) 2.05 (2) 2.877 (4) 170 (4)
N4—H4B⋯O6ii 0.86 (4) 2.05 (4) 2.883 (4) 162 (4)
N4—H4B⋯S1ii 0.86 (4) 3.02 (4) 3.854 (4) 163 (3)
N8—H8B⋯O4iii 0.96 (5) 1.85 (5) 2.794 (5) 167 (5)
N8—H8B⋯S1iii 0.96 (5) 2.94 (5) 3.793 (4) 148 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,10-phenanthroline (phen) and its derivatives has been widely used to build supramolecular architectures owing to their excellent coordinating ability and large conjugated system (Che et al., 2008; Li et al., 2009). Whenas, building blocks derived from the appropriate modification of phen, such as 2-phenyl-1H-1,3,7,8-tetra-azacyclopenta[l]phenanthrene (L) have received considerably less attention (Liu et al., 2009). Hereby, we have prepared the title compound, namely, [Zn(C19H12N4)2(C7H4O6S)H2O] or [Zn(L)2 (HSSA)H2O] (I), based on L and 5-sulfosalicylic acid (H3SSA) ligands.

In the compound (I), each Zn atom is six-coordinated by four N atoms from two L ligands, one O atom from a HSSA ligand and one water molecule (Fig. 1). The Zn—O distances range from 2.080 (3) Å to 2.196 (3) Å and the Zn—N lengths from 2.120 (3) to 2.184 (3) Å (Table 1). The N1, N5, N6, O1W atoms comprise the basal plane, while the O1 and N2 atoms occupy the axial position. In (I), –CO2H and –SO3H groups are deprotonated, but –OH groups are neutral. The carboxylate group of a HSSA ligand displays monodentate bridging coordination mode, whenas –OH and –SO3- groups are uncoordinated.

The neighboring mononuclear ZnII units interact by various hydrogen bonds, leading to a three-dimensional supramolecular structure (Fig. 2): (a) N—H···O or N—H···S hydrogen bonds between imidazole rings donors and the sulfonic groups of the HSSA ligands [N4···O6i: 2.883 (4) Å; N4···S1i: 3.854 (4) Å; N8···O4ii: 2.794 (5) Å; N8···S1ii: 3.793 (4) Å, symmetry code: (i) -x + 3/2, y - 1/2, -z + 3/2, (ii) -x + 1, -y + 1, -z + 1]. (b) O—H···O or O—H···N hydrogen bonds involving the coordinated water molecule OW1 and the O2, N7ii atoms [O1W···O2: 2.712 (4) Å; O1W···N7iii: 2.877 (4) Å, symmetry code: (iii) x + 1/2, -y + 1/2, z + 1/2]. (c) Intramolecular O—H···O hydrogen bonds involving hydroxy oxygen atom of HSSA anion and carboxylate O2 atom [O3···O2: 2.547 (4) Å] (Table 2). In addition, π-π stacking interactions between L ligands further intensify the current architectures with a shortest stacking distance of 3.501 (2) Å.

Related literature top

For related structures, see: Che et al. (2008); Li et al. (2009); Liu et al. (2009). For the synthesis of the ligand, see: Steck & Day (1943).

Experimental top

The L ligand was synthesized according to the literature method (Steck & Day, 1943). A mixture of L, H3SSA, Zn(NO3)2 and water in the mole ratio 1:1:1:4000 was placed in a 25 ml Teflon-lined autoclave and heated for 4 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow blocks of (I) were obtained, which were washed with H2O and dried in air (62% yield based on Zn).

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). The hydrogen atoms of water molecules were located from difference Fourier maps and their positions and Uiso values were refined freely.

Structure description top

1,10-phenanthroline (phen) and its derivatives has been widely used to build supramolecular architectures owing to their excellent coordinating ability and large conjugated system (Che et al., 2008; Li et al., 2009). Whenas, building blocks derived from the appropriate modification of phen, such as 2-phenyl-1H-1,3,7,8-tetra-azacyclopenta[l]phenanthrene (L) have received considerably less attention (Liu et al., 2009). Hereby, we have prepared the title compound, namely, [Zn(C19H12N4)2(C7H4O6S)H2O] or [Zn(L)2 (HSSA)H2O] (I), based on L and 5-sulfosalicylic acid (H3SSA) ligands.

In the compound (I), each Zn atom is six-coordinated by four N atoms from two L ligands, one O atom from a HSSA ligand and one water molecule (Fig. 1). The Zn—O distances range from 2.080 (3) Å to 2.196 (3) Å and the Zn—N lengths from 2.120 (3) to 2.184 (3) Å (Table 1). The N1, N5, N6, O1W atoms comprise the basal plane, while the O1 and N2 atoms occupy the axial position. In (I), –CO2H and –SO3H groups are deprotonated, but –OH groups are neutral. The carboxylate group of a HSSA ligand displays monodentate bridging coordination mode, whenas –OH and –SO3- groups are uncoordinated.

The neighboring mononuclear ZnII units interact by various hydrogen bonds, leading to a three-dimensional supramolecular structure (Fig. 2): (a) N—H···O or N—H···S hydrogen bonds between imidazole rings donors and the sulfonic groups of the HSSA ligands [N4···O6i: 2.883 (4) Å; N4···S1i: 3.854 (4) Å; N8···O4ii: 2.794 (5) Å; N8···S1ii: 3.793 (4) Å, symmetry code: (i) -x + 3/2, y - 1/2, -z + 3/2, (ii) -x + 1, -y + 1, -z + 1]. (b) O—H···O or O—H···N hydrogen bonds involving the coordinated water molecule OW1 and the O2, N7ii atoms [O1W···O2: 2.712 (4) Å; O1W···N7iii: 2.877 (4) Å, symmetry code: (iii) x + 1/2, -y + 1/2, z + 1/2]. (c) Intramolecular O—H···O hydrogen bonds involving hydroxy oxygen atom of HSSA anion and carboxylate O2 atom [O3···O2: 2.547 (4) Å] (Table 2). In addition, π-π stacking interactions between L ligands further intensify the current architectures with a shortest stacking distance of 3.501 (2) Å.

For related structures, see: Che et al. (2008); Li et al. (2009); Liu et al. (2009). For the synthesis of the ligand, see: Steck & Day (1943).

Computing details top

Data collection: Crys Alis CCD (Oxford Diffraction, 2006); cell refinement: Crys Alis CCD (Oxford Diffraction, 2006); data reduction: Crys Alis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the local coordination of compound (I) with displacement ellipsoids drawn at the 30% probability level. (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of three-dimensional superamolecular structure of (I) built up via hydrogen bonds and π-π interactions. Most H atoms have been omitted.
Aqua(2-hydroxy-5-sulfonatobenzoato-κO1)bis(2-phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene-κ2N7,N8)zinc(II) top
Crystal data top
[Zn(C7H4O6S)(C19H12N4)2(H2O)]F(000) = 1832
Mr = 892.20Dx = 1.527 Mg m3
Dm = 1.527 Mg m3
Dm measured by not measured
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 3619 reflections
a = 8.3257 (8) Åθ = 4.9–67.0°
b = 25.926 (2) ŵ = 1.94 mm1
c = 18.3271 (13) ÅT = 292 K
β = 101.259 (8)°Block, yellow
V = 3879.8 (6) Å30.27 × 0.26 × 0.23 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
6808 independent reflections
Radiation source: fine-focus sealed tube4337 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.2375 pixels mm-1θmax = 67.1°, θmin = 4.9°
ω scansh = 99
Absorption correction: multi-scan
(Crys Alis RED; Oxford Diffraction, 2006)
k = 3030
Tmin = 0.621, Tmax = 0.640l = 2119
15767 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0673P)2]
where P = (Fo2 + 2Fc2)/3
6808 reflections(Δ/σ)max = 0.001
575 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C7H4O6S)(C19H12N4)2(H2O)]V = 3879.8 (6) Å3
Mr = 892.20Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.3257 (8) ŵ = 1.94 mm1
b = 25.926 (2) ÅT = 292 K
c = 18.3271 (13) Å0.27 × 0.26 × 0.23 mm
β = 101.259 (8)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
6808 independent reflections
Absorption correction: multi-scan
(Crys Alis RED; Oxford Diffraction, 2006)
4337 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.640Rint = 0.055
15767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.41 e Å3
6808 reflectionsΔρmin = 0.28 e Å3
575 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8928 (5)0.36143 (15)0.8278 (2)0.0515 (10)
H10.81580.38780.81890.062*
C21.0106 (6)0.36325 (16)0.8925 (2)0.0577 (11)
H21.01480.39080.92520.069*
C31.1200 (5)0.32385 (16)0.9071 (2)0.0542 (11)
H31.19660.32350.95150.065*
C41.1179 (5)0.28381 (14)0.85566 (19)0.0413 (8)
C51.2235 (5)0.24000 (14)0.86501 (19)0.0440 (9)
C61.2180 (5)0.20368 (14)0.80857 (19)0.0419 (8)
C71.1048 (4)0.20682 (14)0.73901 (18)0.0399 (8)
C81.0964 (5)0.17231 (15)0.6789 (2)0.0465 (9)
H81.17030.14510.68170.056*
C90.9786 (5)0.17933 (16)0.6169 (2)0.0517 (10)
H90.97340.15770.57610.062*
C100.8664 (5)0.21915 (15)0.6151 (2)0.0496 (10)
H100.78500.22300.57280.059*
C110.9915 (5)0.24714 (13)0.73182 (18)0.0399 (8)
C120.9970 (5)0.28631 (14)0.79011 (18)0.0408 (8)
C131.3962 (5)0.18131 (14)0.90865 (19)0.0433 (9)
C141.5168 (5)0.15014 (14)0.9583 (2)0.0446 (9)
C151.5650 (5)0.16544 (16)1.0328 (2)0.0517 (10)
H151.51980.19491.04960.062*
C161.6782 (5)0.13724 (17)1.0811 (2)0.0580 (11)
H161.71140.14821.13010.070*
C171.7434 (6)0.09257 (17)1.0573 (2)0.0600 (11)
H171.81860.07311.09040.072*
C181.6960 (5)0.07698 (16)0.9839 (2)0.0585 (11)
H181.74040.04720.96760.070*
C191.5831 (5)0.10548 (15)0.9349 (2)0.0499 (10)
H191.55130.09460.88580.060*
C200.4122 (5)0.23843 (15)0.5864 (2)0.0499 (10)
H200.41090.21840.62830.060*
C210.3110 (5)0.22443 (15)0.5196 (2)0.0515 (10)
H210.24620.19500.51680.062*
C220.3083 (5)0.25462 (14)0.4581 (2)0.0474 (9)
H220.24040.24610.41320.057*
C230.4081 (4)0.29835 (13)0.46294 (17)0.0377 (8)
C240.4131 (5)0.33440 (14)0.40410 (18)0.0402 (8)
C250.5154 (5)0.37647 (14)0.41540 (18)0.0409 (8)
C260.6232 (5)0.38829 (13)0.48406 (18)0.0397 (8)
C270.7254 (5)0.43149 (14)0.4979 (2)0.0455 (9)
H270.73120.45510.46040.055*
C280.8174 (5)0.43826 (15)0.5685 (2)0.0521 (10)
H280.88730.46640.57920.063*
C290.8042 (5)0.40256 (14)0.6231 (2)0.0469 (9)
H290.86620.40780.67050.056*
C300.6169 (4)0.35370 (13)0.54261 (18)0.0388 (8)
C310.5108 (4)0.30925 (13)0.53248 (18)0.0374 (8)
C320.3580 (5)0.37973 (15)0.30428 (19)0.0446 (9)
C330.2823 (5)0.40102 (16)0.23082 (19)0.0482 (9)
C340.1441 (6)0.37953 (18)0.1892 (2)0.0624 (12)
H340.09820.35070.20720.075*
C350.0714 (7)0.3997 (2)0.1212 (3)0.0758 (15)
H350.02230.38430.09380.091*
C360.1369 (7)0.4422 (2)0.0939 (3)0.0833 (16)
H360.08820.45590.04810.100*
C370.2733 (8)0.4642 (3)0.1343 (3)0.101 (2)
H370.31860.49310.11610.122*
C380.3453 (7)0.4437 (2)0.2027 (3)0.0862 (18)
H380.43850.45930.23010.103*
C390.4948 (5)0.35307 (16)0.8007 (2)0.0493 (10)
C400.4200 (5)0.40138 (15)0.82448 (19)0.0451 (9)
C410.4235 (6)0.41146 (17)0.8999 (2)0.0554 (11)
C420.3566 (6)0.45676 (17)0.9206 (2)0.0618 (12)
H420.36060.46380.97060.074*
C430.2841 (6)0.49147 (17)0.8672 (2)0.0591 (11)
H430.23750.52160.88130.071*
C440.2805 (5)0.48158 (14)0.7923 (2)0.0462 (9)
C450.3491 (5)0.43707 (14)0.77218 (19)0.0456 (9)
H450.34790.43080.72210.055*
O10.5147 (4)0.35041 (11)0.73431 (14)0.0549 (7)
O20.5356 (4)0.31814 (11)0.84891 (15)0.0637 (8)
O30.4895 (5)0.37738 (13)0.95378 (15)0.0761 (10)
H3C0.52470.35230.93470.114*
O40.2865 (4)0.52048 (11)0.66450 (15)0.0647 (8)
O50.0217 (4)0.50440 (12)0.69531 (18)0.0720 (9)
O60.1886 (4)0.57477 (10)0.75266 (16)0.0630 (8)
OW10.6019 (4)0.24205 (11)0.75763 (15)0.0530 (7)
S10.18387 (13)0.52366 (4)0.72053 (5)0.0505 (3)
N10.8838 (4)0.32410 (12)0.77783 (16)0.0455 (8)
N20.8700 (4)0.25209 (11)0.67122 (15)0.0430 (7)
N31.3373 (4)0.22601 (12)0.92645 (16)0.0470 (8)
N41.3291 (4)0.16684 (13)0.83680 (17)0.0434 (7)
N50.5096 (4)0.27879 (11)0.59281 (15)0.0414 (7)
N60.7089 (4)0.36156 (12)0.61175 (15)0.0417 (7)
N70.3145 (4)0.33662 (12)0.33373 (15)0.0423 (7)
N80.4802 (4)0.40487 (12)0.35073 (15)0.0447 (8)
Zn0.67652 (6)0.304312 (19)0.69016 (2)0.04405 (16)
H1WA0.560 (6)0.2603 (18)0.788 (2)0.085 (18)*
H1WB0.671 (4)0.2195 (13)0.776 (2)0.058 (13)*
H4B1.342 (5)0.1371 (16)0.818 (2)0.043 (11)*
H8B0.547 (6)0.434 (2)0.344 (3)0.085 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.064 (3)0.042 (2)0.044 (2)0.0063 (19)0.0015 (19)0.0042 (17)
C20.079 (3)0.048 (2)0.041 (2)0.002 (2)0.002 (2)0.0106 (17)
C30.064 (3)0.051 (2)0.038 (2)0.003 (2)0.0128 (18)0.0074 (18)
C40.050 (2)0.0380 (18)0.0314 (17)0.0051 (17)0.0021 (15)0.0011 (15)
C50.048 (2)0.047 (2)0.0324 (18)0.0059 (17)0.0038 (16)0.0048 (16)
C60.045 (2)0.044 (2)0.0322 (17)0.0035 (17)0.0024 (15)0.0022 (15)
C70.047 (2)0.044 (2)0.0267 (16)0.0041 (17)0.0017 (15)0.0040 (14)
C80.056 (2)0.048 (2)0.0356 (19)0.0032 (18)0.0089 (17)0.0000 (16)
C90.066 (3)0.056 (2)0.0306 (18)0.000 (2)0.0017 (18)0.0087 (17)
C100.058 (2)0.055 (2)0.0294 (18)0.001 (2)0.0065 (17)0.0026 (17)
C110.047 (2)0.0413 (19)0.0286 (17)0.0035 (17)0.0001 (15)0.0037 (15)
C120.049 (2)0.0410 (19)0.0287 (17)0.0045 (17)0.0016 (15)0.0019 (14)
C130.049 (2)0.044 (2)0.0316 (18)0.0045 (17)0.0055 (16)0.0034 (15)
C140.045 (2)0.045 (2)0.040 (2)0.0043 (17)0.0002 (16)0.0065 (16)
C150.061 (3)0.051 (2)0.038 (2)0.0033 (19)0.0032 (18)0.0024 (17)
C160.064 (3)0.066 (3)0.038 (2)0.004 (2)0.0071 (19)0.0076 (19)
C170.059 (3)0.062 (3)0.051 (2)0.003 (2)0.007 (2)0.017 (2)
C180.062 (3)0.047 (2)0.063 (3)0.001 (2)0.003 (2)0.009 (2)
C190.053 (2)0.046 (2)0.047 (2)0.0073 (18)0.0001 (18)0.0042 (18)
C200.058 (2)0.049 (2)0.039 (2)0.0043 (19)0.0012 (18)0.0097 (17)
C210.063 (3)0.046 (2)0.041 (2)0.0081 (19)0.0027 (18)0.0044 (17)
C220.056 (2)0.045 (2)0.0347 (19)0.0025 (18)0.0071 (17)0.0005 (16)
C230.044 (2)0.0413 (19)0.0252 (16)0.0053 (16)0.0013 (14)0.0024 (14)
C240.050 (2)0.044 (2)0.0238 (16)0.0019 (17)0.0010 (15)0.0011 (14)
C250.050 (2)0.043 (2)0.0270 (17)0.0046 (17)0.0020 (15)0.0029 (15)
C260.048 (2)0.0403 (19)0.0274 (17)0.0037 (16)0.0017 (15)0.0009 (14)
C270.058 (2)0.041 (2)0.0337 (19)0.0006 (18)0.0008 (17)0.0044 (15)
C280.061 (3)0.045 (2)0.045 (2)0.0053 (19)0.0036 (18)0.0003 (17)
C290.056 (2)0.045 (2)0.0335 (19)0.0041 (18)0.0068 (17)0.0026 (16)
C300.048 (2)0.0364 (18)0.0296 (17)0.0071 (16)0.0015 (15)0.0014 (14)
C310.043 (2)0.0379 (18)0.0291 (16)0.0048 (16)0.0020 (14)0.0001 (14)
C320.053 (2)0.047 (2)0.0319 (18)0.0041 (18)0.0035 (17)0.0003 (16)
C330.059 (2)0.056 (2)0.0275 (17)0.005 (2)0.0025 (17)0.0031 (16)
C340.075 (3)0.064 (3)0.040 (2)0.004 (2)0.010 (2)0.006 (2)
C350.083 (3)0.080 (3)0.050 (3)0.006 (3)0.021 (2)0.013 (2)
C360.092 (4)0.102 (4)0.046 (3)0.009 (3)0.013 (3)0.025 (3)
C370.112 (5)0.120 (5)0.061 (3)0.026 (4)0.012 (3)0.047 (3)
C380.091 (4)0.097 (4)0.056 (3)0.029 (3)0.021 (3)0.031 (3)
C390.055 (2)0.055 (2)0.035 (2)0.0003 (19)0.0029 (17)0.0078 (18)
C400.053 (2)0.050 (2)0.0326 (19)0.0002 (18)0.0077 (16)0.0055 (16)
C410.068 (3)0.064 (3)0.032 (2)0.000 (2)0.0034 (18)0.0131 (18)
C420.093 (3)0.065 (3)0.0281 (19)0.008 (3)0.013 (2)0.0021 (19)
C430.082 (3)0.056 (2)0.040 (2)0.001 (2)0.015 (2)0.0049 (19)
C440.058 (2)0.041 (2)0.0368 (19)0.0056 (18)0.0042 (17)0.0010 (16)
C450.063 (2)0.046 (2)0.0279 (18)0.0028 (18)0.0090 (17)0.0049 (16)
O10.0694 (19)0.0610 (17)0.0317 (14)0.0165 (14)0.0037 (12)0.0042 (12)
O20.088 (2)0.0598 (17)0.0427 (15)0.0196 (16)0.0106 (15)0.0163 (13)
O30.115 (3)0.079 (2)0.0325 (14)0.024 (2)0.0107 (16)0.0190 (14)
O40.102 (2)0.0548 (17)0.0377 (15)0.0002 (16)0.0142 (15)0.0096 (12)
O50.069 (2)0.0657 (19)0.070 (2)0.0097 (16)0.0132 (16)0.0058 (16)
O60.090 (2)0.0400 (15)0.0534 (16)0.0009 (15)0.0012 (15)0.0008 (13)
OW10.070 (2)0.0505 (17)0.0360 (14)0.0062 (15)0.0031 (14)0.0059 (13)
S10.0690 (7)0.0400 (5)0.0379 (5)0.0021 (5)0.0012 (5)0.0026 (4)
N10.0531 (19)0.0443 (17)0.0342 (16)0.0029 (15)0.0038 (14)0.0004 (13)
N20.0509 (18)0.0456 (17)0.0283 (15)0.0036 (14)0.0026 (13)0.0015 (13)
N30.0510 (19)0.0470 (18)0.0363 (16)0.0050 (15)0.0077 (14)0.0020 (13)
N40.0508 (19)0.0391 (18)0.0361 (16)0.0011 (15)0.0022 (14)0.0026 (14)
N50.0493 (18)0.0415 (16)0.0288 (14)0.0026 (14)0.0035 (13)0.0059 (12)
N60.0513 (18)0.0471 (17)0.0231 (14)0.0014 (15)0.0014 (13)0.0002 (12)
N70.0512 (19)0.0480 (18)0.0246 (14)0.0032 (14)0.0007 (13)0.0028 (13)
N80.059 (2)0.0480 (18)0.0236 (14)0.0009 (16)0.0001 (14)0.0014 (13)
Zn0.0535 (3)0.0465 (3)0.0276 (2)0.0027 (2)0.00348 (19)0.0027 (2)
Geometric parameters (Å, º) top
C1—N11.324 (5)C26—C301.407 (5)
C1—C21.384 (6)C27—C281.380 (5)
C1—H10.9300C27—H270.9300
C2—C31.360 (6)C28—C291.382 (6)
C2—H20.9300C28—H280.9300
C3—C41.400 (5)C29—N61.318 (5)
C3—H30.9300C29—H290.9300
C4—C121.410 (5)C30—N61.362 (4)
C4—C51.426 (5)C30—C311.442 (5)
C5—N31.371 (5)C31—N51.360 (4)
C5—C61.393 (5)C32—N71.322 (5)
C6—N41.359 (5)C32—N81.359 (5)
C6—C71.432 (5)C32—C331.478 (5)
C7—C111.397 (5)C33—C381.368 (7)
C7—C81.410 (5)C33—C341.369 (6)
C8—C91.361 (5)C34—C351.377 (6)
C8—H80.9300C34—H340.9300
C9—C101.389 (6)C35—C361.367 (8)
C9—H90.9300C35—H350.9300
C10—N21.332 (5)C36—C371.354 (8)
C10—H100.9300C36—H360.9300
C11—N21.354 (4)C37—C381.386 (6)
C11—C121.468 (5)C37—H370.9300
C12—N11.348 (5)C38—H380.9300
C13—N31.324 (5)C39—O11.261 (5)
C13—N41.378 (5)C39—O21.265 (5)
C13—C141.460 (5)C39—C401.501 (6)
C14—C191.386 (6)C40—C451.379 (5)
C14—C151.404 (5)C40—C411.401 (5)
C15—C161.371 (6)C41—O31.359 (5)
C15—H150.9300C41—C421.384 (6)
C16—C171.385 (7)C42—C431.378 (6)
C16—H160.9300C42—H420.9300
C17—C181.386 (6)C43—C441.392 (5)
C17—H170.9300C43—H430.9300
C18—C191.381 (6)C44—C451.369 (6)
C18—H180.9300C44—S11.776 (4)
C19—H190.9300C45—H450.9300
C20—N51.315 (5)O3—H3C0.8200
C20—C211.392 (5)O4—S11.461 (3)
C20—H200.9300O5—S11.429 (3)
C21—C221.369 (5)O6—S11.448 (3)
C21—H210.9300OW1—H1WA0.86 (2)
C22—C231.398 (5)OW1—H1WB0.840 (19)
C22—H220.9300N4—H4B0.86 (4)
C23—C311.417 (4)N8—H8B0.96 (5)
C23—C241.434 (5)Zn—O12.080 (3)
C24—C251.374 (5)Zn—OW12.196 (3)
C24—N71.388 (4)Zn—N12.177 (3)
C25—N81.377 (4)Zn—N22.184 (3)
C25—C261.429 (5)Zn—N52.141 (3)
C26—C271.400 (5)Zn—N62.120 (3)
N1—C1—C2123.5 (4)N5—C31—C30117.4 (3)
N1—C1—H1118.2C23—C31—C30121.5 (3)
C2—C1—H1118.2N7—C32—N8112.4 (3)
C3—C2—C1118.6 (4)N7—C32—C33125.8 (3)
C3—C2—H2120.7N8—C32—C33121.7 (3)
C1—C2—H2120.7C38—C33—C34117.5 (4)
C2—C3—C4120.2 (3)C38—C33—C32121.2 (4)
C2—C3—H3119.9C34—C33—C32121.3 (4)
C4—C3—H3119.9C33—C34—C35121.6 (4)
C3—C4—C12116.9 (3)C33—C34—H34119.2
C3—C4—C5125.6 (3)C35—C34—H34119.2
C12—C4—C5117.4 (3)C36—C35—C34120.0 (5)
N3—C5—C6110.4 (3)C36—C35—H35120.0
N3—C5—C4128.3 (3)C34—C35—H35120.0
C6—C5—C4121.3 (3)C37—C36—C35119.5 (4)
N4—C6—C5105.7 (3)C37—C36—H36120.3
N4—C6—C7131.2 (3)C35—C36—H36120.3
C5—C6—C7122.9 (3)C36—C37—C38120.1 (5)
C11—C7—C8118.1 (3)C36—C37—H37119.9
C11—C7—C6116.2 (3)C38—C37—H37119.9
C8—C7—C6125.6 (4)C33—C38—C37121.3 (5)
C9—C8—C7119.0 (4)C33—C38—H38119.3
C9—C8—H8120.5C37—C38—H38119.3
C7—C8—H8120.5O1—C39—O2124.6 (4)
C8—C9—C10119.4 (4)O1—C39—C40117.8 (3)
C8—C9—H9120.3O2—C39—C40117.6 (3)
C10—C9—H9120.3C45—C40—C41118.9 (4)
N2—C10—C9123.0 (3)C45—C40—C39120.2 (3)
N2—C10—H10118.5C41—C40—C39120.8 (3)
C9—C10—H10118.5O3—C41—C42118.6 (4)
N2—C11—C7122.0 (3)O3—C41—C40121.6 (4)
N2—C11—C12116.3 (3)C42—C41—C40119.8 (4)
C7—C11—C12121.6 (3)C43—C42—C41120.2 (4)
N1—C12—C4122.4 (3)C43—C42—H42119.9
N1—C12—C11117.4 (3)C41—C42—H42119.9
C4—C12—C11120.3 (3)C42—C43—C44120.1 (4)
N3—C13—N4111.9 (3)C42—C43—H43119.9
N3—C13—C14125.0 (3)C44—C43—H43119.9
N4—C13—C14123.1 (3)C45—C44—C43119.4 (4)
C19—C14—C15118.8 (3)C45—C44—S1118.1 (3)
C19—C14—C13122.5 (3)C43—C44—S1122.5 (3)
C15—C14—C13118.7 (4)C44—C45—C40121.5 (3)
C16—C15—C14120.5 (4)C44—C45—H45119.2
C16—C15—H15119.8C40—C45—H45119.2
C14—C15—H15119.8C39—O1—Zn128.6 (3)
C15—C16—C17120.3 (4)C41—O3—H3C109.5
C15—C16—H16119.8Zn—OW1—H1WA99 (4)
C17—C16—H16119.8Zn—OW1—H1WB119 (3)
C16—C17—C18119.6 (4)H1WA—OW1—H1WB118 (5)
C16—C17—H17120.2O5—S1—O6113.6 (2)
C18—C17—H17120.2O5—S1—O4113.49 (19)
C19—C18—C17120.3 (4)O6—S1—O4111.35 (19)
C19—C18—H18119.9O5—S1—C44106.73 (18)
C17—C18—H18119.9O6—S1—C44106.79 (17)
C18—C19—C14120.5 (4)O4—S1—C44104.06 (19)
C18—C19—H19119.7C1—N1—C12118.2 (3)
C14—C19—H19119.7C1—N1—Zn127.7 (3)
N5—C20—C21122.9 (4)C12—N1—Zn112.3 (2)
N5—C20—H20118.5C10—N2—C11118.2 (3)
C21—C20—H20118.5C10—N2—Zn127.9 (3)
C22—C21—C20119.0 (4)C11—N2—Zn112.6 (2)
C22—C21—H21120.5C13—N3—C5105.0 (3)
C20—C21—H21120.5C6—N4—C13106.9 (3)
C21—C22—C23119.8 (3)C6—N4—H4B127 (3)
C21—C22—H22120.1C13—N4—H4B125 (3)
C23—C22—H22120.1C20—N5—C31119.4 (3)
C22—C23—C31117.8 (3)C20—N5—Zn127.5 (2)
C22—C23—C24125.8 (3)C31—N5—Zn113.1 (2)
C31—C23—C24116.4 (3)C29—N6—C30118.6 (3)
C25—C24—N7110.1 (3)C29—N6—Zn127.6 (2)
C25—C24—C23120.8 (3)C30—N6—Zn113.8 (2)
N7—C24—C23128.9 (3)C32—N7—C24104.8 (3)
C24—C25—N8105.9 (3)C32—N8—C25106.9 (3)
C24—C25—C26124.5 (3)C32—N8—H8B133 (3)
N8—C25—C26129.4 (3)C25—N8—H8B120 (3)
C27—C26—C30118.9 (3)O1—Zn—N692.25 (12)
C27—C26—C25125.9 (3)O1—Zn—N597.90 (12)
C30—C26—C25115.1 (3)N1—Zn—N276.13 (11)
C28—C27—C26118.6 (3)N6—Zn—N578.42 (11)
C28—C27—H27120.7O1—Zn—N193.32 (12)
C26—C27—H27120.7N6—Zn—N198.51 (12)
C27—C28—C29119.0 (4)N5—Zn—N1168.46 (12)
C27—C28—H28120.5O1—Zn—N2166.53 (10)
C29—C28—H28120.5N6—Zn—N297.52 (12)
N6—C29—C28123.8 (3)N5—Zn—N293.14 (11)
N6—C29—H29118.1O1—Zn—OW185.83 (12)
C28—C29—H29118.1N6—Zn—OW1169.79 (11)
N6—C30—C26121.1 (3)N5—Zn—OW191.90 (11)
N6—C30—C31117.3 (3)N1—Zn—OW191.62 (11)
C26—C30—C31121.6 (3)N2—Zn—OW186.12 (12)
N5—C31—C23121.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O20.821.822.547 (4)147
OW1—H1WA···O20.86 (2)1.90 (3)2.712 (4)157 (5)
OW1—H1WB···N7i0.84 (2)2.05 (2)2.877 (4)170 (4)
N4—H4B···O6ii0.86 (4)2.05 (4)2.883 (4)162 (4)
N4—H4B···S1ii0.86 (4)3.02 (4)3.854 (4)163 (3)
N8—H8B···O4iii0.96 (5)1.85 (5)2.794 (5)167 (5)
N8—H8B···S1iii0.96 (5)2.94 (5)3.793 (4)148 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H4O6S)(C19H12N4)2(H2O)]
Mr892.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)8.3257 (8), 25.926 (2), 18.3271 (13)
β (°) 101.259 (8)
V3)3879.8 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.94
Crystal size (mm)0.27 × 0.26 × 0.23
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
Absorption correctionMulti-scan
(Crys Alis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.621, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
15767, 6808, 4337
Rint0.055
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 0.97
No. of reflections6808
No. of parameters575
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.28

Computer programs: Crys Alis CCD (Oxford Diffraction, 2006), Crys Alis RED (Oxford Diffraction, 2006), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn—O12.080 (3)Zn—N22.184 (3)
Zn—OW12.196 (3)Zn—N52.141 (3)
Zn—N12.177 (3)Zn—N62.120 (3)
N1—Zn—N276.13 (11)N6—Zn—N578.42 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O20.821.822.547 (4)147
OW1—H1WA···O20.86 (2)1.90 (3)2.712 (4)157 (5)
OW1—H1WB···N7i0.840 (19)2.05 (2)2.877 (4)170 (4)
N4—H4B···O6ii0.86 (4)2.05 (4)2.883 (4)162 (4)
N4—H4B···S1ii0.86 (4)3.02 (4)3.854 (4)163 (3)
N8—H8B···O4iii0.96 (5)1.85 (5)2.794 (5)167 (5)
N8—H8B···S1iii0.96 (5)2.94 (5)3.793 (4)148 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationChe, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C.-X., Li, X.-Y., Liu, C.-B., Yan, Y.-S. & Che, G.-B. (2009). Acta Cryst. E65, m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452–456.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds