organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-5-[(5,5-di­methyl-4,5-di­hydro­isoxazol-3-yl)sulfonyl­meth­yl]-3-methyl-1-(2,2,2-tri­fluoro­ethyl)-1H-pyrazole

aKey Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
*Correspondence e-mail: jning502@yahoo.com.cn

(Received 30 September 2009; accepted 4 October 2009; online 10 October 2009)

In the title compound, C12H15BrF3N3O3S, which has potential herbicidal activity, the mol­ecule is twisted, as indicated by the C—S—C—C torsion angle of 67.86 (19)° for the atoms linking the ring systems. An intra­molecular C—H⋯F short contact occurs and inter­molecular C—H⋯O inter­actions link the mol­ecules in the crystal.

Related literature

For background to pyrazoles and their pharmacological and pharmaceutical applications, see: Aiello et al. (2000[Aiello, E., Aiello, S., Mingoia, F., Bacchi, A., Pelizzi, G., Musiu, C., Setzu, M. G., Pani, A., Colla, P. L. & Marongiu, M. E. (2000). Bioorg. Med. Chem. 8, 2719-2728.]); Hirai et al. (2002[Hirai, K., Uchida, A. & and Ohno, R. (2002). Herbicide Classes in Development, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 179-289. Heidelberg: Springer-Verlag.]); Lahm et al. (2007[Lahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274-6279.]); Meegalla et al. (2004[Meegalla, S. K., Doller, D., Sha, D. Y., Soll, R., Wisnewski, N., Silver, G. M. & Dhanoa, D. (2004). Bioorg. Med. Chem. Lett. 14, 4949-4953.]); Ohno et al. (2004[Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15-26.]); Shiga et al. (2003[Shiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313-314.]); Sivaprasad et al. (2006[Sivaprasad, G., Perumal, P. T., Prabavathyb, V. R. & Mathivananb, N. (2006). Bioorg. Med. Chem. Lett. 16, 6302-6305.]); Vicentini et al. (2005[Vicentini, C. B., Guccione, S., Giurato, L., Ciaccio, R., Mares, D. & Forlani, G. (2005). J. Agric. Food. Chem. 53, 3848-3855.]); Waldrep et al. (1990[Waldrep, T. W., Beck, J. R., Lynch, M. P. & Wright, F. L. (1990). J. Agric. Food. Chem. 38, 541-544.]). The trifluoro­methyl group is present in many biologically active pharmaceutical and agrochemical compounds, presumably due to its increased lipophilicity, electronegativity and relatively small size, see: Welch (1987[Welch, J. T. (1987). Tetrahedron, 43, 3123-3197.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15BrF3N3O3S

  • Mr = 418.24

  • Monoclinic, P 21 /n

  • a = 16.127 (3) Å

  • b = 5.4356 (11) Å

  • c = 19.135 (4) Å

  • β = 106.85 (3)°

  • V = 1605.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 173 K

  • 0.16 × 0.15 × 0.05 mm

Data collection
  • Rigaku MM007HF + CCD (Saturn724+) diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]) Tmin = 0.668, Tmax = 0.875

  • 11131 measured reflections

  • 3614 independent reflections

  • 3353 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.14

  • 3614 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯F2 0.99 2.44 3.229 (3) 137
C5—H5A⋯O1i 0.99 2.30 3.131 (3) 141
C7—H7B⋯O2ii 0.99 2.29 3.271 (3) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole derivatives represent one of the most important classes of organic heterocyclic compounds, possessing a wide spectrum of biological activities in agrochemicals such as insecticidal (Lahm et al., 2007; Meegalla et al., 2004; Shiga et al., 2003), fungicidal (Aiello et al., 2000; Sivaprasad et al., 2006), herbicidal (Ohno et al., 2004; Vicentini et al., 2005; Waldrep et al., 1990) activities. Some pyrazole derivatives are in use as herbicides such as pyrazolate, pyrazoxyfen, benzofenap, pyraflufen-ethyl, fluazolate and pyrazosulfuron-ethyl (Hirai et al.,2002). The trifluoromethyl moiety is particularly encountered in many biologically active pharmaceutical and agrochemical compounds presumably due to its increased lipophilicity, electronegativity and relatively small size (Welch 1987). Recently, we introduced trifluoromethyl to forming a novel title compound (I) with high herbicidal activity that has not been reported in literatures. The crystal structure of the title compound is shown in Fig. 1.

Related literature top

For background to pyrazoles and their pharmacological and pharmaceutical applications, see: Aiello et al. (2000); Hirai et al. (2002); Lahm et al. (2007); Meegalla et al. (2004); Ohno et al. (2004); Shiga et al. (2003); Sivaprasad et al. (2006); Vicentini et al. (2005); Waldrep et al. (1990). The trifluoromethyl group is present in many biologically active pharmaceutical and agrochemical compounds, presumably due to its increased lipophilicity, electronegativity and relatively small size, see: Welch (1987).

Experimental top

4-Bromo-5-[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonylmethyl]-3-methyl-1-(2,2,2-trifluoroethyl)-1H-pyrazole (0.2 g) was dissolved in acetone (50 ml) at room temperature. Colourless crystals of the title compound (I) were obtained through slow evaporation after two weeks.

Refinement top

The H atoms were placed at calculated positions, with C—H=0.93–0.98 Å, and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 - 1.5Ueq(C).

Structure description top

Pyrazole derivatives represent one of the most important classes of organic heterocyclic compounds, possessing a wide spectrum of biological activities in agrochemicals such as insecticidal (Lahm et al., 2007; Meegalla et al., 2004; Shiga et al., 2003), fungicidal (Aiello et al., 2000; Sivaprasad et al., 2006), herbicidal (Ohno et al., 2004; Vicentini et al., 2005; Waldrep et al., 1990) activities. Some pyrazole derivatives are in use as herbicides such as pyrazolate, pyrazoxyfen, benzofenap, pyraflufen-ethyl, fluazolate and pyrazosulfuron-ethyl (Hirai et al.,2002). The trifluoromethyl moiety is particularly encountered in many biologically active pharmaceutical and agrochemical compounds presumably due to its increased lipophilicity, electronegativity and relatively small size (Welch 1987). Recently, we introduced trifluoromethyl to forming a novel title compound (I) with high herbicidal activity that has not been reported in literatures. The crystal structure of the title compound is shown in Fig. 1.

For background to pyrazoles and their pharmacological and pharmaceutical applications, see: Aiello et al. (2000); Hirai et al. (2002); Lahm et al. (2007); Meegalla et al. (2004); Ohno et al. (2004); Shiga et al. (2003); Sivaprasad et al. (2006); Vicentini et al. (2005); Waldrep et al. (1990). The trifluoromethyl group is present in many biologically active pharmaceutical and agrochemical compounds, presumably due to its increased lipophilicity, electronegativity and relatively small size, see: Welch (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50° probability displacement ellipsoids and the atom-numbering scheme.
4-Bromo-5-[(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)sulfonylmethyl]-3-methyl-1- (2,2,2-trifluoroethyl)-1H-pyrazole top
Crystal data top
C12H15BrF3N3O3SF(000) = 840
Mr = 418.24Dx = 1.730 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5465 reflections
a = 16.127 (3) Åθ = 1.5–27.5°
b = 5.4356 (11) ŵ = 2.74 mm1
c = 19.135 (4) ÅT = 173 K
β = 106.85 (3)°Slab, colourless
V = 1605.3 (6) Å30.16 × 0.15 × 0.05 mm
Z = 4
Data collection top
Rigaku MM007HF + CCD (Saturn724+)
diffractometer
3614 independent reflections
Radiation source: Rotating Anode3353 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.040
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 1.5°
ω scans at fixed χ = 45°h = 2018
Absorption correction: numerical
(CrystalClear; Rigaku, 2008)
k = 76
Tmin = 0.668, Tmax = 0.875l = 2124
11131 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0399P)2 + 1.0315P]
where P = (Fo2 + 2Fc2)/3
3614 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C12H15BrF3N3O3SV = 1605.3 (6) Å3
Mr = 418.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.127 (3) ŵ = 2.74 mm1
b = 5.4356 (11) ÅT = 173 K
c = 19.135 (4) Å0.16 × 0.15 × 0.05 mm
β = 106.85 (3)°
Data collection top
Rigaku MM007HF + CCD (Saturn724+)
diffractometer
3614 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku, 2008)
3353 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.875Rint = 0.040
11131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.14Δρmax = 0.44 e Å3
3614 reflectionsΔρmin = 0.50 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.445686 (15)0.94374 (5)0.090555 (14)0.03063 (10)
S10.36847 (3)0.46277 (11)0.24140 (3)0.01880 (13)
F10.05557 (10)0.1917 (4)0.03774 (10)0.0506 (5)
F20.10792 (11)0.5508 (4)0.06883 (11)0.0533 (5)
F30.09624 (11)0.4150 (4)0.03880 (9)0.0446 (5)
O10.34862 (11)0.5488 (4)0.30560 (9)0.0302 (4)
O20.35701 (10)0.2071 (3)0.22232 (9)0.0278 (4)
O30.60544 (10)0.5023 (3)0.23928 (9)0.0247 (4)
N10.29249 (12)0.3877 (4)0.01482 (10)0.0245 (4)
N20.27115 (12)0.4000 (4)0.04901 (10)0.0202 (4)
N30.52217 (12)0.4076 (4)0.22290 (11)0.0218 (4)
C10.36847 (14)0.6842 (4)0.05707 (12)0.0215 (5)
C20.35194 (15)0.5606 (5)0.01018 (12)0.0233 (5)
C30.31611 (14)0.5796 (4)0.09432 (12)0.0190 (4)
C40.39090 (17)0.6042 (6)0.07062 (14)0.0352 (6)
H4A0.36490.49160.11100.053*
H4B0.45350.57530.05310.053*
H4C0.38000.77450.08760.053*
C50.20495 (14)0.2363 (5)0.05891 (12)0.0235 (5)
H5A0.21720.19660.11140.028*
H5B0.20640.08090.03230.028*
C60.11590 (16)0.3492 (5)0.03153 (14)0.0306 (6)
C70.30517 (14)0.6434 (5)0.16676 (12)0.0203 (4)
H7A0.24330.62470.16410.024*
H7B0.32060.81880.17700.024*
C80.47706 (14)0.5475 (4)0.25141 (12)0.0180 (4)
C90.52301 (14)0.7679 (5)0.29165 (13)0.0242 (5)
H9A0.51520.78240.34090.029*
H9B0.50410.92210.26410.029*
C100.61659 (14)0.6997 (4)0.29502 (13)0.0221 (5)
C110.66758 (17)0.9027 (5)0.27253 (17)0.0347 (6)
H11A0.72290.83700.26910.052*
H11B0.67861.03470.30900.052*
H11C0.63430.96820.22490.052*
C120.66479 (18)0.5845 (5)0.36726 (15)0.0359 (6)
H12A0.72020.51880.36430.054*
H12B0.63000.45080.37860.054*
H12C0.67540.70930.40580.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02683 (15)0.02743 (17)0.03790 (17)0.00740 (9)0.00979 (11)0.00368 (10)
S10.0184 (3)0.0222 (3)0.0175 (3)0.00311 (19)0.0078 (2)0.0020 (2)
F10.0246 (8)0.0738 (14)0.0495 (10)0.0205 (8)0.0044 (7)0.0103 (9)
F20.0288 (9)0.0612 (13)0.0659 (13)0.0097 (8)0.0074 (8)0.0243 (10)
F30.0334 (9)0.0640 (13)0.0331 (9)0.0067 (8)0.0043 (7)0.0170 (8)
O10.0277 (9)0.0473 (12)0.0192 (8)0.0046 (8)0.0126 (7)0.0057 (8)
O20.0285 (9)0.0204 (9)0.0328 (9)0.0056 (7)0.0065 (7)0.0001 (7)
O30.0180 (8)0.0272 (9)0.0307 (9)0.0019 (6)0.0098 (7)0.0084 (7)
N10.0237 (10)0.0334 (12)0.0174 (9)0.0014 (8)0.0076 (8)0.0002 (8)
N20.0185 (9)0.0257 (10)0.0173 (9)0.0007 (7)0.0065 (7)0.0004 (8)
N30.0187 (9)0.0221 (10)0.0251 (10)0.0013 (7)0.0070 (8)0.0031 (8)
C10.0183 (10)0.0239 (12)0.0220 (11)0.0001 (8)0.0055 (8)0.0036 (9)
C20.0204 (11)0.0320 (14)0.0185 (11)0.0040 (9)0.0072 (9)0.0041 (9)
C30.0180 (10)0.0201 (11)0.0187 (10)0.0014 (8)0.0047 (8)0.0009 (8)
C40.0289 (13)0.0569 (19)0.0236 (13)0.0009 (12)0.0133 (10)0.0072 (12)
C50.0231 (11)0.0254 (12)0.0219 (11)0.0066 (9)0.0066 (9)0.0003 (9)
C60.0242 (12)0.0373 (15)0.0295 (13)0.0075 (11)0.0067 (10)0.0009 (11)
C70.0190 (10)0.0207 (12)0.0217 (11)0.0008 (8)0.0067 (8)0.0028 (9)
C80.0181 (10)0.0189 (11)0.0170 (10)0.0008 (8)0.0049 (8)0.0015 (8)
C90.0199 (11)0.0235 (12)0.0298 (12)0.0028 (9)0.0083 (9)0.0064 (10)
C100.0208 (11)0.0183 (12)0.0261 (12)0.0002 (8)0.0053 (9)0.0037 (9)
C110.0256 (13)0.0256 (14)0.0546 (18)0.0013 (10)0.0141 (12)0.0048 (12)
C120.0350 (14)0.0383 (16)0.0277 (14)0.0000 (11)0.0014 (11)0.0005 (11)
Geometric parameters (Å, º) top
Br1—C11.868 (2)C4—H4B0.9800
S1—O11.4346 (17)C4—H4C0.9800
S1—O21.4351 (18)C5—C61.509 (3)
S1—C81.767 (2)C5—H5A0.9900
S1—C71.789 (2)C5—H5B0.9900
F1—C61.327 (3)C7—H7A0.9900
F2—C61.334 (3)C7—H7B0.9900
F3—C61.339 (3)C8—C91.499 (3)
O3—N31.387 (2)C9—C101.537 (3)
O3—C101.487 (3)C9—H9A0.9900
N1—C21.327 (3)C9—H9B0.9900
N1—N21.363 (3)C10—C121.511 (3)
N2—C31.366 (3)C10—C111.512 (3)
N2—C51.444 (3)C11—H11A0.9800
N3—C81.279 (3)C11—H11B0.9800
C1—C31.376 (3)C11—H11C0.9800
C1—C21.407 (3)C12—H12A0.9800
C2—C41.487 (3)C12—H12B0.9800
C3—C71.488 (3)C12—H12C0.9800
C4—H4A0.9800
O1—S1—O2119.28 (11)F1—C6—C5110.8 (2)
O1—S1—C8106.41 (11)F2—C6—C5112.2 (2)
O2—S1—C8109.30 (10)F3—C6—C5112.5 (2)
O1—S1—C7106.71 (11)C3—C7—S1114.91 (16)
O2—S1—C7109.08 (11)C3—C7—H7A108.5
C8—S1—C7105.17 (11)S1—C7—H7A108.5
N3—O3—C10109.76 (16)C3—C7—H7B108.5
C2—N1—N2105.69 (19)S1—C7—H7B108.5
N1—N2—C3112.23 (19)H7A—C7—H7B107.5
N1—N2—C5118.40 (19)N3—C8—C9115.9 (2)
C3—N2—C5129.33 (19)N3—C8—S1117.85 (17)
C8—N3—O3108.43 (18)C9—C8—S1126.24 (17)
C3—C1—C2107.1 (2)C8—C9—C1099.33 (18)
C3—C1—Br1125.64 (18)C8—C9—H9A111.9
C2—C1—Br1127.23 (18)C10—C9—H9A111.9
N1—C2—C1109.9 (2)C8—C9—H9B111.9
N1—C2—C4121.4 (2)C10—C9—H9B111.9
C1—C2—C4128.7 (2)H9A—C9—H9B109.6
N2—C3—C1105.0 (2)O3—C10—C12106.28 (19)
N2—C3—C7125.0 (2)O3—C10—C11106.6 (2)
C1—C3—C7130.0 (2)C12—C10—C11112.6 (2)
C2—C4—H4A109.5O3—C10—C9103.34 (17)
C2—C4—H4B109.5C12—C10—C9112.1 (2)
H4A—C4—H4B109.5C11—C10—C9114.9 (2)
C2—C4—H4C109.5C10—C11—H11A109.5
H4A—C4—H4C109.5C10—C11—H11B109.5
H4B—C4—H4C109.5H11A—C11—H11B109.5
N2—C5—C6111.7 (2)C10—C11—H11C109.5
N2—C5—H5A109.3H11A—C11—H11C109.5
C6—C5—H5A109.3H11B—C11—H11C109.5
N2—C5—H5B109.3C10—C12—H12A109.5
C6—C5—H5B109.3C10—C12—H12B109.5
H5A—C5—H5B107.9H12A—C12—H12B109.5
F1—C6—F2107.2 (2)C10—C12—H12C109.5
F1—C6—F3107.2 (2)H12A—C12—H12C109.5
F2—C6—F3106.7 (2)H12B—C12—H12C109.5
C2—N1—N2—C30.2 (3)N2—C3—C7—S186.0 (2)
C2—N1—N2—C5178.1 (2)C1—C3—C7—S196.3 (3)
C10—O3—N3—C810.9 (2)O1—S1—C7—C3179.38 (16)
N2—N1—C2—C10.1 (3)O2—S1—C7—C349.28 (19)
N2—N1—C2—C4179.6 (2)C8—S1—C7—C367.86 (19)
C3—C1—C2—N10.0 (3)O3—N3—C8—C91.1 (3)
Br1—C1—C2—N1179.51 (17)O3—N3—C8—S1177.89 (14)
C3—C1—C2—C4179.4 (2)O1—S1—C8—N3148.46 (19)
Br1—C1—C2—C40.0 (4)O2—S1—C8—N318.4 (2)
N1—N2—C3—C10.2 (3)C7—S1—C8—N398.6 (2)
C5—N2—C3—C1177.8 (2)O1—S1—C8—C930.4 (2)
N1—N2—C3—C7178.0 (2)O2—S1—C8—C9160.43 (19)
C5—N2—C3—C70.4 (4)C7—S1—C8—C982.6 (2)
C2—C1—C3—N20.2 (2)N3—C8—C9—C1011.7 (3)
Br1—C1—C3—N2179.65 (16)S1—C8—C9—C10167.21 (17)
C2—C1—C3—C7177.9 (2)N3—O3—C10—C12100.6 (2)
Br1—C1—C3—C71.6 (4)N3—O3—C10—C11139.07 (19)
N1—N2—C5—C689.7 (2)N3—O3—C10—C917.6 (2)
C3—N2—C5—C687.8 (3)C8—C9—C10—O316.2 (2)
N2—C5—C6—F1176.9 (2)C8—C9—C10—C1297.8 (2)
N2—C5—C6—F263.4 (3)C8—C9—C10—C11131.9 (2)
N2—C5—C6—F356.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···F20.992.443.229 (3)137
C5—H5A···O1i0.992.303.131 (3)141
C7—H7B···O2ii0.992.293.271 (3)169
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H15BrF3N3O3S
Mr418.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)16.127 (3), 5.4356 (11), 19.135 (4)
β (°) 106.85 (3)
V3)1605.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.16 × 0.15 × 0.05
Data collection
DiffractometerRigaku MM007HF + CCD (Saturn724+)
Absorption correctionNumerical
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.668, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
11131, 3614, 3353
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.14
No. of reflections3614
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.50

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···F20.992.443.229 (3)137
C5—H5A···O1i0.992.303.131 (3)141
C7—H7B···O2ii0.992.293.271 (3)169
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (No. 2010CB126106 and No. 2006CB101907), and the 863 high-tech key project of China (2006AA10A203)

References

First citationAiello, E., Aiello, S., Mingoia, F., Bacchi, A., Pelizzi, G., Musiu, C., Setzu, M. G., Pani, A., Colla, P. L. & Marongiu, M. E. (2000). Bioorg. Med. Chem. 8, 2719–2728.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHirai, K., Uchida, A. & and Ohno, R. (2002). Herbicide Classes in Development, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 179–289. Heidelberg: Springer-Verlag.  Google Scholar
First citationLahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274–6279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeegalla, S. K., Doller, D., Sha, D. Y., Soll, R., Wisnewski, N., Silver, G. M. & Dhanoa, D. (2004). Bioorg. Med. Chem. Lett. 14, 4949–4953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOhno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15–26.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Toyko, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313–314.  Web of Science CrossRef CAS Google Scholar
First citationSivaprasad, G., Perumal, P. T., Prabavathyb, V. R. & Mathivananb, N. (2006). Bioorg. Med. Chem. Lett. 16, 6302–6305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVicentini, C. B., Guccione, S., Giurato, L., Ciaccio, R., Mares, D. & Forlani, G. (2005). J. Agric. Food. Chem. 53, 3848–3855.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWaldrep, T. W., Beck, J. R., Lynch, M. P. & Wright, F. L. (1990). J. Agric. Food. Chem. 38, 541–544.  CrossRef CAS Web of Science Google Scholar
First citationWelch, J. T. (1987). Tetrahedron, 43, 3123–3197.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds