organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(N-Benzyl-4-methyl­benzene­sul­fon­amido)meth­yl]pyridinium nitrate

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: js_li@yahoo.com.cn

(Received 11 October 2009; accepted 15 October 2009; online 23 October 2009)

In the title compound, C20H21N2O2S+·NO3, the dihedral angle between the pyridinium and phenyl rings is 81.77 (19)°, that between the pyridinium and tolyl rings is 1.36 (18)°, and that between the phenyl and tolyl rings is 82.69 (19)°. In the crystal, the components are linked by strong charge-assisted bifurcated N+—H⋯(O,O) hydrogen bonds and the packing is consolidated by numerous weak C—H⋯O bonds and ππ stacking inter­actions [for the latter, centroid–centroid separation = 3.868 (2) Å].

Related literature

For the preparation of the title compound and for a related structure, see: Zhang et al. (2007[Zhang, Y.-Y., Li, J.-S., Zhou, X.-L. & Fan, X.-P. (2007). Acta Cryst. E63, o1285-o1286.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N2O2S+·NO3

  • Mr = 415.46

  • Triclinic, [P \overline 1]

  • a = 7.6852 (15) Å

  • b = 9.811 (2) Å

  • c = 13.240 (3) Å

  • α = 104.26 (3)°

  • β = 91.82 (3)°

  • γ = 95.64 (2)°

  • V = 961.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.960, Tmax = 0.976

  • 7087 measured reflections

  • 3355 independent reflections

  • 2020 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.188

  • S = 0.94

  • 3355 reflections

  • 267 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.91 (4) 1.82 (4) 2.670 (5) 156 (3)
N1—H1A⋯O4 0.91 (4) 2.39 (4) 3.161 (5) 144 (3)
C6—H6B⋯O3 0.99 2.66 3.362 (5) 128
C15—H15⋯O4 0.95 2.68 3.493 (5) 144
C1—H1⋯O2i 0.95 2.71 3.315 (5) 122
C3—H3⋯O1ii 0.95 2.60 3.301 (5) 131
C20—H20A⋯O3iii 0.98 2.43 3.256 (5) 142
C7—H7A⋯O4iv 0.99 2.70 3.440 (5) 132
C11—H11⋯O4v 0.95 2.54 3.439 (5) 158
C11—H11⋯O5v 0.95 2.55 3.411 (5) 151
C20—H20C⋯O3vi 0.98 2.62 3.594 (5) 174
C10—H10⋯O5vii 0.95 2.66 3.309 (6) 126
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) -x, -y+1, -z+1; (vii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The molecular structure of (I) (Fig. 1) shows that the nitrate is connected with its corresponding pyridinium via two strong charge-assisted N+—H···O hydrogen bonds. In the cation, the dihedral angle between the pyridinium and phenyl rings is 81.774 (9)°, that between the pyridinium and tolyl rings 1.355 (5)°, and that between the phenyl and tolyl rings 82.693 (7)°.

In the crystal structure, a series of intermolecular C—H···O interactions link the molecules (Table 1), Fig. 2, which are packed by π-π stacking interactions between the pyridinium ring and the tolyl ring at (1 + x, y, z) [centroid-to -centroid separation 3.868 Å], together with two weak C—H···π interactions [H19···Cg2(x - 1, y, z) 2.90 Å, H20B···Cg3(-x, y, z) 2.69 Å; Cg2 and Cg3 are the centroids of the phenyl and tolyl rings,respectively], Fig.3.

Related literature top

For the preparation of the title compound and for a related structure, see: Zhang et al. (2007).

Experimental top

The tosylamino-containing pyridine derivative was prepared by a similar method to that of Zhang et al. (2007). Colourless needles of (I) were obtained by natural evaporation from its aqueous nitric acid solution.

Refinement top

The N-bound H atom was located in a difference map and refined with the distance restraint N—H = 0.91 (4) Å. The other H atoms were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.95 and 0.99Å for aromatic and CH2 H atoms with Uiso(H) = 1.2 Ueq(C), 0.98 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Structure description top

The molecular structure of (I) (Fig. 1) shows that the nitrate is connected with its corresponding pyridinium via two strong charge-assisted N+—H···O hydrogen bonds. In the cation, the dihedral angle between the pyridinium and phenyl rings is 81.774 (9)°, that between the pyridinium and tolyl rings 1.355 (5)°, and that between the phenyl and tolyl rings 82.693 (7)°.

In the crystal structure, a series of intermolecular C—H···O interactions link the molecules (Table 1), Fig. 2, which are packed by π-π stacking interactions between the pyridinium ring and the tolyl ring at (1 + x, y, z) [centroid-to -centroid separation 3.868 Å], together with two weak C—H···π interactions [H19···Cg2(x - 1, y, z) 2.90 Å, H20B···Cg3(-x, y, z) 2.69 Å; Cg2 and Cg3 are the centroids of the phenyl and tolyl rings,respectively], Fig.3.

For the preparation of the title compound and for a related structure, see: Zhang et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing displacement ellipsoids drawn at the 30% probability level and H atoms shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of (I). Hydrogen bonds are indicated as dashed lines.
[Figure 3] Fig. 3. Crystal packing of (I) via π-π and C—H···π interactions, indicated as dashed lines.
2-[(N-Benzyl-4-methylbenzenesulfonamido)methyl]pyridinium nitrate top
Crystal data top
C20H21N2O2S+·NO3Z = 2
Mr = 415.46F(000) = 436
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6852 (15) ÅCell parameters from 2706 reflections
b = 9.811 (2) Åθ = 2.2–27.9°
c = 13.240 (3) ŵ = 0.21 mm1
α = 104.26 (3)°T = 113 K
β = 91.82 (3)°Cut needle, colourless
γ = 95.64 (2)°0.20 × 0.18 × 0.12 mm
V = 961.2 (3) Å3
Data collection top
Rigaku Saturn CCD
diffractometer
3355 independent reflections
Radiation source: fine-focus sealed tube2020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω and φ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1110
Tmin = 0.960, Tmax = 0.976l = 1315
7087 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0858P)2]
where P = (Fo2 + 2Fc2)/3
3355 reflections(Δ/σ)max = 0.002
267 parametersΔρmax = 0.76 e Å3
18 restraintsΔρmin = 0.73 e Å3
Crystal data top
C20H21N2O2S+·NO3γ = 95.64 (2)°
Mr = 415.46V = 961.2 (3) Å3
Triclinic, P1Z = 2
a = 7.6852 (15) ÅMo Kα radiation
b = 9.811 (2) ŵ = 0.21 mm1
c = 13.240 (3) ÅT = 113 K
α = 104.26 (3)°0.20 × 0.18 × 0.12 mm
β = 91.82 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3355 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2020 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.976Rint = 0.099
7087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07718 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.76 e Å3
3355 reflectionsΔρmin = 0.73 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18143 (12)0.79196 (10)0.86138 (8)0.0205 (3)
O10.1109 (3)0.9220 (3)0.9041 (2)0.0274 (7)
O20.2282 (3)0.7040 (3)0.9273 (2)0.0246 (7)
N10.5863 (4)0.5427 (4)0.8435 (3)0.0227 (8)
N20.3629 (4)0.8340 (3)0.8070 (2)0.0182 (8)
C10.6827 (5)0.4979 (4)0.9147 (3)0.0263 (10)
H10.68610.39950.90780.032*
C20.7735 (5)0.5931 (4)0.9951 (3)0.0256 (10)
H20.84070.56201.04490.031*
C30.7679 (5)0.7362 (4)1.0043 (3)0.0240 (10)
H30.83210.80431.05990.029*
C40.6674 (5)0.7786 (4)0.9313 (3)0.0234 (10)
H40.66200.87640.93680.028*
C50.5758 (5)0.6794 (4)0.8510 (3)0.0178 (9)
C60.4652 (5)0.7138 (4)0.7666 (3)0.0204 (9)
H6A0.54210.73700.71320.024*
H6B0.38360.62940.73220.024*
C70.3525 (5)0.9325 (4)0.7392 (3)0.0225 (10)
H7A0.27621.00600.76950.027*
H7B0.30070.88020.66930.027*
C80.5338 (5)1.0014 (4)0.7292 (3)0.0190 (9)
C90.6059 (5)0.9836 (4)0.6327 (3)0.0246 (10)
H90.53950.93030.57150.030*
C100.7760 (5)1.0438 (4)0.6253 (4)0.0285 (11)
H100.82491.03240.55910.034*
C110.8726 (5)1.1195 (4)0.7142 (4)0.0277 (11)
H110.98911.15890.70940.033*
C120.8006 (5)1.1386 (4)0.8104 (4)0.0254 (10)
H120.86751.19130.87160.030*
C130.6312 (5)1.0808 (4)0.8175 (3)0.0232 (10)
H130.58131.09570.88360.028*
C140.0365 (5)0.6861 (4)0.7588 (3)0.0182 (9)
C150.0291 (5)0.5396 (4)0.7362 (3)0.0219 (10)
H150.09530.49580.77860.026*
C160.0733 (5)0.4593 (4)0.6532 (3)0.0250 (10)
H160.08010.35910.63900.030*
C170.1692 (5)0.5217 (4)0.5878 (3)0.0224 (10)
C180.1592 (5)0.6684 (4)0.6119 (3)0.0222 (10)
H180.22390.71250.56890.027*
C190.0576 (5)0.7516 (4)0.6967 (3)0.0224 (10)
H190.05220.85180.71220.027*
C200.2769 (5)0.4302 (4)0.4942 (3)0.0288 (10)
H20A0.36910.37050.51740.043*
H20B0.20140.37030.44880.043*
H20C0.33020.49040.45570.043*
H1A0.525 (5)0.470 (4)0.796 (3)0.014 (10)*
O30.4546 (4)0.3632 (3)0.6655 (2)0.0349 (8)
O40.2927 (4)0.2835 (3)0.7733 (2)0.0319 (8)
N30.3338 (4)0.2729 (3)0.6806 (3)0.0258 (8)
O50.2626 (4)0.1803 (3)0.6083 (2)0.0346 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0123 (5)0.0245 (6)0.0255 (6)0.0017 (4)0.0065 (4)0.0070 (4)
O10.0220 (16)0.0240 (15)0.0345 (19)0.0057 (12)0.0082 (14)0.0020 (13)
O20.0183 (15)0.0334 (17)0.0247 (18)0.0012 (12)0.0055 (13)0.0132 (13)
N10.0161 (19)0.022 (2)0.030 (2)0.0022 (15)0.0065 (16)0.0068 (17)
N20.0156 (11)0.0195 (11)0.0202 (11)0.0022 (8)0.0038 (8)0.0057 (8)
C10.026 (2)0.025 (2)0.034 (3)0.0112 (19)0.008 (2)0.015 (2)
C20.018 (2)0.036 (3)0.029 (3)0.0085 (19)0.005 (2)0.018 (2)
C30.013 (2)0.034 (3)0.026 (3)0.0035 (18)0.0050 (18)0.011 (2)
C40.019 (2)0.022 (2)0.031 (3)0.0034 (17)0.009 (2)0.0079 (19)
C50.0084 (18)0.019 (2)0.030 (2)0.0035 (15)0.0100 (17)0.0117 (17)
C60.013 (2)0.022 (2)0.028 (3)0.0050 (16)0.0076 (18)0.0076 (18)
C70.012 (2)0.024 (2)0.034 (3)0.0021 (17)0.0049 (19)0.0121 (19)
C80.012 (2)0.020 (2)0.030 (3)0.0036 (16)0.0044 (18)0.0120 (18)
C90.021 (2)0.023 (2)0.033 (3)0.0046 (18)0.004 (2)0.0118 (19)
C100.025 (2)0.028 (2)0.040 (3)0.0091 (19)0.016 (2)0.020 (2)
C110.013 (2)0.024 (2)0.052 (3)0.0042 (18)0.010 (2)0.019 (2)
C120.010 (2)0.020 (2)0.046 (3)0.0011 (16)0.003 (2)0.010 (2)
C130.018 (2)0.025 (2)0.029 (3)0.0073 (18)0.009 (2)0.0077 (19)
C140.0093 (18)0.024 (2)0.023 (2)0.0040 (15)0.0103 (16)0.0066 (17)
C150.015 (2)0.026 (2)0.028 (3)0.0012 (17)0.0058 (19)0.0132 (19)
C160.024 (2)0.020 (2)0.033 (3)0.0006 (18)0.009 (2)0.0090 (19)
C170.010 (2)0.033 (2)0.026 (3)0.0011 (17)0.0111 (18)0.0100 (19)
C180.010 (2)0.033 (2)0.028 (3)0.0080 (17)0.0102 (18)0.0120 (19)
C190.015 (2)0.023 (2)0.032 (3)0.0068 (17)0.0122 (19)0.0081 (19)
C200.019 (2)0.034 (2)0.031 (3)0.0003 (18)0.007 (2)0.005 (2)
O30.0331 (18)0.0320 (17)0.039 (2)0.0090 (14)0.0143 (15)0.0111 (14)
O40.0257 (17)0.0449 (19)0.0253 (19)0.0004 (13)0.0091 (14)0.0092 (14)
N30.021 (2)0.027 (2)0.033 (2)0.0045 (16)0.0084 (17)0.0113 (18)
O50.0264 (17)0.0375 (18)0.032 (2)0.0073 (14)0.0016 (15)0.0019 (15)
Geometric parameters (Å, º) top
S1—O11.429 (3)C9—H90.9500
S1—O21.431 (3)C10—C111.376 (6)
S1—N21.652 (3)C10—H100.9500
S1—C141.773 (4)C11—C121.383 (6)
N1—C51.331 (5)C11—H110.9500
N1—C11.362 (5)C12—C131.384 (5)
N1—H1A0.91 (4)C12—H120.9500
N2—C71.478 (5)C13—H130.9500
N2—C61.481 (4)C14—C151.388 (5)
C1—C21.351 (6)C14—C191.389 (5)
C1—H10.9500C15—C161.358 (6)
C2—C31.384 (5)C15—H150.9500
C2—H20.9500C16—C171.406 (5)
C3—C41.385 (5)C16—H160.9500
C3—H30.9500C17—C181.389 (5)
C4—C51.371 (6)C17—C201.505 (6)
C4—H40.9500C18—C191.380 (6)
C5—C61.507 (5)C18—H180.9500
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—H20A0.9800
C7—C81.512 (5)C20—H20B0.9800
C7—H7A0.9900C20—H20C0.9800
C7—H7B0.9900O3—N31.275 (4)
C8—C131.384 (5)O4—N31.258 (4)
C8—C91.388 (6)N3—O51.217 (4)
C9—C101.398 (5)
O1—S1—O2120.51 (18)C8—C9—C10120.1 (4)
O1—S1—N2106.19 (16)C8—C9—H9119.9
O2—S1—N2106.00 (16)C10—C9—H9119.9
O1—S1—C14109.31 (17)C11—C10—C9119.8 (4)
O2—S1—C14107.56 (17)C11—C10—H10120.1
N2—S1—C14106.42 (17)C9—C10—H10120.1
C5—N1—C1121.9 (4)C10—C11—C12120.2 (4)
C5—N1—H1A125 (2)C10—C11—H11119.9
C1—N1—H1A113 (2)C12—C11—H11119.9
C7—N2—C6114.8 (3)C11—C12—C13120.0 (4)
C7—N2—S1116.9 (2)C11—C12—H12120.0
C6—N2—S1114.4 (2)C13—C12—H12120.0
C2—C1—N1120.2 (4)C8—C13—C12120.5 (4)
C2—C1—H1119.9C8—C13—H13119.7
N1—C1—H1119.9C12—C13—H13119.7
C1—C2—C3119.5 (4)C15—C14—C19120.8 (4)
C1—C2—H2120.3C15—C14—S1120.0 (3)
C3—C2—H2120.3C19—C14—S1119.1 (3)
C2—C3—C4119.1 (4)C16—C15—C14119.7 (4)
C2—C3—H3120.5C16—C15—H15120.1
C4—C3—H3120.5C14—C15—H15120.1
C5—C4—C3120.0 (4)C15—C16—C17121.2 (4)
C5—C4—H4120.0C15—C16—H16119.4
C3—C4—H4120.0C17—C16—H16119.4
N1—C5—C4119.3 (4)C18—C17—C16118.0 (4)
N1—C5—C6116.2 (4)C18—C17—C20121.9 (3)
C4—C5—C6124.4 (3)C16—C17—C20120.1 (3)
N2—C6—C5112.7 (3)C19—C18—C17121.5 (4)
N2—C6—H6A109.1C19—C18—H18119.2
C5—C6—H6A109.1C17—C18—H18119.2
N2—C6—H6B109.1C18—C19—C14118.8 (4)
C5—C6—H6B109.1C18—C19—H19120.6
H6A—C6—H6B107.8C14—C19—H19120.6
N2—C7—C8109.7 (3)C17—C20—H20A109.5
N2—C7—H7A109.7C17—C20—H20B109.5
C8—C7—H7A109.7H20A—C20—H20B109.5
N2—C7—H7B109.7C17—C20—H20C109.5
C8—C7—H7B109.7H20A—C20—H20C109.5
H7A—C7—H7B108.2H20B—C20—H20C109.5
C13—C8—C9119.3 (4)O5—N3—O4121.9 (4)
C13—C8—C7119.8 (4)O5—N3—O3121.1 (4)
C9—C8—C7120.8 (4)O4—N3—O3117.0 (4)
O1—S1—N2—C747.2 (3)C7—C8—C9—C10177.7 (3)
O2—S1—N2—C7176.5 (3)C8—C9—C10—C110.7 (5)
C14—S1—N2—C769.2 (3)C9—C10—C11—C121.3 (5)
O1—S1—N2—C6174.5 (3)C10—C11—C12—C130.3 (6)
O2—S1—N2—C645.2 (3)C9—C8—C13—C121.8 (5)
C14—S1—N2—C669.1 (3)C7—C8—C13—C12176.7 (3)
C5—N1—C1—C21.0 (6)C11—C12—C13—C81.3 (5)
N1—C1—C2—C30.1 (6)O1—S1—C14—C15151.3 (3)
C1—C2—C3—C40.7 (6)O2—S1—C14—C1518.9 (4)
C2—C3—C4—C50.2 (6)N2—S1—C14—C1594.4 (3)
C1—N1—C5—C41.5 (6)O1—S1—C14—C1934.0 (4)
C1—N1—C5—C6179.7 (3)O2—S1—C14—C19166.4 (3)
C3—C4—C5—N10.8 (6)N2—S1—C14—C1980.3 (3)
C3—C4—C5—C6178.9 (4)C19—C14—C15—C160.9 (6)
C7—N2—C6—C5140.3 (3)S1—C14—C15—C16175.5 (3)
S1—N2—C6—C580.4 (3)C14—C15—C16—C171.5 (6)
N1—C5—C6—N2141.3 (3)C15—C16—C17—C181.3 (6)
C4—C5—C6—N240.5 (5)C15—C16—C17—C20178.0 (4)
C6—N2—C7—C862.9 (4)C16—C17—C18—C190.5 (6)
S1—N2—C7—C8158.9 (3)C20—C17—C18—C19178.7 (4)
N2—C7—C8—C1359.5 (4)C17—C18—C19—C140.1 (6)
N2—C7—C8—C9119.0 (4)C15—C14—C19—C180.1 (6)
C13—C8—C9—C100.8 (5)S1—C14—C19—C18174.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.91 (4)1.82 (4)2.670 (5)156 (3)
N1—H1A···O40.91 (4)2.39 (4)3.161 (5)144 (3)
C6—H6B···O30.992.663.362 (5)128
C15—H15···O40.952.683.493 (5)144
C1—H1···O2i0.952.713.315 (5)122
C3—H3···O1ii0.952.603.301 (5)131
C20—H20A···O3iii0.982.433.256 (5)142
C7—H7A···O4iv0.992.703.440 (5)132
C11—H11···O4v0.952.543.439 (5)158
C11—H11···O5v0.952.553.411 (5)151
C20—H20C···O3vi0.982.623.594 (5)174
C10—H10···O5vii0.952.663.309 (6)126
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H21N2O2S+·NO3
Mr415.46
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)7.6852 (15), 9.811 (2), 13.240 (3)
α, β, γ (°)104.26 (3), 91.82 (3), 95.64 (2)
V3)961.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.960, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
7087, 3355, 2020
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.188, 0.94
No. of reflections3355
No. of parameters267
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.73

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.91 (4)1.82 (4)2.670 (5)156 (3)
N1—H1A···O40.91 (4)2.39 (4)3.161 (5)144 (3)
C6—H6B···O30.992.663.362 (5)128
C15—H15···O40.952.683.493 (5)144
C1—H1···O2i0.952.713.315 (5)122
C3—H3···O1ii0.952.603.301 (5)131
C20—H20A···O3iii0.982.433.256 (5)142
C7—H7A···O4iv0.992.703.440 (5)132
C11—H11···O4v0.952.543.439 (5)158
C11—H11···O5v0.952.553.411 (5)151
C20—H20C···O3vi0.982.623.594 (5)174
C10—H10···O5vii0.952.663.309 (6)126
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+2; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1.
 

Acknowledgements

This project was supported by the Changsha University of Science and Technology Talent Fund (project No. 1004214)

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-Y., Li, J.-S., Zhou, X.-L. & Fan, X.-P. (2007). Acta Cryst. E63, o1285–o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds