metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­quinoline-κ2N,N′)di­chlorido­iron(II)

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: n-safari@cc.sbu.ac.ir

(Received 8 October 2009; accepted 10 October 2009; online 17 October 2009)

In the title compound, [FeCl2(C18H12N2)], the FeII atom is four-coordinated in a distorted tetra­hedral arrangement by an N,N′-bidentate 2,2′-biquinoline ligand and two chloride ions. In the crystal, there are extensive ππ contacts between the pyridine rings [centroid–centroid distances = 3.7611 (3), 3.7603 (4), 3.5292 (4), 3.5336 (5) and 3.6656 (4) Å].

Related literature

For related structures, see: Amani et al. (2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Amani, Safari & Khavasi (2007[Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257-4262.]); Amani, Safari, Khavasi & Mirzaei (2007[Amani, V., Safari, N., Khavasi, H. R. & Mirzaei, P. (2007). Polyhedron, 26, 4908-4914.]); Chan & Baird (2004[Chan, B. C. K. & Baird, M. C. (2004). Inorg. Chim. Acta, 357, 2776-2782.]); Gibson et al. (2002[Gibson, V. C., Reilly, R. K., Reed, W., Wass, D. F., White, A. J. P. & Williams, D. J. (2002). Chem. Commun. pp. 1850-1851.]); Handley et al. (2001[Handley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 314, 14-21.]); Khavasi et al. (2007[Khavasi, H. R., Amani, V. & Safari, N. (2007). Z. Kristallogr. New Cryst. Struct. 222, 155-156.], 2008[Khavasi, H. R., Amani, V. & Safari, N. (2008). Z. Kristallogr. New Cryst. Struct. 223, 41-42.]). For bond-length data, see: Figgis et al. (1983[Figgis, B. N., Patrick, J. M., Reynolds, P. A., Skelton, B. W., White, A. H. & Healy, P. C. (1983). Aust. J. Chem. 36, 2043-2055.]); Kulkarni et al. (1998[Kulkarni, P., Padhye, S. & Sinn, E. (1998). Polyhedron, 17, 2623-2626.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C18H12N2)]

  • Mr = 383.05

  • Monoclinic, P 21 /n

  • a = 7.9777 (6) Å

  • b = 12.2268 (11) Å

  • c = 16.9904 (12) Å

  • β = 102.899 (6)°

  • V = 1615.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 298 K

  • 0.45 × 0.43 × 0.31 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.577, Tmax = 0.681

  • 13058 measured reflections

  • 4323 independent reflections

  • 3739 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.06

  • 4323 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 2.1051 (14)
Fe1—N2 2.1008 (15)
Fe1—Cl2 2.2265 (6)
Fe1—Cl1 2.2341 (7)
N2—Fe1—N1 78.06 (6)

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported the synthes and crystal structure of iron (III) hetero-ligand complexes such as [Fe(bipy)Cl4][bipy.H], (II), [Fe(5,5'-dmbpy)2Cl2][FeCl4], (III), (Amani, Safari & Khavasi 2007), [Fe(phen)Cl3(CH3OH)].CH3OH, (IV), (Khavasi et al., 2007), [Fe(bipy)Cl3(DMSO)], (V) and [Fe(phen)Cl3(DMSO)], (VI), (Amani, Safari, khavasi & Mirzaei, 2007), [Fe(phen)Cl4][phen.H], (VII), (Khavasi et al., 2008), [Fe(4,4'-dmbpy)Cl4][4,4'-dmbpy.H], (VIII) and [Fe(4,4'-dmbpy)Cl3(DMSO)], (IX), (Amani et al., 2009) [where bipy is 2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, phen is 1,10-phenanthroline, DMSO is dimethyl sulfoxide and 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine].

There are several FeII complexes, with formula, [FeCl2(N—N)], such as [FeCl2(6,6'-dmbpy)], (X), (Chan & Baird 2004), [FeCl2(BDP)], (XI), (Handley et al., 2001) and [FeCl2(DEI)], (XII), (Gibson et al., 2002) [where 6,6'-dmbpy is 6, 6'-dimethyl-2, 2'-bipyridine, BDP is 1,3-bis(dimethylamino) propane and DEI is N,N'-dicyclohexyl-1,2-ethanedi-imine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the FeII atom is four-coordinated in distorted tetrahedral configurations by two N atoms from one 2, 2'-biquinoline and two terminal Cl atoms. The Fe—Cl and Fe—N bond lengths and angles (Table 1) are within normal range (X). In this complex, Fe—N average distance is 2.1029 (15)Å and the Fe—Cl average bond distance is 2.2303 (6) Å. The Fe—N average bond distances in high-spin FeII and FeIII phenanthroline and bipyridine complexes are around 2.2 Å. However, low-spin FeII and FeIII complexes, the Fe—N distances less than 2 Å were reported (Figgis et al., 1983; Kulkarni et al., 1998). Therefore, in the molecule of the title compound, the Fe—N bond distance is unambiguously high-spin FeII. It seems substitution in the 6 position of bipyridine is crucial to stabilize FeII high-spin versus (FeII) especially low-spin. Also, biquinoline result in auto reduce of FeIII to FeII.

The π-π contacts between the pyridine rings, Cg2···Cg2i, Cg2···Cg4i, Cg3···Cg3ii, Cg3···Cg5i, Cg4···Cg4ii and Cg5···Cg3ii [symmetry cods: (i) 1-X, 1-Y, 1-Z, (ii) 1-X,-Y,1-Z, where Cg2, Cg3, Cg4 and Cg5 are centroids of the rings (N1/C1/C6—C9), (N2/C10—C13/C18), (C1—C6) and (C13—C18), respectively] further stabilize the structure, with centroid-centroid distance of 3.7611 (3), 3.7603 (4), 3.5292 (4), 3.5336 (5) and 3.6656 (4) Å, respectively. It seems this π-π stacking is effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

For related structures, see: Amani et al. (2009); Amani, Safari & Khavasi (2007); Amani, Safari, Khavasi & Mirzaei (2007); Chan & Baird (2004); Gibson et al. (2002); Handley et al. (2001); Khavasi et al. (2007, 2008). For bond-length data, see: Figgis et al. (1983); Kulkarni et al. (1998).

Experimental top

A solution of 2,2'-biquinoline (0.20 g, 0.78 mmol) in methanol (6 ml) and chloroform (2 ml) was added to a solution of FeCl3.6H2O (0.07 g, 0.26 mmol) in methanol (6 ml) and chloroform (2 ml) and the resulting yellow solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After two weeks, red blocks of (I) were isolated (yield 0.07 g, 70.3%).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93Å) and refined as riding with Uiso(H)=1.2Ueq.

Structure description top

Recently, we reported the synthes and crystal structure of iron (III) hetero-ligand complexes such as [Fe(bipy)Cl4][bipy.H], (II), [Fe(5,5'-dmbpy)2Cl2][FeCl4], (III), (Amani, Safari & Khavasi 2007), [Fe(phen)Cl3(CH3OH)].CH3OH, (IV), (Khavasi et al., 2007), [Fe(bipy)Cl3(DMSO)], (V) and [Fe(phen)Cl3(DMSO)], (VI), (Amani, Safari, khavasi & Mirzaei, 2007), [Fe(phen)Cl4][phen.H], (VII), (Khavasi et al., 2008), [Fe(4,4'-dmbpy)Cl4][4,4'-dmbpy.H], (VIII) and [Fe(4,4'-dmbpy)Cl3(DMSO)], (IX), (Amani et al., 2009) [where bipy is 2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, phen is 1,10-phenanthroline, DMSO is dimethyl sulfoxide and 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine].

There are several FeII complexes, with formula, [FeCl2(N—N)], such as [FeCl2(6,6'-dmbpy)], (X), (Chan & Baird 2004), [FeCl2(BDP)], (XI), (Handley et al., 2001) and [FeCl2(DEI)], (XII), (Gibson et al., 2002) [where 6,6'-dmbpy is 6, 6'-dimethyl-2, 2'-bipyridine, BDP is 1,3-bis(dimethylamino) propane and DEI is N,N'-dicyclohexyl-1,2-ethanedi-imine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the FeII atom is four-coordinated in distorted tetrahedral configurations by two N atoms from one 2, 2'-biquinoline and two terminal Cl atoms. The Fe—Cl and Fe—N bond lengths and angles (Table 1) are within normal range (X). In this complex, Fe—N average distance is 2.1029 (15)Å and the Fe—Cl average bond distance is 2.2303 (6) Å. The Fe—N average bond distances in high-spin FeII and FeIII phenanthroline and bipyridine complexes are around 2.2 Å. However, low-spin FeII and FeIII complexes, the Fe—N distances less than 2 Å were reported (Figgis et al., 1983; Kulkarni et al., 1998). Therefore, in the molecule of the title compound, the Fe—N bond distance is unambiguously high-spin FeII. It seems substitution in the 6 position of bipyridine is crucial to stabilize FeII high-spin versus (FeII) especially low-spin. Also, biquinoline result in auto reduce of FeIII to FeII.

The π-π contacts between the pyridine rings, Cg2···Cg2i, Cg2···Cg4i, Cg3···Cg3ii, Cg3···Cg5i, Cg4···Cg4ii and Cg5···Cg3ii [symmetry cods: (i) 1-X, 1-Y, 1-Z, (ii) 1-X,-Y,1-Z, where Cg2, Cg3, Cg4 and Cg5 are centroids of the rings (N1/C1/C6—C9), (N2/C10—C13/C18), (C1—C6) and (C13—C18), respectively] further stabilize the structure, with centroid-centroid distance of 3.7611 (3), 3.7603 (4), 3.5292 (4), 3.5336 (5) and 3.6656 (4) Å, respectively. It seems this π-π stacking is effective in the stabilization of the crystal structure (Fig. 2).

For related structures, see: Amani et al. (2009); Amani, Safari & Khavasi (2007); Amani, Safari, Khavasi & Mirzaei (2007); Chan & Baird (2004); Gibson et al. (2002); Handley et al. (2001); Khavasi et al. (2007, 2008). For bond-length data, see: Figgis et al. (1983); Kulkarni et al. (1998).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
(2,2'-Biquinoline-κ2N,N')dichloridoiron(II) top
Crystal data top
[FeCl2(C18H12N2)]F(000) = 776
Mr = 383.05Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1323 reflections
a = 7.9777 (6) Åθ = 2.1–29.3°
b = 12.2268 (11) ŵ = 1.26 mm1
c = 16.9904 (12) ÅT = 298 K
β = 102.899 (6)°Block, red
V = 1615.5 (2) Å30.45 × 0.43 × 0.31 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
4323 independent reflections
Radiation source: fine-focus sealed tube3739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 0.15 mm pixels mm-1θmax = 29.3°, θmin = 2.1°
rotation method scansh = 1010
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
k = 1616
Tmin = 0.577, Tmax = 0.681l = 2321
13058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.7232P]
where P = (Fo2 + 2Fc2)/3
4323 reflections(Δ/σ)max = 0.007
208 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[FeCl2(C18H12N2)]V = 1615.5 (2) Å3
Mr = 383.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9777 (6) ŵ = 1.26 mm1
b = 12.2268 (11) ÅT = 298 K
c = 16.9904 (12) Å0.45 × 0.43 × 0.31 mm
β = 102.899 (6)°
Data collection top
Stoe IPDS II
diffractometer
4323 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
3739 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 0.681Rint = 0.024
13058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
4323 reflectionsΔρmin = 0.44 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2274 (2)0.95885 (14)0.02892 (11)0.0367 (3)
C20.3108 (3)1.01753 (16)0.09821 (13)0.0462 (4)
H20.30970.99090.14940.055*
C30.3929 (3)1.11314 (18)0.09004 (15)0.0546 (5)
H30.44771.15150.13590.066*
C40.3959 (3)1.15461 (17)0.01308 (17)0.0571 (6)
H40.45361.21960.00860.069*
C50.3157 (3)1.10094 (17)0.05409 (15)0.0520 (5)
H50.31741.12970.10460.062*
C60.2289 (2)1.00112 (15)0.04852 (12)0.0417 (4)
C70.1447 (3)0.94060 (17)0.11614 (12)0.0475 (4)
H70.14470.96560.16780.057*
C80.0630 (3)0.84538 (16)0.10617 (11)0.0438 (4)
H80.00690.80520.15080.053*
C90.0647 (2)0.80865 (14)0.02736 (10)0.0352 (3)
C100.0289 (2)0.70846 (13)0.01190 (10)0.0352 (3)
C110.1412 (3)0.65279 (15)0.07475 (11)0.0426 (4)
H110.15390.67550.12800.051*
C120.2310 (2)0.56528 (16)0.05670 (12)0.0459 (4)
H120.30600.52800.09770.055*
C130.2108 (2)0.53109 (15)0.02390 (12)0.0423 (4)
C140.2993 (3)0.44022 (17)0.04699 (16)0.0550 (5)
H140.37640.40110.00800.066*
C150.2720 (3)0.4098 (2)0.12585 (17)0.0637 (6)
H150.33160.35060.14040.076*
C160.1546 (4)0.4673 (2)0.18538 (16)0.0652 (6)
H160.13620.44500.23900.078*
C170.0666 (3)0.55570 (18)0.16561 (13)0.0544 (5)
H170.01050.59330.20560.065*
C180.0937 (2)0.58938 (15)0.08446 (11)0.0398 (4)
N10.14684 (19)0.86245 (11)0.03785 (8)0.0349 (3)
N20.00420 (19)0.67763 (12)0.06478 (8)0.0361 (3)
Fe10.17508 (4)0.77276 (2)0.145770 (14)0.04109 (9)
Cl10.43989 (8)0.70190 (6)0.17323 (4)0.06732 (17)
Cl20.05960 (9)0.84372 (5)0.24216 (3)0.06434 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0346 (8)0.0354 (8)0.0411 (9)0.0060 (7)0.0107 (7)0.0011 (6)
C20.0462 (10)0.0451 (10)0.0478 (10)0.0023 (8)0.0114 (8)0.0066 (8)
C30.0477 (11)0.0463 (10)0.0710 (14)0.0045 (9)0.0156 (10)0.0112 (10)
C40.0507 (12)0.0392 (10)0.0878 (17)0.0023 (9)0.0289 (12)0.0013 (10)
C50.0519 (11)0.0429 (10)0.0679 (13)0.0073 (9)0.0278 (10)0.0135 (9)
C60.0409 (9)0.0401 (9)0.0479 (10)0.0089 (7)0.0177 (8)0.0062 (7)
C70.0558 (11)0.0511 (11)0.0372 (9)0.0099 (9)0.0142 (8)0.0113 (8)
C80.0535 (11)0.0459 (9)0.0307 (8)0.0044 (8)0.0066 (7)0.0020 (7)
C90.0385 (8)0.0362 (8)0.0302 (7)0.0073 (7)0.0062 (6)0.0016 (6)
C100.0360 (8)0.0359 (8)0.0319 (7)0.0055 (6)0.0041 (6)0.0021 (6)
C110.0446 (10)0.0443 (9)0.0341 (8)0.0052 (8)0.0018 (7)0.0032 (7)
C120.0391 (9)0.0438 (9)0.0492 (10)0.0022 (8)0.0017 (8)0.0082 (8)
C130.0357 (9)0.0388 (9)0.0537 (11)0.0023 (7)0.0127 (8)0.0036 (8)
C140.0449 (11)0.0452 (10)0.0780 (15)0.0050 (9)0.0205 (10)0.0055 (10)
C150.0647 (14)0.0508 (12)0.0867 (18)0.0081 (11)0.0409 (13)0.0016 (11)
C160.0862 (18)0.0610 (13)0.0585 (13)0.0056 (13)0.0374 (13)0.0073 (11)
C170.0693 (14)0.0544 (12)0.0433 (10)0.0083 (10)0.0204 (10)0.0008 (9)
C180.0411 (9)0.0383 (8)0.0422 (9)0.0008 (7)0.0138 (7)0.0006 (7)
N10.0383 (7)0.0352 (7)0.0310 (6)0.0033 (6)0.0074 (5)0.0004 (5)
N20.0398 (7)0.0372 (7)0.0308 (6)0.0008 (6)0.0070 (5)0.0009 (5)
Fe10.04860 (17)0.04469 (15)0.02751 (13)0.00218 (11)0.00321 (10)0.00021 (10)
Cl10.0545 (3)0.0818 (4)0.0594 (3)0.0111 (3)0.0006 (2)0.0081 (3)
Cl20.0820 (4)0.0767 (4)0.0333 (2)0.0170 (3)0.0107 (2)0.0042 (2)
Geometric parameters (Å, º) top
C1—N11.367 (2)C11—C121.360 (3)
C1—C21.412 (3)C11—H110.9300
C1—C61.416 (3)C12—C131.406 (3)
C2—C31.362 (3)C12—H120.9300
C2—H20.9300C13—C181.418 (3)
C3—C41.407 (4)C13—C141.418 (3)
C3—H30.9300C14—C151.360 (4)
C4—C51.348 (3)C14—H140.9300
C4—H40.9300C15—C161.404 (4)
C5—C61.417 (3)C15—H150.9300
C5—H50.9300C16—C171.371 (3)
C6—C71.405 (3)C16—H160.9300
C7—C81.363 (3)C17—C181.409 (3)
C7—H70.9300C17—H170.9300
C8—C91.409 (2)C18—N21.376 (2)
C8—H80.9300Fe1—N12.1051 (14)
C9—N11.329 (2)Fe1—N22.1008 (15)
C9—C101.488 (2)Fe1—Cl22.2265 (6)
C10—N21.328 (2)Fe1—Cl12.2341 (7)
C10—C111.407 (2)
N1—C1—C2119.43 (16)C11—C12—C13120.10 (17)
N1—C1—C6121.30 (16)C11—C12—H12119.9
C2—C1—C6119.27 (17)C13—C12—H12119.9
C3—C2—C1119.9 (2)C12—C13—C18118.12 (17)
C3—C2—H2120.0C12—C13—C14123.11 (19)
C1—C2—H2120.0C18—C13—C14118.76 (19)
C2—C3—C4120.8 (2)C15—C14—C13120.4 (2)
C2—C3—H3119.6C15—C14—H14119.8
C4—C3—H3119.6C13—C14—H14119.8
C5—C4—C3120.5 (2)C14—C15—C16120.5 (2)
C5—C4—H4119.7C14—C15—H15119.8
C3—C4—H4119.7C16—C15—H15119.8
C4—C5—C6120.6 (2)C17—C16—C15120.9 (2)
C4—C5—H5119.7C17—C16—H16119.5
C6—C5—H5119.7C15—C16—H16119.5
C7—C6—C1117.76 (17)C16—C17—C18119.7 (2)
C7—C6—C5123.42 (19)C16—C17—H17120.2
C1—C6—C5118.83 (19)C18—C17—H17120.2
C8—C7—C6120.19 (17)N2—C18—C17119.52 (17)
C8—C7—H7119.9N2—C18—C13120.76 (16)
C6—C7—H7119.9C17—C18—C13119.71 (18)
C7—C8—C9119.12 (18)C9—N1—C1119.39 (15)
C7—C8—H8120.4C9—N1—Fe1113.92 (11)
C9—C8—H8120.4C1—N1—Fe1125.75 (11)
N1—C9—C8122.20 (17)C10—N2—C18119.32 (15)
N1—C9—C10115.71 (14)C10—N2—Fe1114.56 (12)
C8—C9—C10122.08 (16)C18—N2—Fe1126.12 (12)
N2—C10—C11122.49 (17)N2—Fe1—N178.06 (6)
N2—C10—C9115.87 (14)N2—Fe1—Cl2111.38 (5)
C11—C10—C9121.60 (15)N1—Fe1—Cl2117.15 (4)
C12—C11—C10119.19 (17)N2—Fe1—Cl1113.32 (5)
C12—C11—H11120.4N1—Fe1—Cl1107.24 (5)
C10—C11—H11120.4Cl2—Fe1—Cl1121.65 (3)
N1—C1—C2—C3179.35 (18)C12—C13—C18—N20.7 (3)
C6—C1—C2—C30.6 (3)C14—C13—C18—N2179.59 (17)
C1—C2—C3—C40.0 (3)C12—C13—C18—C17178.33 (19)
C2—C3—C4—C50.7 (3)C14—C13—C18—C170.5 (3)
C3—C4—C5—C60.8 (3)C8—C9—N1—C12.5 (3)
N1—C1—C6—C70.0 (3)C10—C9—N1—C1176.11 (14)
C2—C1—C6—C7179.98 (17)C8—C9—N1—Fe1167.08 (14)
N1—C1—C6—C5179.45 (16)C10—C9—N1—Fe114.32 (19)
C2—C1—C6—C50.5 (3)C2—C1—N1—C9178.34 (17)
C4—C5—C6—C7179.2 (2)C6—C1—N1—C91.7 (2)
C4—C5—C6—C10.2 (3)C2—C1—N1—Fe113.4 (2)
C1—C6—C7—C80.9 (3)C6—C1—N1—Fe1166.54 (13)
C5—C6—C7—C8179.67 (19)C11—C10—N2—C181.3 (3)
C6—C7—C8—C90.2 (3)C9—C10—N2—C18176.38 (15)
C7—C8—C9—N11.6 (3)C11—C10—N2—Fe1178.50 (13)
C7—C8—C9—C10176.93 (17)C9—C10—N2—Fe13.78 (19)
N1—C9—C10—N27.2 (2)C17—C18—N2—C10179.36 (18)
C8—C9—C10—N2174.23 (17)C13—C18—N2—C100.3 (3)
N1—C9—C10—C11170.57 (16)C17—C18—N2—Fe10.4 (3)
C8—C9—C10—C118.0 (3)C13—C18—N2—Fe1179.52 (13)
N2—C10—C11—C121.3 (3)C10—N2—Fe1—N18.54 (12)
C9—C10—C11—C12176.28 (17)C18—N2—Fe1—N1171.64 (15)
C10—C11—C12—C130.2 (3)C10—N2—Fe1—Cl2123.25 (12)
C11—C12—C13—C180.8 (3)C18—N2—Fe1—Cl256.93 (15)
C11—C12—C13—C14179.55 (19)C10—N2—Fe1—Cl195.27 (12)
C12—C13—C14—C15178.8 (2)C18—N2—Fe1—Cl184.55 (14)
C18—C13—C14—C150.0 (3)C9—N1—Fe1—N212.47 (12)
C13—C14—C15—C160.7 (4)C1—N1—Fe1—N2178.74 (14)
C14—C15—C16—C170.8 (4)C9—N1—Fe1—Cl2120.54 (11)
C15—C16—C17—C180.3 (4)C1—N1—Fe1—Cl270.66 (14)
C16—C17—C18—N2179.5 (2)C9—N1—Fe1—Cl198.51 (12)
C16—C17—C18—C130.4 (3)C1—N1—Fe1—Cl170.28 (14)

Experimental details

Crystal data
Chemical formula[FeCl2(C18H12N2)]
Mr383.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.9777 (6), 12.2268 (11), 16.9904 (12)
β (°) 102.899 (6)
V3)1615.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.45 × 0.43 × 0.31
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.577, 0.681
No. of measured, independent and
observed [I > 2σ(I)] reflections
13058, 4323, 3739
Rint0.024
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.06
No. of reflections4323
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.44

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Fe1—N12.1051 (14)Fe1—Cl22.2265 (6)
Fe1—N22.1008 (15)Fe1—Cl12.2341 (7)
N2—Fe1—N178.06 (6)
 

Acknowledgements

We are grateful to the Shahid Beheshti University for financial support.

References

First citationAmani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257–4262.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N., Khavasi, H. R. & Mirzaei, P. (2007). Polyhedron, 26, 4908–4914.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationChan, B. C. K. & Baird, M. C. (2004). Inorg. Chim. Acta, 357, 2776–2782.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFiggis, B. N., Patrick, J. M., Reynolds, P. A., Skelton, B. W., White, A. H. & Healy, P. C. (1983). Aust. J. Chem. 36, 2043–2055.  CSD CrossRef CAS Google Scholar
First citationGibson, V. C., Reilly, R. K., Reed, W., Wass, D. F., White, A. J. P. & Williams, D. J. (2002). Chem. Commun. pp. 1850–1851.  Web of Science CSD CrossRef Google Scholar
First citationHandley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 314, 14–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhavasi, H. R., Amani, V. & Safari, N. (2007). Z. Kristallogr. New Cryst. Struct. 222, 155–156.  CAS Google Scholar
First citationKhavasi, H. R., Amani, V. & Safari, N. (2008). Z. Kristallogr. New Cryst. Struct. 223, 41–42.  CAS Google Scholar
First citationKulkarni, P., Padhye, S. & Sinn, E. (1998). Polyhedron, 17, 2623–2626.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds