organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3,5-di­nitro­benzoic acid

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 October 2009; accepted 16 October 2009; online 23 October 2009)

In the title compound, C8H6N2O6, the O atoms of the nitro groups, the methyl H atoms and the carboxyl C=O and C—OH groups are disordered over two sets of sites with an occupancy ratio of 0.595 (16):0.405 (16). In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds arise for both carboxyl disorder components and C—H⋯O bonds and weak C—H⋯π inter­actions consolidate the packing.

Related literature

For general background to isocoumarins, see: Hill (1986[Hill, R. A. (1986). Chem. Org. Naturst. Fortschr. 49, 1-78.]); Varanda et al. (2004[Varanda, E. A., Devienne, K. F., Raddi, M. S. G., Furuya, E. M. & Vilegas, W. (2004). Toxicol. in Vitro, 18, 109-114.]). For related structures, see: Prince et al. (1991[Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895-898.]); Sarma & Nagaraju (2000[Sarma, J. A. R. P. & Nagaraju, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1113-1118.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O6

  • Mr = 226.15

  • Monoclinic, C 2/c

  • a = 26.8441 (16) Å

  • b = 5.1044 (3) Å

  • c = 13.8853 (10) Å

  • β = 104.544 (3)°

  • V = 1841.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.28 × 0.09 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.987

  • 8618 measured reflections

  • 2019 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.07

  • 2019 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.83 (4) 1.80 (4) 2.6216 (16) 175 (3)
C8—H8B⋯O5Aii 0.96 2.55 3.385 (11) 145
C8—H8C⋯O3A 0.96 2.43 3.023 (11) 120
C8—H8ACg1iii 0.96 2.96 3.781 (2) 144
C8—H8ECg1iii 0.96 2.96 3.781 (2) 144
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) x, y-1, z. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Isocoumarins are secondary metabolites, derived from acetate pathway, which are structurally related to coumarins but with inverted lactone ring. Isocoumarins shows a wide range of applications and biological activities including anti-cancer (Varanda et al., 2004), anti-tumor (Hill et al., 1986) etc.

The title compound (I, Fig. 1) is an intermediate towards the synthesis of substituted homophthallic acid that is a precursor for the synthesis of isocoumarins.

The ctystal structures of (II) 2,4-Dinitrotoluene (Sarma & Nagaraju 2000), (III) 3,5-Dinitrobenzoic acid (Prince et al., 1991) have been reported. The title compound contains both of these moieties.

The O-atoms of nito groups are disordered over two sets of sites with occupancy ratio of 0.595 (16):0.405 (16). Due to this disorder the H-atoms of CH3 and OH groups are also disordered with same occupancy ratio. The title compound consist of conventional carboxylate dimers (Fig. 2). The benzene ring A (C1–C6) and carboxyl group B (O1/C7/O2) are oriented at a dihedral angle of 23.82 (15)°. The disordered nitro groups C (O3A/N1/O4A), D (O3B/N1/O4B), E (O5A/N2/O6A) and F (O5B/N1/O6B) are certainly planar. The values of dihedral angles for C/E and D/F are 57 (1) and 76 (1)°, respectively. The molecules are stabilized due to H-bondings and C—H···π interactions (Table 1).

Related literature top

For general background to isocoumarins, see: Hill (1986); Varanda et al. (2004). For related structures, see: Prince et al. (1991); Sarma & Nagaraju (2000). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

HNO3 (28.0 g, 0.7 mol) was added as drops to an ice-chilled (273 K) solution of o-toluic acid (13.6 g, 0.1 mol) in H2SO4 (110.4 g, 11.2 mol) with constant stirring. The reaction mixture was stirred for 15 minutes, left overnight on stirring at room temperature and then refluxed at 373 K for 4 h. More HNO3 (21.0 g, 0.69 mol) was added after cooling to room temperature and refluxed for further 3 h. The reaction mixture was cooled to room temperature and poured to ice. The precipitates were filtered, washed with distilled water to remove free sulfates and nitrates. Recrystallization from methanol/water (1:1) afforded yellow needles of (I) suitable for x-ray diffraction. Yield 92%.

Refinement top

The O-atoms of NO2 groups along with H-atoms of CH3 and OH groups are disordered. The coordinates of H-atoms of hydroxy group were refined.

H-atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aryl and methyl H, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and 1.2 for all other H atoms.

Structure description top

Isocoumarins are secondary metabolites, derived from acetate pathway, which are structurally related to coumarins but with inverted lactone ring. Isocoumarins shows a wide range of applications and biological activities including anti-cancer (Varanda et al., 2004), anti-tumor (Hill et al., 1986) etc.

The title compound (I, Fig. 1) is an intermediate towards the synthesis of substituted homophthallic acid that is a precursor for the synthesis of isocoumarins.

The ctystal structures of (II) 2,4-Dinitrotoluene (Sarma & Nagaraju 2000), (III) 3,5-Dinitrobenzoic acid (Prince et al., 1991) have been reported. The title compound contains both of these moieties.

The O-atoms of nito groups are disordered over two sets of sites with occupancy ratio of 0.595 (16):0.405 (16). Due to this disorder the H-atoms of CH3 and OH groups are also disordered with same occupancy ratio. The title compound consist of conventional carboxylate dimers (Fig. 2). The benzene ring A (C1–C6) and carboxyl group B (O1/C7/O2) are oriented at a dihedral angle of 23.82 (15)°. The disordered nitro groups C (O3A/N1/O4A), D (O3B/N1/O4B), E (O5A/N2/O6A) and F (O5B/N1/O6B) are certainly planar. The values of dihedral angles for C/E and D/F are 57 (1) and 76 (1)°, respectively. The molecules are stabilized due to H-bondings and C—H···π interactions (Table 1).

For general background to isocoumarins, see: Hill (1986); Varanda et al. (2004). For related structures, see: Prince et al. (1991); Sarma & Nagaraju (2000). Cg1 is the centroid of the C1–C6 benzene ring.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom numbering scheme having atoms of greater occupancy ratio. The displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. View of (I) with the atom numbering scheme having atoms of smaller occupancy ratio. The displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 3] Fig. 3. The partial packing of (I), which shows that molecules form inversion dimers.
2-Methyl-3,5-dinitrobenzoic acid top
Crystal data top
C8H6N2O6F(000) = 928
Mr = 226.15Dx = 1.631 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2019 reflections
a = 26.8441 (16) Åθ = 3.0–27.1°
b = 5.1044 (3) ŵ = 0.14 mm1
c = 13.8853 (10) ÅT = 296 K
β = 104.544 (3)°Needle, yellow
V = 1841.6 (2) Å30.28 × 0.09 × 0.08 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2019 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.60 pixels mm-1θmax = 27.1°, θmin = 3.0°
ω scansh = 3421
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.985, Tmax = 0.987l = 1617
8618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.7672P]
where P = (Fo2 + 2Fc2)/3
2019 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H6N2O6V = 1841.6 (2) Å3
Mr = 226.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.8441 (16) ŵ = 0.14 mm1
b = 5.1044 (3) ÅT = 296 K
c = 13.8853 (10) Å0.28 × 0.09 × 0.08 mm
β = 104.544 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2019 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1626 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.025
8618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
2019 reflectionsΔρmin = 0.17 e Å3
189 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.01701 (4)0.2581 (2)0.43564 (8)0.0512 (3)
O20.05404 (4)0.13177 (19)0.47311 (8)0.0478 (3)
O3A0.2288 (4)0.200 (2)0.3383 (8)0.083 (2)0.595 (16)
O4A0.2604 (2)0.1735 (16)0.3731 (8)0.0879 (18)0.595 (16)
O5A0.1204 (4)0.696 (2)0.1252 (9)0.082 (3)0.595 (16)
O6A0.0510 (4)0.781 (2)0.1802 (7)0.0573 (14)0.595 (16)
N10.22362 (4)0.0323 (3)0.35244 (10)0.0497 (4)
N20.09302 (5)0.6426 (3)0.17734 (9)0.0485 (4)
C10.09152 (4)0.1704 (2)0.38137 (9)0.0325 (3)
C20.14060 (4)0.0536 (2)0.39970 (9)0.0335 (3)
C30.17128 (4)0.1421 (3)0.33837 (10)0.0367 (4)
C40.15720 (5)0.3269 (3)0.26482 (10)0.0399 (4)
C50.10921 (5)0.4375 (3)0.25252 (9)0.0371 (4)
C60.07666 (4)0.3649 (3)0.31037 (9)0.0360 (4)
C70.05193 (4)0.0909 (3)0.43530 (9)0.0346 (4)
C80.16097 (5)0.1411 (3)0.48095 (11)0.0448 (4)
O4B0.2566 (3)0.149 (3)0.4132 (8)0.084 (3)0.405 (16)
O5B0.0598 (5)0.750 (3)0.1754 (11)0.061 (2)0.405 (16)
O6B0.1179 (7)0.655 (3)0.1105 (11)0.061 (2)0.405 (16)
O3B0.2269 (6)0.152 (3)0.3038 (13)0.094 (4)0.405 (16)
H8B0.156190.074880.542720.0672*0.595 (16)
H8C0.196970.169350.486910.0672*0.595 (16)
H8A0.142780.303730.465220.0672*0.595 (16)
H10.0046 (14)0.209 (6)0.465 (2)0.0614*0.595 (16)
H40.178960.375040.225250.0479*
H60.044840.446120.301770.0432*
H20.0315 (19)0.169 (9)0.498 (4)0.0614*0.405 (16)
H8D0.191340.071890.525750.0672*0.405 (16)
H8E0.169300.301480.452420.0672*0.405 (16)
H8F0.135310.174590.516690.0672*0.405 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (5)0.0495 (6)0.0706 (7)0.0066 (4)0.0349 (5)0.0127 (5)
O20.0450 (5)0.0407 (5)0.0658 (7)0.0019 (4)0.0293 (5)0.0092 (5)
O3A0.058 (2)0.064 (3)0.121 (5)0.0211 (19)0.012 (3)0.014 (3)
O4A0.0343 (13)0.091 (2)0.142 (5)0.0100 (13)0.029 (3)0.005 (3)
O5A0.068 (3)0.114 (5)0.071 (5)0.004 (3)0.031 (3)0.051 (4)
O6A0.052 (3)0.060 (2)0.061 (2)0.027 (2)0.016 (2)0.0131 (16)
N10.0356 (6)0.0591 (8)0.0593 (8)0.0035 (6)0.0213 (6)0.0073 (7)
N20.0488 (7)0.0541 (7)0.0416 (7)0.0018 (6)0.0093 (6)0.0104 (6)
C10.0303 (6)0.0364 (6)0.0325 (6)0.0048 (5)0.0109 (5)0.0019 (5)
C20.0315 (6)0.0354 (6)0.0345 (6)0.0036 (5)0.0100 (5)0.0024 (5)
C30.0295 (6)0.0424 (7)0.0401 (7)0.0005 (5)0.0124 (5)0.0016 (6)
C40.0364 (6)0.0489 (8)0.0388 (7)0.0063 (6)0.0175 (5)0.0012 (6)
C50.0374 (6)0.0421 (7)0.0320 (6)0.0034 (5)0.0089 (5)0.0039 (5)
C60.0300 (6)0.0414 (7)0.0368 (7)0.0013 (5)0.0090 (5)0.0003 (5)
C70.0316 (6)0.0369 (6)0.0376 (7)0.0031 (5)0.0128 (5)0.0007 (5)
C80.0416 (7)0.0468 (8)0.0466 (8)0.0033 (6)0.0124 (6)0.0089 (6)
O4B0.029 (3)0.115 (5)0.102 (5)0.000 (3)0.005 (3)0.011 (4)
O5B0.064 (5)0.068 (4)0.064 (3)0.046 (3)0.039 (3)0.032 (3)
O6B0.075 (5)0.075 (3)0.040 (2)0.020 (3)0.027 (2)0.017 (2)
O3B0.070 (5)0.074 (6)0.152 (10)0.020 (3)0.053 (6)0.025 (6)
Geometric parameters (Å, º) top
O1—C71.2686 (17)C1—C61.3854 (18)
O2—C71.2473 (18)C1—C71.5015 (16)
O3A—N11.216 (10)C2—C31.3999 (17)
O3B—N11.174 (16)C2—C81.4999 (19)
O4A—N11.198 (7)C3—C41.372 (2)
O4B—N11.215 (12)C4—C51.377 (2)
O5A—N21.186 (12)C5—C61.3779 (18)
O5B—N21.041 (14)C4—H40.9300
O6A—N21.340 (11)C6—H60.9300
O6B—N21.274 (17)C8—H8A0.9600
O1—H10.83 (4)C8—H8B0.9600
O2—H20.79 (5)C8—H8C0.9600
N1—C31.4794 (17)C8—H8D0.9600
N2—C51.465 (2)C8—H8E0.9600
C1—C21.4098 (16)C8—H8F0.9600
C7—O1—H1114 (2)C4—C5—C6121.86 (13)
C7—O2—H2116 (3)N2—C5—C4118.82 (12)
O4A—N1—C3120.1 (4)N2—C5—C6119.31 (12)
O3B—N1—C3115.7 (8)C1—C6—C5119.75 (11)
O3A—N1—C3119.5 (5)O2—C7—C1119.55 (11)
O3B—N1—O4B130.2 (10)O1—C7—O2124.54 (12)
O4B—N1—C3114.1 (6)O1—C7—C1115.86 (12)
O3A—N1—O4A120.3 (6)C3—C4—H4122.00
O5A—N2—O6A123.5 (7)C5—C4—H4122.00
O5B—N2—C5119.6 (8)C1—C6—H6120.00
O6B—N2—C5116.0 (7)C5—C6—H6120.00
O5B—N2—O6B123.9 (11)C2—C8—H8A109.00
O6A—N2—C5117.2 (4)C2—C8—H8B109.00
O5A—N2—C5118.7 (5)C2—C8—H8C109.00
C2—C1—C7122.82 (10)C2—C8—H8D109.00
C2—C1—C6121.37 (10)C2—C8—H8E109.00
C6—C1—C7115.80 (10)C2—C8—H8F109.00
C3—C2—C8120.82 (11)H8A—C8—H8B109.00
C1—C2—C8124.31 (11)H8A—C8—H8C109.00
C1—C2—C3114.81 (11)H8B—C8—H8C109.00
N1—C3—C2118.80 (12)H8D—C8—H8E109.00
N1—C3—C4115.71 (12)H8D—C8—H8F109.00
C2—C3—C4125.49 (12)H8E—C8—H8F109.00
C3—C4—C5116.64 (12)
O3A—N1—C3—C263.2 (6)C2—C1—C7—O1158.86 (11)
O3A—N1—C3—C4117.2 (6)C2—C1—C7—O223.53 (18)
O4A—N1—C3—C2120.3 (6)C6—C1—C7—O122.16 (17)
O4A—N1—C3—C459.4 (6)C6—C1—C7—O2155.46 (12)
O5A—N2—C5—C44.6 (6)C1—C2—C3—N1179.58 (12)
O5A—N2—C5—C6176.9 (6)C1—C2—C3—C40.1 (2)
O6A—N2—C5—C4167.3 (5)C8—C2—C3—N12.39 (19)
O6A—N2—C5—C611.2 (5)C8—C2—C3—C4177.24 (14)
C6—C1—C2—C32.47 (17)N1—C3—C4—C5178.07 (13)
C6—C1—C2—C8174.61 (12)C2—C3—C4—C51.6 (2)
C7—C1—C2—C3176.46 (12)C3—C4—C5—N2177.87 (13)
C7—C1—C2—C86.46 (18)C3—C4—C5—C60.6 (2)
C2—C1—C6—C53.43 (19)N2—C5—C6—C1179.73 (12)
C7—C1—C6—C5175.58 (12)C4—C5—C6—C11.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (4)1.80 (4)2.6216 (16)175 (3)
C8—H8B···O5Aii0.962.553.385 (11)145
C8—H8C···O3A0.962.433.023 (11)120
C8—H8A···Cg1iii0.962.963.781 (2)144
C8—H8E···Cg1iii0.962.963.781 (2)144
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H6N2O6
Mr226.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)26.8441 (16), 5.1044 (3), 13.8853 (10)
β (°) 104.544 (3)
V3)1841.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.28 × 0.09 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.985, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8618, 2019, 1626
Rint0.025
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.07
No. of reflections2019
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (4)1.80 (4)2.6216 (16)175 (3)
C8—H8B···O5Aii0.962.553.385 (11)145
C8—H8C···O3A0.962.433.023 (11)120
C8—H8A···Cg1iii0.962.963.781 (2)144
C8—H8E···Cg1iii0.962.963.781 (2)144
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1/2; (iii) x, y1, z.
 

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHill, R. A. (1986). Chem. Org. Naturst. Fortschr. 49, 1–78.  CAS Google Scholar
First citationPrince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSarma, J. A. R. P. & Nagaraju, A. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1113–1118.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaranda, E. A., Devienne, K. F., Raddi, M. S. G., Furuya, E. M. & Vilegas, W. (2004). Toxicol. in Vitro, 18, 109–114.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds