metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­[μ2-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-di­hydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ato]cobalt(II)] dihydrate]

aThe First Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China, and bThe Department of Health Care Services, Harbin Medical University, Harbin 150086, People's Republic of China
*Correspondence e-mail: shaom_hmu@126.com

(Received 29 September 2009; accepted 2 October 2009; online 10 October 2009)

The title compound, {[Co(C14H16N5O3)2]·2H2O}n or [Co(ppa)2]·2H2O}n, where ppa denotes the 8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydro­pyrido[2,3-d]pyrimidine-6-carb­ox­yl­ate anion, was synthesized under hydro­thermal conditions. The CoII atom (site symmetry [\overline{1}]) exhibits a distorted trans-CoN2O4 octa­hedral geometry defined by two monodentate N-bonded and two bidentate O,O′-bonded ppa anions. The extended two-dimensional structure is a square grid, which is consolidated by N—H⋯O hydrogen bonds. The disordered uncoordinated water mol­ecules occupy cavities within the grid.

Related literature

For the manganese and zinc complexes of the ppa anion, see: Huang et al. (2008[Huang, J., Hu, W.-P. & An, Z. (2008). Acta Cryst. E64, m547.]); Xu et al. (2009[Xu, W., Zhu, D.-S., Song, X.-D. & An, Z. (2009). Acta Cryst. E65, m1223.]). For background to the medicinal uses of pipemidic acid, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H16N5O3)2]·2H2O

  • Mr = 699.58

  • Monoclinic, P 21 /c

  • a = 6.1093 (3) Å

  • b = 21.3690 (11) Å

  • c = 12.5944 (6) Å

  • β = 101.254 (1)°

  • V = 1612.58 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 295 K

  • 0.32 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.832, Tmax = 0.900

  • 9807 measured reflections

  • 3894 independent reflections

  • 3327 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.181

  • S = 1.12

  • 3894 reflections

  • 227 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 2.022 (2)
Co1—O1 2.0829 (18)
Co1—N5i 2.265 (2)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯O2ii 0.900 (10) 2.278 (14) 3.156 (4) 165 (3)
Symmetry code: (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pipemidic acid (Hppa, C14H16N5O3, 8-Ethyl-5,8-dihydro-5-oxo-2- (1-piperazinyl)-pyrido(2,3 - d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). The manganese and cobalt complexes of the ppa anion have been reported (Huang et al., 2008; Xu et al. 2009). The title cobalt(II) complex is reported here(Fig. 1).

The cobalt(II) atom is coordinated by four oxygen atoms and two N atoms from four ppa ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating in (Fig. 2). The disordered, uncoordinated, water molecules occupy the cavities.

Related literature top

For the manganese and zinc complexe of the ppa anion, see: Huang et al. (2008); Xu et al. (2009). For background to the medicinal uses of pipemidic acid, see: Mizuki et al. (1996).

Experimental top

A mixture of Co(CH3COO)2.4H2O (0.25 mmol), Hppa (0.5 mmol), sodium hydroxide (1 mmol) and water (12 ml) was stirred for 40 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 96 h under autogenous pressure. Upon cooling, pink prisms of (I) were obtained from the reaction mixture.

Refinement top

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2Ueq(C). The H on Nitrogen atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.86 (1) /%A and with Uiso(H) = 1.2Ueq(N).

The water H atoms could not be placed due to this disorder.

Structure description top

Pipemidic acid (Hppa, C14H16N5O3, 8-Ethyl-5,8-dihydro-5-oxo-2- (1-piperazinyl)-pyrido(2,3 - d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). The manganese and cobalt complexes of the ppa anion have been reported (Huang et al., 2008; Xu et al. 2009). The title cobalt(II) complex is reported here(Fig. 1).

The cobalt(II) atom is coordinated by four oxygen atoms and two N atoms from four ppa ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating in (Fig. 2). The disordered, uncoordinated, water molecules occupy the cavities.

For the manganese and zinc complexe of the ppa anion, see: Huang et al. (2008); Xu et al. (2009). For background to the medicinal uses of pipemidic acid, see: Mizuki et al. (1996).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) expanded to show the metal coordination and polymeric connectivity showing 50% displacement ellipsoids (water molecule O atoms have been omitted for clarity).
[Figure 2] Fig. 2. A view of part of a two-dimensional polymeric sheet in (I) showing the square-grid connectivity (H atoms and water molecule O atoms omitted for clarity).
Poly[[bis[µ2-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8- dihydropyrido[2,3-d]pyrimidine-6-carboxylato]cobalt(II)] dihydrate] top
Crystal data top
[Co(C14H16N5O3)2]·2H2OF(000) = 722
Mr = 699.58Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4362 reflections
a = 6.1093 (3) Åθ = 2.5–28.2°
b = 21.3690 (11) ŵ = 0.60 mm1
c = 12.5944 (6) ÅT = 295 K
β = 101.254 (1)°Prism, pink
V = 1612.58 (14) Å30.32 × 0.26 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3894 independent reflections
Radiation source: fine-focus sealed tube3327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.832, Tmax = 0.900k = 2728
9807 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0899P)2 + 1.3252P]
where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max = 0.003
227 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
[Co(C14H16N5O3)2]·2H2OV = 1612.58 (14) Å3
Mr = 699.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.1093 (3) ŵ = 0.60 mm1
b = 21.3690 (11) ÅT = 295 K
c = 12.5944 (6) Å0.32 × 0.26 × 0.18 mm
β = 101.254 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3894 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3327 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.900Rint = 0.029
9807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.77 e Å3
3894 reflectionsΔρmin = 0.46 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1W0.669 (4)0.5177 (8)0.5335 (9)0.255 (11)0.50
O2W0.024 (4)0.5581 (10)0.4291 (11)0.254 (10)0.50
Co10.50000.50000.00000.02469 (18)
O10.6496 (3)0.57810 (9)0.08289 (16)0.0324 (4)
O20.1437 (5)0.51651 (14)0.2499 (2)0.0626 (8)
N10.5101 (5)0.67072 (13)0.3478 (2)0.0487 (7)
N20.7758 (5)0.74617 (12)0.3332 (2)0.0390 (6)
N31.0138 (5)0.73519 (13)0.2023 (2)0.0437 (7)
N41.0250 (4)0.82327 (11)0.3106 (2)0.0362 (6)
C10.2840 (5)0.52788 (13)0.1939 (2)0.0328 (6)
C20.4347 (5)0.58348 (13)0.2241 (2)0.0330 (6)
C30.6059 (4)0.60347 (12)0.1662 (2)0.0275 (5)
C40.7269 (5)0.65898 (13)0.2104 (2)0.0318 (6)
C50.9081 (5)0.68298 (14)0.1695 (3)0.0398 (7)
H50.95660.66030.11550.048*
C60.9339 (5)0.76685 (13)0.2815 (2)0.0334 (6)
C70.6763 (5)0.69244 (13)0.2976 (3)0.0364 (6)
C80.3996 (6)0.61779 (15)0.3104 (3)0.0452 (8)
H80.29050.60360.34670.054*
C90.4470 (8)0.7043 (2)0.4423 (4)0.0646 (12)
H9A0.46930.74890.43510.078*
H9B0.29020.69720.44250.078*
C100.5781 (12)0.6828 (4)0.5417 (5)0.118 (2)
H10A0.54740.63930.55130.177*
H10B0.54170.70650.60060.177*
H10C0.73350.68800.54010.177*
C111.1614 (6)0.85706 (17)0.2461 (3)0.0478 (8)
H11A1.06670.88390.19430.057*
H11B1.23450.82740.20620.057*
C121.3372 (5)0.89675 (15)0.3196 (3)0.0400 (7)
H12A1.44480.86900.36300.048*
H12B1.41620.92160.27470.048*
C131.1106 (5)0.90153 (13)0.4537 (2)0.0330 (6)
H13A1.04240.92930.49890.040*
H13B1.20780.87310.50110.040*
C140.9295 (5)0.86418 (14)0.3823 (3)0.0353 (6)
H14A0.85050.83920.42700.042*
H14B0.82330.89250.33950.042*
N51.2458 (4)0.93890 (10)0.39246 (19)0.0286 (5)
O30.3027 (3)0.49641 (8)0.11147 (17)0.0295 (4)
H5N1.155 (5)0.9660 (14)0.350 (2)0.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.52 (4)0.180 (13)0.073 (8)0.084 (17)0.063 (13)0.045 (8)
O2W0.35 (2)0.33 (2)0.122 (10)0.09 (2)0.147 (13)0.030 (13)
Co10.0276 (3)0.0158 (3)0.0304 (3)0.00028 (17)0.0050 (2)0.00242 (17)
O10.0350 (10)0.0243 (9)0.0395 (11)0.0065 (8)0.0113 (8)0.0089 (8)
O20.0732 (18)0.0635 (16)0.0631 (17)0.0401 (15)0.0429 (15)0.0297 (14)
N10.0630 (18)0.0404 (15)0.0494 (16)0.0222 (14)0.0271 (14)0.0189 (12)
N20.0494 (15)0.0296 (12)0.0413 (14)0.0138 (11)0.0167 (11)0.0129 (10)
N30.0454 (15)0.0348 (14)0.0556 (16)0.0152 (12)0.0221 (13)0.0200 (12)
N40.0390 (13)0.0268 (12)0.0462 (14)0.0093 (10)0.0169 (11)0.0132 (10)
C10.0354 (14)0.0250 (13)0.0379 (15)0.0061 (11)0.0068 (12)0.0030 (11)
C20.0409 (15)0.0244 (13)0.0343 (14)0.0074 (11)0.0091 (12)0.0035 (10)
C30.0309 (13)0.0192 (12)0.0314 (13)0.0023 (10)0.0034 (10)0.0024 (10)
C40.0354 (14)0.0241 (12)0.0365 (14)0.0064 (11)0.0082 (11)0.0064 (11)
C50.0434 (16)0.0300 (14)0.0498 (18)0.0102 (12)0.0186 (14)0.0180 (13)
C60.0338 (14)0.0248 (13)0.0427 (16)0.0058 (11)0.0097 (12)0.0087 (11)
C70.0449 (16)0.0269 (13)0.0397 (15)0.0099 (12)0.0139 (13)0.0087 (11)
C80.057 (2)0.0352 (16)0.0486 (18)0.0198 (15)0.0238 (16)0.0107 (14)
C90.080 (3)0.058 (2)0.065 (3)0.030 (2)0.035 (2)0.025 (2)
C100.121 (5)0.155 (7)0.082 (4)0.025 (5)0.028 (4)0.020 (4)
C110.055 (2)0.0429 (18)0.0501 (19)0.0253 (15)0.0221 (16)0.0187 (15)
C120.0370 (15)0.0326 (15)0.0537 (18)0.0113 (12)0.0167 (13)0.0110 (13)
C130.0334 (14)0.0266 (13)0.0402 (15)0.0067 (11)0.0104 (12)0.0072 (11)
C140.0290 (13)0.0276 (13)0.0507 (17)0.0062 (11)0.0114 (12)0.0119 (12)
N50.0283 (11)0.0208 (10)0.0362 (12)0.0017 (8)0.0053 (9)0.0010 (9)
O30.0337 (10)0.0199 (9)0.0353 (11)0.0035 (7)0.0072 (8)0.0029 (7)
Geometric parameters (Å, º) top
Co1—O3i2.022 (2)C4—C51.405 (4)
Co1—O32.022 (2)C5—H50.9300
Co1—O1i2.0829 (18)C8—H80.9300
Co1—O12.0829 (18)C9—C101.425 (9)
Co1—N5ii2.265 (2)C9—H9A0.9700
Co1—N5iii2.265 (2)C9—H9B0.9700
O1—C31.255 (3)C10—H10A0.9600
O2—C11.235 (4)C10—H10B0.9600
N1—C81.354 (4)C10—H10C0.9600
N1—C71.376 (4)C11—C121.530 (4)
N1—C91.503 (5)C11—H11A0.9700
N2—C71.335 (4)C11—H11B0.9700
N2—C61.341 (4)C12—N51.471 (4)
N3—C51.315 (4)C12—H12A0.9700
N3—C61.371 (4)C12—H12B0.9700
N4—C61.348 (3)C13—N51.471 (3)
N4—C141.459 (3)C13—C141.510 (4)
N4—C111.462 (4)C13—H13A0.9700
C1—O31.261 (3)C13—H13B0.9700
C1—C21.506 (4)C14—H14A0.9700
C2—C81.362 (4)C14—H14B0.9700
C2—C31.451 (4)N5—Co1iv2.265 (2)
C3—C41.450 (4)N5—H5N0.900 (10)
C4—C71.396 (4)
O3i—Co1—O3180.0N1—C8—H8117.2
O3i—Co1—O1i86.86 (7)C2—C8—H8117.2
O3—Co1—O1i93.14 (7)C10—C9—N1110.8 (5)
O3i—Co1—O193.14 (7)C10—C9—H9A109.5
O3—Co1—O186.86 (7)N1—C9—H9A109.5
O1i—Co1—O1180.0C10—C9—H9B109.5
O3i—Co1—N5ii90.28 (8)N1—C9—H9B109.5
O3—Co1—N5ii89.72 (8)H9A—C9—H9B108.1
O1i—Co1—N5ii91.18 (8)C9—C10—H10A109.5
O1—Co1—N5ii88.82 (8)C9—C10—H10B109.5
O3i—Co1—N5iii89.72 (8)H10A—C10—H10B109.5
O3—Co1—N5iii90.28 (8)C9—C10—H10C109.5
O1i—Co1—N5iii88.82 (8)H10A—C10—H10C109.5
O1—Co1—N5iii91.18 (8)H10B—C10—H10C109.5
N5ii—Co1—N5iii180.0N4—C11—C12110.3 (3)
C3—O1—Co1128.37 (17)N4—C11—H11A109.6
C8—N1—C7119.0 (3)C12—C11—H11A109.6
C8—N1—C9119.1 (3)N4—C11—H11B109.6
C7—N1—C9121.9 (3)C12—C11—H11B109.6
C7—N2—C6116.4 (2)H11A—C11—H11B108.1
C5—N3—C6115.1 (3)N5—C12—C11114.2 (3)
C6—N4—C14120.7 (2)N5—C12—H12A108.7
C6—N4—C11122.7 (2)C11—C12—H12A108.7
C14—N4—C11112.8 (2)N5—C12—H12B108.7
O2—C1—O3123.3 (3)C11—C12—H12B108.7
O2—C1—C2118.0 (3)H12A—C12—H12B107.6
O3—C1—C2118.6 (2)N5—C13—C14113.3 (2)
C8—C2—C3118.9 (3)N5—C13—H13A108.9
C8—C2—C1116.3 (3)C14—C13—H13A108.9
C3—C2—C1124.8 (2)N5—C13—H13B108.9
O1—C3—C4119.9 (2)C14—C13—H13B108.9
O1—C3—C2125.8 (2)H13A—C13—H13B107.7
C4—C3—C2114.3 (2)N4—C14—C13110.5 (2)
C7—C4—C5114.4 (2)N4—C14—H14A109.5
C7—C4—C3123.1 (3)C13—C14—H14A109.5
C5—C4—C3122.5 (3)N4—C14—H14B109.5
N3—C5—C4124.7 (3)C13—C14—H14B109.5
N3—C5—H5117.7H14A—C14—H14B108.1
C4—C5—H5117.7C13—N5—C12108.4 (2)
N2—C6—N4117.5 (2)C13—N5—Co1iv112.89 (17)
N2—C6—N3125.7 (3)C12—N5—Co1iv115.23 (17)
N4—C6—N3116.9 (3)C13—N5—H5N108 (2)
N2—C7—N1117.7 (3)C12—N5—H5N107 (2)
N2—C7—C4123.3 (3)Co1iv—N5—H5N105 (2)
N1—C7—C4119.0 (3)C1—O3—Co1135.54 (18)
N1—C8—C2125.6 (3)
O3i—Co1—O1—C3179.8 (2)C8—N1—C7—N2177.2 (3)
O3—Co1—O1—C30.2 (2)C9—N1—C7—N22.4 (5)
N5ii—Co1—O1—C389.6 (2)C8—N1—C7—C40.5 (5)
N5iii—Co1—O1—C390.4 (2)C9—N1—C7—C4179.9 (4)
O2—C1—C2—C81.4 (5)C5—C4—C7—N26.3 (5)
O3—C1—C2—C8176.6 (3)C3—C4—C7—N2174.7 (3)
O2—C1—C2—C3179.3 (3)C5—C4—C7—N1176.2 (3)
O3—C1—C2—C31.3 (4)C3—C4—C7—N12.8 (5)
Co1—O1—C3—C4178.49 (19)C7—N1—C8—C21.4 (6)
Co1—O1—C3—C20.6 (4)C9—N1—C8—C2178.2 (4)
C8—C2—C3—O1176.7 (3)C3—C2—C8—N10.9 (6)
C1—C2—C3—O11.2 (5)C1—C2—C8—N1177.2 (3)
C8—C2—C3—C41.3 (4)C8—N1—C9—C1091.4 (5)
C1—C2—C3—C4179.2 (3)C7—N1—C9—C1089.0 (5)
O1—C3—C4—C7175.0 (3)C6—N4—C11—C12149.0 (3)
C2—C3—C4—C73.1 (4)C14—N4—C11—C1252.8 (4)
O1—C3—C4—C56.0 (4)N4—C11—C12—N553.2 (4)
C2—C3—C4—C5175.8 (3)C6—N4—C14—C13146.4 (3)
C6—N3—C5—C40.5 (5)C11—N4—C14—C1354.9 (4)
C7—C4—C5—N35.4 (5)N5—C13—C14—N456.7 (3)
C3—C4—C5—N3175.5 (3)C14—C13—N5—C1255.3 (3)
C7—N2—C6—N4175.2 (3)C14—C13—N5—Co1iv175.84 (18)
C7—N2—C6—N35.8 (5)C11—C12—N5—C1353.7 (4)
C14—N4—C6—N29.8 (4)C11—C12—N5—Co1iv178.7 (2)
C11—N4—C6—N2166.4 (3)O2—C1—O3—Co1178.9 (3)
C14—N4—C6—N3171.1 (3)C2—C1—O3—Co11.0 (4)
C11—N4—C6—N314.5 (5)O1i—Co1—O3—C1179.6 (3)
C5—N3—C6—N26.6 (5)O1—Co1—O3—C10.4 (3)
C5—N3—C6—N4174.4 (3)N5ii—Co1—O3—C188.4 (3)
C6—N2—C7—N1178.7 (3)N5iii—Co1—O3—C191.6 (3)
C6—N2—C7—C41.1 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y1/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···O2v0.90 (1)2.28 (1)3.156 (4)165 (3)
Symmetry code: (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C14H16N5O3)2]·2H2O
Mr699.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.1093 (3), 21.3690 (11), 12.5944 (6)
β (°) 101.254 (1)
V3)1612.58 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.32 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.832, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
9807, 3894, 3327
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.181, 1.12
No. of reflections3894
No. of parameters227
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.46

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O32.022 (2)Co1—N5i2.265 (2)
Co1—O12.0829 (18)
Symmetry code: (i) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···O2ii0.900 (10)2.278 (14)3.156 (4)165 (3)
Symmetry code: (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Foundation for Youth of Heilongjiang Province (grant No. QC07C97).

References

First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, J., Hu, W.-P. & An, Z. (2008). Acta Cryst. E64, m547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41-45.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, W., Zhu, D.-S., Song, X.-D. & An, Z. (2009). Acta Cryst. E65, m1223.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds