organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Phenyl­butan-2-one (2,4-di­nitro­phen­yl)hydrazone

aCentro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169_007 Porto, Portugal, bREQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169_007 Porto, Portugal, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland.
*Correspondence e-mail: jnlow111@googlemail.com

(Received 5 October 2009; accepted 8 October 2009; online 17 October 2009)

In the title compound, C16H16N4O4, the dihedral angle between the aromatic rings is 79.04 (8)° and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, weak C—H.·O and C—H..π inter­actions link the mol­ecules, forming sheets.

Related literature

For the structure of the related 2,4-dinitro­phenyl hydrazine, see: Wardell et al. (2006[Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o318-o320.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O4

  • Mr = 328.33

  • Monoclinic, P 21 /n

  • a = 15.8919 (13) Å

  • b = 4.9446 (3) Å

  • c = 20.7397 (17) Å

  • β = 105.267 (5)°

  • V = 1572.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.30 × 0.05 × 0.02 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.998

  • 14305 measured reflections

  • 3531 independent reflections

  • 2418 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.01

  • 3531 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O122 0.85 1.95 2.5966 (17) 132
C3—H3A⋯O142i 0.99 2.50 3.432 (2) 158
C32—H32⋯O142i 0.95 2.52 3.349 (2) 146
C3—H3BCg2ii 0.99 2.75 3.534 (2) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z. Cg2 is the centroid of C31–C36 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular geometry and conformation is as expected taking acount of electronic repulsions and steric effects. The orange colour is caused by the conjugation of the nitrophenyl with the –N—N= group. The backbone of the molecule is essentially planar with only the methyl group, C21, and the phenyl group attached to C3 lying out of the plane of the molecule, Fig. 1.

Atom N1 forms an intramolecular hydrogen bond via H1 with atom O122 so forming an R(6) ring, (Bernstein et al., 1995). Atom O142 acts as a hydrogen bond acceptor from donor atoms C3, via H3B, and C32, via H32, thus forming an R21(5) ring which links screw-related molecules into chains running parallel to (101). These chains are linked to form sheets running parallel to the b axis by the C—H···π contact in which C3 acts as a donor atom via H3B to the phenyl ring containing C31, Fig.2.

There is a short intermolecular nitro to nitro group contact between O122···N12(-x + 1.5, y + 1/2, -z + 1/2) of 2.76 Å.

The relevant bonds and angles compare well with those in 2,4-dinitrophenylhydrazine: Wardell et al. 2006.

Related literature top

For the structure of the related 2,4-dinitrophenyl hydrazine, see: Wardell et al. (2006). For graph-set notation, see: Bernstein et al. (1995). Cg2 is the centroid of C31–C36 ring

Experimental top

The title compound was obtained from the condensation reaction of 1-phenyl-2-butanone with dinitrophenylhydrazine. The liquid 1-phenyl-2-butanone (2.0 mmol) was added to a warm solution (323 K) of 2,4-dinitrophenylhydrazine (2.5 mmol) in a mixture of 10 ml of ethanol/ 1 ml of HCl (37%) and allowed to react for 30 minutes. The resulting mixture was extracted with ethylacetate. A solid product was obtained after evaporation of the solvent this was first re-crystallized with ethanol and then with ethylacetate. Slow evaporation of a dichloromethane solution gave orange needles of (I).

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, C—H2(aliphatic),0.99 Å, CH(methyl), 0.98 Å. The H atom attached to N1 was located on a difference map, fixed to 0.85 Å, and then refined as a riding atom. The reflections 101 and 101 were omitted from the refinement as they were obscured by the beamstop.

Structure description top

The molecular geometry and conformation is as expected taking acount of electronic repulsions and steric effects. The orange colour is caused by the conjugation of the nitrophenyl with the –N—N= group. The backbone of the molecule is essentially planar with only the methyl group, C21, and the phenyl group attached to C3 lying out of the plane of the molecule, Fig. 1.

Atom N1 forms an intramolecular hydrogen bond via H1 with atom O122 so forming an R(6) ring, (Bernstein et al., 1995). Atom O142 acts as a hydrogen bond acceptor from donor atoms C3, via H3B, and C32, via H32, thus forming an R21(5) ring which links screw-related molecules into chains running parallel to (101). These chains are linked to form sheets running parallel to the b axis by the C—H···π contact in which C3 acts as a donor atom via H3B to the phenyl ring containing C31, Fig.2.

There is a short intermolecular nitro to nitro group contact between O122···N12(-x + 1.5, y + 1/2, -z + 1/2) of 2.76 Å.

The relevant bonds and angles compare well with those in 2,4-dinitrophenylhydrazine: Wardell et al. 2006.

For the structure of the related 2,4-dinitrophenyl hydrazine, see: Wardell et al. (2006). For graph-set notation, see: Bernstein et al. (1995). Cg2 is the centroid of C31–C36 ring

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing part of the sheet formed by the C—H..O and C—H···π interactions. Hydrogen atoms not involved in the motifs are not included.
(E)-1-Phenylbutan-2-one (2,4-dinitrophenyl)hydrazone top
Crystal data top
C16H16N4O4F(000) = 688
Mr = 328.33Dx = 1.387 Mg m3
Monoclinic, P21/nMelting point: not measured K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 15.8919 (13) ÅCell parameters from 2030 reflections
b = 4.9446 (3) Åθ = 3.1–26.5°
c = 20.7397 (17) ŵ = 0.10 mm1
β = 105.267 (5)°T = 120 K
V = 1572.2 (2) Å3Needle, orange
Z = 40.30 × 0.05 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
3531 independent reflections
Radiation source: fine-focus sealed tube2418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.333 pixels mm-1θmax = 27.3°, θmin = 1.5°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 56
Tmin = 0.970, Tmax = 0.998l = 2626
14305 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.037P)2 + 0.4505P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3531 reflectionsΔρmax = 0.25 e Å3
218 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (11)
Crystal data top
C16H16N4O4V = 1572.2 (2) Å3
Mr = 328.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.8919 (13) ŵ = 0.10 mm1
b = 4.9446 (3) ÅT = 120 K
c = 20.7397 (17) Å0.30 × 0.05 × 0.02 mm
β = 105.267 (5)°
Data collection top
Bruker SMART APEX
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2418 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.998Rint = 0.048
14305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
3531 reflectionsΔρmin = 0.19 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1210.65610 (8)0.8996 (2)0.17034 (6)0.0325 (3)
O1220.70928 (7)0.9899 (2)0.27500 (6)0.0276 (3)
O1410.44704 (9)0.2157 (3)0.09414 (6)0.0454 (4)
O1420.41347 (8)0.0583 (3)0.16477 (7)0.0427 (4)
N10.66460 (8)0.7090 (3)0.36646 (6)0.0225 (3)
H10.69950.82610.35820.027*
N20.66485 (9)0.6313 (3)0.43054 (6)0.0225 (3)
N120.66156 (9)0.8554 (3)0.22955 (7)0.0225 (3)
N140.45198 (9)0.1408 (3)0.15136 (7)0.0301 (3)
C20.71757 (10)0.7597 (3)0.47833 (8)0.0220 (3)
C30.71901 (11)0.6653 (3)0.54758 (8)0.0250 (4)
H3A0.77890.60660.57080.030*
H3B0.68000.50680.54420.030*
C110.61365 (10)0.5756 (3)0.31389 (7)0.0195 (3)
C120.61004 (10)0.6396 (3)0.24669 (8)0.0194 (3)
C130.55682 (10)0.4984 (3)0.19381 (8)0.0228 (4)
H130.55570.54360.14910.027*
C140.50597 (10)0.2934 (3)0.20667 (8)0.0227 (4)
C150.50676 (10)0.2231 (3)0.27206 (8)0.0235 (4)
H150.47100.07980.28010.028*
C160.55915 (10)0.3614 (3)0.32419 (8)0.0223 (4)
H160.55920.31330.36860.027*
C210.77979 (11)0.9796 (3)0.47154 (8)0.0269 (4)
H21A0.79051.09970.51110.032*
H21B0.75321.08960.43150.032*
C220.86642 (12)0.8638 (4)0.46542 (10)0.0410 (5)
H22A0.90531.01200.46070.061*
H22B0.85600.74610.42610.061*
H22C0.89360.75870.50560.061*
C310.69053 (11)0.8820 (3)0.58860 (8)0.0228 (4)
C320.74933 (11)1.0031 (3)0.64209 (8)0.0257 (4)
H320.80880.94940.65340.031*
C330.72226 (12)1.2021 (3)0.67932 (8)0.0300 (4)
H330.76331.28310.71600.036*
C340.63628 (12)1.2830 (4)0.66341 (9)0.0317 (4)
H340.61791.41950.68900.038*
C350.57701 (12)1.1645 (4)0.61015 (9)0.0332 (4)
H350.51771.21980.59890.040*
C360.60383 (11)0.9647 (4)0.57296 (9)0.0300 (4)
H360.56260.88360.53650.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1210.0417 (8)0.0314 (7)0.0260 (6)0.0003 (6)0.0118 (6)0.0090 (5)
O1220.0283 (7)0.0230 (6)0.0326 (7)0.0063 (5)0.0100 (5)0.0043 (5)
O1410.0493 (9)0.0554 (9)0.0250 (7)0.0098 (7)0.0019 (6)0.0049 (6)
O1420.0380 (8)0.0326 (7)0.0493 (8)0.0125 (6)0.0030 (6)0.0037 (6)
N10.0242 (7)0.0225 (7)0.0210 (7)0.0041 (6)0.0067 (6)0.0003 (6)
N20.0256 (7)0.0230 (7)0.0191 (7)0.0027 (6)0.0063 (6)0.0008 (6)
N120.0228 (7)0.0203 (7)0.0256 (7)0.0040 (6)0.0086 (6)0.0033 (6)
N140.0232 (8)0.0291 (8)0.0331 (8)0.0018 (6)0.0011 (6)0.0049 (7)
C20.0230 (8)0.0197 (8)0.0231 (8)0.0056 (7)0.0058 (7)0.0023 (7)
C30.0298 (9)0.0224 (8)0.0212 (8)0.0029 (7)0.0040 (7)0.0004 (7)
C110.0188 (8)0.0171 (8)0.0226 (8)0.0040 (6)0.0056 (6)0.0013 (6)
C120.0184 (8)0.0167 (8)0.0246 (8)0.0021 (6)0.0082 (6)0.0017 (7)
C130.0227 (9)0.0248 (9)0.0213 (8)0.0060 (7)0.0066 (7)0.0008 (7)
C140.0187 (8)0.0210 (8)0.0267 (8)0.0020 (7)0.0028 (7)0.0057 (7)
C150.0205 (8)0.0188 (8)0.0327 (9)0.0007 (7)0.0097 (7)0.0003 (7)
C160.0237 (9)0.0215 (8)0.0230 (8)0.0015 (7)0.0085 (7)0.0006 (7)
C210.0311 (10)0.0275 (9)0.0217 (8)0.0036 (7)0.0063 (7)0.0053 (7)
C220.0344 (11)0.0536 (13)0.0383 (10)0.0071 (9)0.0157 (9)0.0107 (10)
C310.0286 (9)0.0205 (8)0.0204 (8)0.0025 (7)0.0084 (7)0.0044 (7)
C320.0272 (9)0.0245 (9)0.0246 (8)0.0035 (7)0.0056 (7)0.0028 (7)
C330.0404 (11)0.0275 (9)0.0219 (8)0.0012 (8)0.0081 (8)0.0024 (7)
C340.0413 (11)0.0275 (10)0.0323 (9)0.0049 (8)0.0206 (8)0.0001 (8)
C350.0288 (10)0.0361 (10)0.0382 (10)0.0070 (8)0.0149 (8)0.0046 (9)
C360.0282 (10)0.0329 (10)0.0278 (9)0.0005 (8)0.0053 (7)0.0002 (8)
Geometric parameters (Å, º) top
O121—N121.2276 (16)C15—C161.362 (2)
O122—N121.2370 (17)C15—H150.9500
O141—N141.2258 (18)C16—H160.9500
O142—N141.2292 (19)C21—C221.527 (2)
N1—C111.3469 (19)C21—H21A0.9900
N1—N21.3823 (17)C21—H21B0.9900
N1—H10.85C22—H22A0.9800
N2—C21.284 (2)C22—H22B0.9800
N12—C121.445 (2)C22—H22C0.9800
N14—C141.450 (2)C31—C321.385 (2)
C2—C211.501 (2)C31—C361.391 (2)
C2—C31.505 (2)C32—C331.387 (2)
C3—C311.510 (2)C32—H320.9500
C3—H3A0.9900C33—C341.378 (2)
C3—H3B0.9900C33—H330.9500
C11—C121.416 (2)C34—C351.379 (3)
C11—C161.420 (2)C34—H340.9500
C12—C131.385 (2)C35—C361.388 (2)
C13—C141.366 (2)C35—H350.9500
C13—H130.9500C36—H360.9500
C14—C151.397 (2)
C11—N1—N2119.42 (13)C15—C16—C11121.65 (15)
C11—N1—H1117.1C15—C16—H16119.2
N2—N1—H1123.1C11—C16—H16119.2
C2—N2—N1116.15 (13)C2—C21—C22111.49 (14)
O121—N12—O122122.28 (13)C2—C21—H21A109.3
O121—N12—C12118.84 (13)C22—C21—H21A109.3
O122—N12—C12118.88 (13)C2—C21—H21B109.3
O141—N14—O142123.53 (15)C22—C21—H21B109.3
O141—N14—C14118.82 (15)H21A—C21—H21B108.0
O142—N14—C14117.64 (15)C21—C22—H22A109.5
N2—C2—C21126.70 (14)C21—C22—H22B109.5
N2—C2—C3115.22 (14)H22A—C22—H22B109.5
C21—C2—C3117.99 (14)C21—C22—H22C109.5
C2—C3—C31112.72 (13)H22A—C22—H22C109.5
C2—C3—H3A109.0H22B—C22—H22C109.5
C31—C3—H3A109.0C32—C31—C36118.53 (15)
C2—C3—H3B109.0C32—C31—C3121.28 (15)
C31—C3—H3B109.0C36—C31—C3120.19 (15)
H3A—C3—H3B107.8C31—C32—C33120.67 (16)
N1—C11—C12123.19 (14)C31—C32—H32119.7
N1—C11—C16120.26 (14)C33—C32—H32119.7
C12—C11—C16116.54 (14)C34—C33—C32120.39 (17)
C13—C12—C11121.67 (14)C34—C33—H33119.8
C13—C12—N12116.42 (14)C32—C33—H33119.8
C11—C12—N12121.91 (14)C33—C34—C35119.58 (16)
C14—C13—C12119.28 (15)C33—C34—H34120.2
C14—C13—H13120.4C35—C34—H34120.2
C12—C13—H13120.4C34—C35—C36120.17 (17)
C13—C14—C15121.32 (15)C34—C35—H35119.9
C13—C14—N14119.28 (15)C36—C35—H35119.9
C15—C14—N14119.38 (15)C35—C36—C31120.67 (17)
C16—C15—C14119.54 (15)C35—C36—H36119.7
C16—C15—H15120.2C31—C36—H36119.7
C14—C15—H15120.2
C11—N1—N2—C2177.22 (14)O142—N14—C14—C13173.19 (15)
N1—N2—C2—C211.4 (2)O141—N14—C14—C15174.98 (15)
N1—N2—C2—C3177.96 (12)O142—N14—C14—C155.0 (2)
N2—C2—C3—C31117.81 (16)C13—C14—C15—C160.1 (2)
C21—C2—C3—C3165.32 (19)N14—C14—C15—C16178.26 (14)
N2—N1—C11—C12179.33 (13)C14—C15—C16—C110.3 (2)
N2—N1—C11—C161.5 (2)N1—C11—C16—C15179.86 (14)
N1—C11—C12—C13179.94 (14)C12—C11—C16—C150.6 (2)
C16—C11—C12—C130.7 (2)N2—C2—C21—C2286.2 (2)
N1—C11—C12—N120.1 (2)C3—C2—C21—C2290.25 (17)
C16—C11—C12—N12179.29 (13)C2—C3—C31—C32109.84 (17)
O121—N12—C12—C130.6 (2)C2—C3—C31—C3670.0 (2)
O122—N12—C12—C13179.04 (13)C36—C31—C32—C330.1 (2)
O121—N12—C12—C11179.42 (14)C3—C31—C32—C33179.95 (15)
O122—N12—C12—C111.0 (2)C31—C32—C33—C340.2 (3)
C11—C12—C13—C140.5 (2)C32—C33—C34—C350.1 (3)
N12—C12—C13—C14179.50 (13)C33—C34—C35—C360.2 (3)
C12—C13—C14—C150.2 (2)C34—C35—C36—C310.2 (3)
C12—C13—C14—N14178.37 (14)C32—C31—C36—C350.1 (2)
O141—N14—C14—C136.8 (2)C3—C31—C36—C35179.73 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1220.851.952.5966 (17)132
C3—H3A···O142i0.992.503.432 (2)158
C32—H32···O142i0.952.523.349 (2)146
C3—H3B···Cg2ii0.992.753.534 (2)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H16N4O4
Mr328.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)15.8919 (13), 4.9446 (3), 20.7397 (17)
β (°) 105.267 (5)
V3)1572.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.05 × 0.02
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.970, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
14305, 3531, 2418
Rint0.048
(sin θ/λ)max1)0.645
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.01
No. of reflections3531
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1220.851.952.5966 (17)132
C3—H3A···O142i0.992.503.432 (2)158
C32—H32···O142i0.952.523.349 (2)146
C3—H3B···Cg2ii0.992.753.534 (2)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

CFRACL also thanks FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a PhD Research Grant (SRFH/BD/29394/2006). LRG thanks the Fundação para o Ensino e Cultura Fernando Pessoa.

References

First citationBernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o318–o320.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds