metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(6,6′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II)

aDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran, bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, cDepartment of Chemistry, Jame Elmi Karbordi University, Aleshtar 1 Center, Aleshtar, Lorestan, Iran, and dDepartment of Chemistry, Islamic Azad University, Kazerun Branch, Kazerun, Fars, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com

(Received 28 September 2009; accepted 29 September 2009; online 7 October 2009)

In the title compound, [ZnBr2(C12H12N2)], the ZnII atom is four-coordinated in a distorted tetra­hedral arrangement by an N,N′-bidentate 6,6′-dimethyl-2,2′-bipyridine ligand and two bromide ions. In the crystal, there are aromatic ππ contacts between the pyridine rings [centroid–centroid distances = 3.818 (3) and 3.728 (4) Å].

Related literature

For related crystal structures containing a Zn atom coordin­ated by an N,N-bidentate bipyridine or phenanthroline-type ligand and two halide ions, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.], 2009[Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m848-m849.]); Alizadeh, Heidari, et al. (2009[Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.]); Alizadeh, Kalateh, et al. (2009[Alizadeh, R., Kalateh, K., Ebadi, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1250.]); Blake et al. (2007[Blake, A. J., Giunta, D., Shannon, J., Solinas, M., Walzer, F. & Woodward, S. (2007). Collect. Czech. Chem. Commun. 72, 1107-1121.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Khan & Tuck (1984[Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Khoshtarkib et al. (2009[Khoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739-m740.]); Lee et al. (2007[Lee, Y. M., Hong, S. J., Kim, H. J., Lee, S. H., Kwak, H., Kim, C., Kim, S. J. & Kim, Y. (2007). Inorg. Chem. Commun. 10, 287-291.]); Marjani et al. (2009[Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.]); Reimann et al. (1966[Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185-1189.]); Wriedt et al. (2008[Wriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m315.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C12H12N2)]

  • Mr = 409.43

  • Monoclinic, P 21 /c

  • a = 7.6506 (15) Å

  • b = 10.279 (2) Å

  • c = 18.023 (4) Å

  • β = 95.93 (3)°

  • V = 1409.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.39 mm−1

  • T = 298 K

  • 0.17 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.300, Tmax = 0.418

  • 11390 measured reflections

  • 3822 independent reflections

  • 2717 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.126

  • S = 1.11

  • 3822 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.071 (4)
Zn1—N2 2.072 (4)
Zn1—Br2 2.3400 (11)
Zn1—Br1 2.3444 (10)
N1—Zn1—N2 80.22 (17)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthes and crystal structure of [ZnCl2(phend)], (II), (Khoshtarkib et al., 2009), [HgBr2(2,9-dmphen)], (III), (Alizadeh, Heidari et al., 2009) and [Pb4(NO3)8(6-mbpy)4], (IV), (Ahmadi, Kalateh, Alizadeh et al., 2009) [where phend is phenanthridine, 2,9-dmphen is 2,9-dimethyl-1,10-phenanthroline and 6-mbpy is 6-methyl-2,2'-bipyridine].

There are several ZnII complexes, with formula, [ZnX2(N—N)], (X = Cl and Br), such as [ZnCl2(bipy)], (V), (Khan & Tuck, 1984), [ZnCl2(phen)], (VI), (Reimann et al., 1966), [ZnCl2(dm4bt)], (VII), (Khavasi et al., 2008), [ZnCl2(5,5'-dmbpy)], (VIII), (khalighi et al., 2008), [ZnCl2(6-mbpy)], (IX), (Ahmadi, Kalateh, Ebadi et al., 2008), [ZnCl2(6,6'-dmbpy)], (X), (Alizadeh, Kalateh et al., 2009), [ZnCl2(PBD)]}, (XI), (Marjani et al., 2009), [ZnBr2(4,4'-(dtbpy)].(Et2O), (XII), (Blake et al., 2007), {ZnBr2[NH(py)2]},(XIII), (Lee et al., 2007) and {ZnBr2[S(py)2]}, (XIV) (Wriedt et al., 2008) [where bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, dm4bt is 2,2'-dimethyl-4,4'-bithiazole, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dmbpy is 6,6'-dimethyl-2,2'-bipyridine, PBD is N-(pyridin-2-ylmethylene)benzene-1,4-diamine, dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine, NH(py)2 is bis(2-pyridyl)amine and S(py)2 is bis(2-pyridyl)sulfide] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the ZnII atom is four-coordinated in distorted tetrahedral configurations by two N atoms from one 6,6'-dimethyl-2,2'-bipyridine and two terminal Br atoms. The Zn—Br and Zn—N bond lengths and angles are collected in Table 1.

The π-π contacts between the pyridine rings, Cg1···Cg3i and Cg2···Cg3ii [symmetry cods: (i) 1-X,2-Y,-Z, (ii) –X,2-Y,-Z, where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C6—C7/N2), (N1/C2—C6) and (N2/C7—C11), respectively] further stabilize the structure, with centroid-centroid distance of 3.818 (3) and 3.728 (4) Å, respectively. It seems this π-π stacking is effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

For related crystal structures containing a Zn atom coordinated by an N,N-bidentate bipy or phen-type ligand and two halide ions, see: Ahmadi et al. (2008, 2009); Alizadeh, Heidari, et al. (2009); Alizadeh, Kalateh, et al. (2009); Blake et al. (2007); Khalighi et al. (2008); Khan & Tuck (1984); Khavasi et al. (2008); Khoshtarkib et al. (2009); Lee et al. (2007); Marjani et al. (2009); Reimann et al. (1966); Wriedt et al. (2008).

Experimental top

A solution of 6,6'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.25 g, 1.10 mmol) in acetonitrile (10 ml) and the resulting colourless solution was stirred for 20 min at at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prisms of (I) were isolated (yield 0.33 g, 73.7%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93–0.96Å and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Recently, we reported the synthes and crystal structure of [ZnCl2(phend)], (II), (Khoshtarkib et al., 2009), [HgBr2(2,9-dmphen)], (III), (Alizadeh, Heidari et al., 2009) and [Pb4(NO3)8(6-mbpy)4], (IV), (Ahmadi, Kalateh, Alizadeh et al., 2009) [where phend is phenanthridine, 2,9-dmphen is 2,9-dimethyl-1,10-phenanthroline and 6-mbpy is 6-methyl-2,2'-bipyridine].

There are several ZnII complexes, with formula, [ZnX2(N—N)], (X = Cl and Br), such as [ZnCl2(bipy)], (V), (Khan & Tuck, 1984), [ZnCl2(phen)], (VI), (Reimann et al., 1966), [ZnCl2(dm4bt)], (VII), (Khavasi et al., 2008), [ZnCl2(5,5'-dmbpy)], (VIII), (khalighi et al., 2008), [ZnCl2(6-mbpy)], (IX), (Ahmadi, Kalateh, Ebadi et al., 2008), [ZnCl2(6,6'-dmbpy)], (X), (Alizadeh, Kalateh et al., 2009), [ZnCl2(PBD)]}, (XI), (Marjani et al., 2009), [ZnBr2(4,4'-(dtbpy)].(Et2O), (XII), (Blake et al., 2007), {ZnBr2[NH(py)2]},(XIII), (Lee et al., 2007) and {ZnBr2[S(py)2]}, (XIV) (Wriedt et al., 2008) [where bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, dm4bt is 2,2'-dimethyl-4,4'-bithiazole, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dmbpy is 6,6'-dimethyl-2,2'-bipyridine, PBD is N-(pyridin-2-ylmethylene)benzene-1,4-diamine, dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine, NH(py)2 is bis(2-pyridyl)amine and S(py)2 is bis(2-pyridyl)sulfide] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the ZnII atom is four-coordinated in distorted tetrahedral configurations by two N atoms from one 6,6'-dimethyl-2,2'-bipyridine and two terminal Br atoms. The Zn—Br and Zn—N bond lengths and angles are collected in Table 1.

The π-π contacts between the pyridine rings, Cg1···Cg3i and Cg2···Cg3ii [symmetry cods: (i) 1-X,2-Y,-Z, (ii) –X,2-Y,-Z, where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C6—C7/N2), (N1/C2—C6) and (N2/C7—C11), respectively] further stabilize the structure, with centroid-centroid distance of 3.818 (3) and 3.728 (4) Å, respectively. It seems this π-π stacking is effective in the stabilization of the crystal structure (Fig. 2).

For related crystal structures containing a Zn atom coordinated by an N,N-bidentate bipy or phen-type ligand and two halide ions, see: Ahmadi et al. (2008, 2009); Alizadeh, Heidari, et al. (2009); Alizadeh, Kalateh, et al. (2009); Blake et al. (2007); Khalighi et al. (2008); Khan & Tuck (1984); Khavasi et al. (2008); Khoshtarkib et al. (2009); Lee et al. (2007); Marjani et al. (2009); Reimann et al. (1966); Wriedt et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
Dibromido(6,6'-dimethyl-2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[ZnBr2(C12H12N2)]F(000) = 792
Mr = 409.43Dx = 1.929 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1342 reflections
a = 7.6506 (15) Åθ = 2.3–29.3°
b = 10.279 (2) ŵ = 7.39 mm1
c = 18.023 (4) ÅT = 298 K
β = 95.93 (3)°Prism, colourless
V = 1409.8 (5) Å30.17 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube2717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 29.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 910
Tmin = 0.300, Tmax = 0.418k = 1414
11390 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0419P)2 + 2.306P]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[ZnBr2(C12H12N2)]V = 1409.8 (5) Å3
Mr = 409.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6506 (15) ŵ = 7.39 mm1
b = 10.279 (2) ÅT = 298 K
c = 18.023 (4) Å0.17 × 0.16 × 0.12 mm
β = 95.93 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2717 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 0.418Rint = 0.068
11390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.11Δρmax = 0.81 e Å3
3822 reflectionsΔρmin = 0.68 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1523 (12)0.9316 (8)0.2403 (4)0.077 (2)
H1A0.26610.89400.25380.092*
H1B0.06790.86350.22880.092*
H1C0.11850.98240.28120.092*
C20.1591 (7)1.0167 (6)0.1736 (3)0.0486 (13)
C30.1234 (9)1.1474 (7)0.1764 (4)0.0614 (16)
H30.09461.18510.22040.074*
C40.1306 (9)1.2221 (6)0.1134 (4)0.0654 (18)
H40.10551.31050.11440.078*
C50.1755 (8)1.1645 (6)0.0485 (4)0.0578 (15)
H50.18011.21380.00540.069*
C60.2132 (7)1.0330 (5)0.0485 (3)0.0425 (11)
C70.2666 (6)0.9633 (5)0.0177 (3)0.0388 (11)
C80.2796 (8)1.0242 (6)0.0855 (3)0.0535 (14)
H80.25101.11170.09190.064*
C90.3356 (9)0.9530 (8)0.1428 (4)0.0668 (19)
H90.34550.99260.18860.080*
C100.3770 (8)0.8238 (8)0.1333 (3)0.0581 (16)
H100.41560.77540.17200.070*
C110.3597 (8)0.7663 (6)0.0638 (3)0.0490 (13)
C120.3987 (12)0.6258 (7)0.0493 (4)0.074 (2)
H12A0.29420.58240.03710.089*
H12B0.48890.61770.00840.089*
H12C0.43800.58680.09300.089*
N10.2039 (6)0.9612 (4)0.1102 (2)0.0394 (9)
N20.3051 (6)0.8366 (4)0.0080 (2)0.0390 (9)
Zn10.26913 (8)0.76759 (6)0.09736 (3)0.04134 (17)
Br10.03105 (10)0.62512 (7)0.10150 (4)0.0682 (2)
Br20.52344 (8)0.69964 (7)0.17038 (3)0.05791 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.119 (6)0.070 (5)0.045 (3)0.017 (5)0.023 (4)0.006 (3)
C20.048 (3)0.047 (3)0.051 (3)0.006 (2)0.007 (2)0.010 (2)
C30.064 (4)0.052 (4)0.067 (4)0.014 (3)0.002 (3)0.018 (3)
C40.071 (4)0.036 (3)0.085 (5)0.012 (3)0.009 (4)0.013 (3)
C50.058 (3)0.041 (3)0.070 (4)0.004 (3)0.014 (3)0.015 (3)
C60.039 (3)0.034 (3)0.053 (3)0.000 (2)0.003 (2)0.004 (2)
C70.036 (2)0.038 (3)0.042 (3)0.004 (2)0.001 (2)0.009 (2)
C80.057 (3)0.054 (3)0.048 (3)0.005 (3)0.001 (3)0.017 (3)
C90.074 (4)0.083 (5)0.044 (3)0.013 (4)0.008 (3)0.020 (3)
C100.055 (3)0.083 (5)0.036 (3)0.003 (3)0.005 (2)0.001 (3)
C110.055 (3)0.056 (3)0.036 (3)0.005 (3)0.006 (2)0.002 (2)
C120.117 (6)0.054 (4)0.052 (4)0.022 (4)0.017 (4)0.006 (3)
N10.043 (2)0.035 (2)0.040 (2)0.0048 (17)0.0054 (18)0.0015 (17)
N20.047 (2)0.039 (2)0.0310 (19)0.0009 (18)0.0045 (17)0.0043 (17)
Zn10.0537 (4)0.0344 (3)0.0365 (3)0.0041 (3)0.0078 (2)0.0059 (2)
Br10.0718 (4)0.0582 (4)0.0742 (4)0.0162 (3)0.0053 (3)0.0207 (3)
Br20.0605 (4)0.0634 (4)0.0489 (3)0.0125 (3)0.0017 (3)0.0138 (3)
Geometric parameters (Å, º) top
C1—C21.492 (9)C8—C91.370 (10)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.372 (11)
C1—H1C0.9600C9—H90.9300
C2—N11.352 (7)C10—C111.403 (8)
C2—C31.373 (8)C10—H100.9300
C3—C41.376 (10)C11—N21.340 (7)
C3—H30.9300C11—C121.492 (9)
C4—C51.386 (10)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—C61.383 (8)C12—H12C0.9600
C5—H50.9300Zn1—N12.071 (4)
C6—N11.342 (7)Zn1—N22.072 (4)
C6—C71.486 (8)Zn1—Br22.3400 (11)
C7—N21.343 (7)Zn1—Br12.3444 (10)
C7—C81.384 (7)
C2—C1—H1A109.5C8—C9—C10120.6 (6)
C2—C1—H1B109.5C8—C9—H9119.7
H1A—C1—H1B109.5C10—C9—H9119.7
C2—C1—H1C109.5C9—C10—C11118.5 (6)
H1A—C1—H1C109.5C9—C10—H10120.7
H1B—C1—H1C109.5C11—C10—H10120.7
N1—C2—C3120.8 (6)N2—C11—C10120.5 (6)
N1—C2—C1117.8 (5)N2—C11—C12117.5 (5)
C3—C2—C1121.4 (6)C10—C11—C12121.9 (6)
C2—C3—C4119.4 (6)C11—C12—H12A109.5
C2—C3—H3120.3C11—C12—H12B109.5
C4—C3—H3120.3H12A—C12—H12B109.5
C3—C4—C5119.5 (6)C11—C12—H12C109.5
C3—C4—H4120.2H12A—C12—H12C109.5
C5—C4—H4120.2H12B—C12—H12C109.5
C6—C5—C4119.1 (6)C6—N1—C2120.5 (5)
C6—C5—H5120.4C6—N1—Zn1113.7 (3)
C4—C5—H5120.4C2—N1—Zn1125.8 (4)
N1—C6—C5120.6 (5)C11—N2—C7120.4 (4)
N1—C6—C7116.3 (4)C11—N2—Zn1125.8 (4)
C5—C6—C7123.1 (5)C7—N2—Zn1113.8 (3)
N2—C7—C8121.2 (5)N1—Zn1—N280.22 (17)
N2—C7—C6116.0 (4)N1—Zn1—Br2114.82 (13)
C8—C7—C6122.8 (5)N2—Zn1—Br2115.86 (12)
C9—C8—C7118.7 (6)N1—Zn1—Br1113.58 (12)
C9—C8—H8120.7N2—Zn1—Br1114.84 (13)
C7—C8—H8120.7Br2—Zn1—Br1113.53 (4)
N1—C2—C3—C41.1 (10)C3—C2—N1—Zn1178.0 (5)
C1—C2—C3—C4179.7 (7)C1—C2—N1—Zn11.2 (8)
C2—C3—C4—C50.7 (10)C10—C11—N2—C70.2 (8)
C3—C4—C5—C60.4 (10)C12—C11—N2—C7179.5 (6)
C4—C5—C6—N11.0 (9)C10—C11—N2—Zn1179.2 (4)
C4—C5—C6—C7178.5 (5)C12—C11—N2—Zn10.1 (8)
N1—C6—C7—N22.0 (7)C8—C7—N2—C110.9 (8)
C5—C6—C7—N2177.6 (5)C6—C7—N2—C11178.0 (5)
N1—C6—C7—C8179.2 (5)C8—C7—N2—Zn1178.5 (4)
C5—C6—C7—C81.3 (8)C6—C7—N2—Zn12.6 (6)
N2—C7—C8—C91.0 (9)C6—N1—Zn1—N20.8 (4)
C6—C7—C8—C9177.9 (6)C2—N1—Zn1—N2177.8 (5)
C7—C8—C9—C100.3 (10)C6—N1—Zn1—Br2114.9 (3)
C8—C9—C10—C110.4 (10)C2—N1—Zn1—Br263.7 (5)
C9—C10—C11—N20.5 (9)C6—N1—Zn1—Br1112.2 (3)
C9—C10—C11—C12178.8 (7)C2—N1—Zn1—Br169.3 (5)
C5—C6—N1—C20.6 (8)C11—N2—Zn1—N1178.7 (5)
C7—C6—N1—C2179.0 (5)C7—N2—Zn1—N11.9 (4)
C5—C6—N1—Zn1179.3 (4)C11—N2—Zn1—Br265.8 (5)
C7—C6—N1—Zn10.3 (6)C7—N2—Zn1—Br2114.8 (3)
C3—C2—N1—C60.4 (9)C11—N2—Zn1—Br169.7 (5)
C1—C2—N1—C6179.7 (6)C7—N2—Zn1—Br1109.7 (3)

Experimental details

Crystal data
Chemical formula[ZnBr2(C12H12N2)]
Mr409.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.6506 (15), 10.279 (2), 18.023 (4)
β (°) 95.93 (3)
V3)1409.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)7.39
Crystal size (mm)0.17 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.300, 0.418
No. of measured, independent and
observed [I > 2σ(I)] reflections
11390, 3822, 2717
Rint0.068
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.126, 1.11
No. of reflections3822
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.68

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N12.071 (4)Zn1—Br22.3400 (11)
Zn1—N22.072 (4)Zn1—Br12.3444 (10)
N1—Zn1—N280.22 (17)
 

Acknowledgements

We are grateful to Damghan University of Basic Sciences and the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m848–m849.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Kalateh, K., Ebadi, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlake, A. J., Giunta, D., Shannon, J., Solinas, M., Walzer, F. & Woodward, S. (2007). Collect. Czech. Chem. Commun. 72, 1107–1121.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhoshtarkib, Z., Ebadi, A., Alizadeh, R., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m739–m740.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, Y. M., Hong, S. J., Kim, H. J., Lee, S. H., Kwak, H., Kim, C., Kim, S. J. & Kim, Y. (2007). Inorg. Chem. Commun. 10, 287–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationReimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m315.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds