organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­benzene­sulfonamido)-2-phenyl­acetic acid

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr, iukhan.gcu@gmail.com

(Received 14 October 2009; accepted 14 October 2009; online 17 October 2009)

In the title compound, C15H15NO4S, the dihedral angle between the phenyl and benzene rings is 46.0 (3)° and a weak intra­molecular N—H⋯O inter­action is present. The crystal structure is stabilized by inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For previous studies on the synthesis of sulfonamide derivatives with phenyl glycine, see: Asiri et al. (2009[Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.]); Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4S

  • Mr = 305.35

  • Orthorhombic, P 21 21 21

  • a = 5.6592 (12) Å

  • b = 11.208 (2) Å

  • c = 23.342 (4) Å

  • V = 1480.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.35 × 0.22 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.923, Tmax = 0.977

  • 3753 measured reflections

  • 3753 independent reflections

  • 1502 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.192

  • S = 0.94

  • 3753 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1550 Freidel pairs

  • Flack parameter: −0.11 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯O2i 0.82 1.85 2.655 (6) 168
N1—HN1⋯O1ii 0.85 (5) 2.47 (5) 3.251 (6) 154 (5)
N1—HN1⋯O2 0.85 (5) 2.43 (5) 2.748 (6) 103 (4)
C7—H7⋯O3iii 0.98 2.43 3.343 (7) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2]; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

(R)-alpha-Amino-benzeneacetic is a side chain component of Ampicillin, Cephalexin and Cephaclor. Cephalexin has D-phenylglycyl group as a substituent at the 7-amino position and an unsubstituted methyl group at the 3-position. This is in connection with our previous study on synthesis of sulfonamide derivatives with phenyl glycine (Arshad et al., 2009).

In the title molecule (I), (Fig. 1), bond lengths (Allen et al., 1987) and bond angles are in the range of expected values. The planes of the phenyl and benzene rings (C1–C6) and (C9–C14) make a dihedral angle of 46.0 (3) ° with each other.

In the structure, the adjacent molecules are connected by intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1). In Fig. 2, the packing and hydrogen bonding of (I) are shown viewed down a axis.

Related literature top

For previous studies on the synthesis of sulfonamide derivatives with phenyl glycine, see: Asiri et al. (2009); Arshad et al. (2009). For reference structural data, see: Allen et al. (1987).

Experimental top

Phenyl glycine (1.0 g, 6.6 mmol) was dissolved in 20 ml distilled in a round bottom flask (100 ml). 1M Na2CO3 solution was used to maintain pH at 8–9. Para-toluene sulfonyl chloride (1.26 g, 6.6 mmol) was added to the solution, and stirred at room temperature until the para-toluene sulfonylchloride was consumed. On completion of the reaction, while vigorous stirring pH was adjusted 1–2, using 1 M HCl. The precipitate formed in this way was filtered off, washed with distilled water, dried and recrystalized in methanol and ethyl acetate (50:50 v/v) to yield light brown prisms of (I).

Refinement top

The NH H atom was localized from the difference-Fourier map and its coordinates were refined freely. The isotropic temperature parameters of the H atom were calculated as 1.2Ueq of the parent atom. H atoms were located geometrically and treated as riding with C—H = 0.98 Å (methine), C—H = 0.96 Å (methyl), C—H = 0.93 Å (aromatic) and O—H = 0.82 Å (hydroxyl) with Uiso(H) = 1.2 or 1.5Ueq(C, O).

Structure description top

(R)-alpha-Amino-benzeneacetic is a side chain component of Ampicillin, Cephalexin and Cephaclor. Cephalexin has D-phenylglycyl group as a substituent at the 7-amino position and an unsubstituted methyl group at the 3-position. This is in connection with our previous study on synthesis of sulfonamide derivatives with phenyl glycine (Arshad et al., 2009).

In the title molecule (I), (Fig. 1), bond lengths (Allen et al., 1987) and bond angles are in the range of expected values. The planes of the phenyl and benzene rings (C1–C6) and (C9–C14) make a dihedral angle of 46.0 (3) ° with each other.

In the structure, the adjacent molecules are connected by intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1). In Fig. 2, the packing and hydrogen bonding of (I) are shown viewed down a axis.

For previous studies on the synthesis of sulfonamide derivatives with phenyl glycine, see: Asiri et al. (2009); Arshad et al. (2009). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 view of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound viewed down a axis. Hydrogen atoms not involved in the showed interactions have been omitted for clarity.
2-(4-Methylbenzenesulfonamido)-2-phenylacetic acid top
Crystal data top
C15H15NO4SF(000) = 640
Mr = 305.35Dx = 1.370 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 533 reflections
a = 5.6592 (12) Åθ = 2.5–15.0°
b = 11.208 (2) ŵ = 0.23 mm1
c = 23.342 (4) ÅT = 296 K
V = 1480.5 (5) Å3Prism, light brown
Z = 40.35 × 0.22 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3753 independent reflections
Radiation source: sealed tube1502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
φ and ω scansθmax = 28.6°, θmin = 1.7°
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
h = 77
Tmin = 0.923, Tmax = 0.977k = 015
3753 measured reflectionsl = 031
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0657P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3753 reflectionsΔρmax = 0.30 e Å3
195 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), 1550 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (19)
Crystal data top
C15H15NO4SV = 1480.5 (5) Å3
Mr = 305.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6592 (12) ŵ = 0.23 mm1
b = 11.208 (2) ÅT = 296 K
c = 23.342 (4) Å0.35 × 0.22 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3753 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
1502 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.977Rint = 0.000
3753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.192Δρmax = 0.30 e Å3
S = 0.94Δρmin = 0.38 e Å3
3753 reflectionsAbsolute structure: Flack (1983), 1550 Freidel pairs
195 parametersAbsolute structure parameter: 0.11 (19)
0 restraints
Special details top

Experimental. Absorption correction: XABS2; Parkin et al. (1995), linear fit to sin(theta)/lambda - 12 parameters

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0144 (3)0.06971 (13)0.90449 (6)0.0506 (5)
O10.6089 (8)0.1884 (4)0.93717 (17)0.0620 (16)
O20.2309 (8)0.2174 (4)0.96274 (18)0.0683 (17)
O30.2356 (6)0.0816 (4)0.90143 (16)0.0590 (16)
O40.1628 (7)0.1504 (4)0.87441 (17)0.0607 (17)
N10.0702 (7)0.0631 (4)0.87997 (19)0.0470 (17)
C10.2019 (12)0.2702 (6)0.8097 (3)0.070 (3)
C20.2455 (14)0.3397 (7)0.7628 (3)0.085 (3)
C30.4491 (12)0.3245 (6)0.7318 (3)0.073 (3)
C40.6069 (13)0.2379 (6)0.7467 (3)0.072 (3)
C50.5634 (9)0.1673 (6)0.7937 (3)0.061 (3)
C60.3604 (10)0.1822 (5)0.8253 (2)0.0463 (19)
C70.3143 (9)0.1052 (5)0.8779 (2)0.0470 (19)
C80.3763 (11)0.1745 (5)0.9306 (2)0.050 (2)
C90.0950 (9)0.0722 (5)0.9766 (2)0.0490 (19)
C100.0428 (11)0.0200 (5)1.0177 (3)0.062 (2)
C110.0257 (12)0.0163 (6)1.0734 (3)0.070 (3)
C120.2384 (12)0.0650 (6)1.0907 (3)0.067 (2)
C130.3774 (11)0.1171 (6)1.0498 (3)0.065 (3)
C140.3091 (10)0.1222 (5)0.9926 (3)0.057 (2)
C150.3157 (14)0.0600 (8)1.1524 (3)0.099 (3)
H10.065500.282200.831100.0840*
HO10.634900.226200.966600.0930*
H20.136600.397500.751800.1010*
HN10.020 (9)0.116 (5)0.894 (2)0.0560*
H30.479700.373400.700400.0880*
H40.743400.226700.725200.0870*
H50.672000.109000.804200.0730*
H70.418300.035400.876000.0560*
H100.186600.013801.007200.0740*
H110.072100.019501.100400.0840*
H130.521600.150101.060500.0780*
H140.405700.158600.965500.0690*
H15A0.480700.040401.154200.1490*
H15B0.226000.000201.172200.1490*
H15C0.289700.136201.170100.1490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0449 (8)0.0563 (8)0.0505 (8)0.0024 (8)0.0026 (8)0.0009 (8)
O10.051 (2)0.074 (3)0.061 (3)0.001 (2)0.012 (2)0.021 (2)
O20.066 (3)0.082 (3)0.057 (3)0.003 (2)0.016 (2)0.017 (2)
O30.034 (2)0.076 (3)0.067 (3)0.0123 (19)0.0037 (19)0.002 (2)
O40.059 (3)0.055 (3)0.068 (3)0.002 (2)0.013 (2)0.012 (2)
N10.040 (3)0.054 (3)0.047 (3)0.003 (2)0.001 (2)0.002 (2)
C10.070 (4)0.078 (5)0.062 (4)0.014 (4)0.008 (4)0.024 (4)
C20.082 (5)0.083 (6)0.089 (5)0.015 (4)0.001 (4)0.034 (4)
C30.065 (5)0.095 (6)0.060 (4)0.016 (4)0.001 (3)0.022 (4)
C40.062 (4)0.096 (6)0.059 (5)0.007 (4)0.011 (4)0.009 (4)
C50.044 (4)0.085 (5)0.053 (4)0.002 (3)0.003 (3)0.009 (3)
C60.048 (3)0.052 (4)0.039 (3)0.003 (3)0.000 (3)0.000 (3)
C70.038 (3)0.057 (4)0.046 (3)0.004 (2)0.002 (2)0.001 (3)
C80.053 (4)0.057 (4)0.040 (3)0.008 (3)0.002 (3)0.003 (3)
C90.038 (3)0.056 (3)0.053 (4)0.004 (3)0.004 (3)0.007 (3)
C100.055 (4)0.069 (4)0.062 (4)0.008 (3)0.004 (3)0.005 (3)
C110.075 (5)0.084 (5)0.052 (4)0.003 (4)0.005 (4)0.000 (3)
C120.071 (4)0.073 (4)0.056 (4)0.010 (4)0.006 (4)0.010 (4)
C130.053 (4)0.069 (4)0.072 (5)0.003 (3)0.004 (4)0.014 (4)
C140.050 (4)0.062 (4)0.060 (4)0.000 (3)0.003 (3)0.007 (3)
C150.108 (6)0.126 (7)0.064 (5)0.017 (6)0.017 (4)0.019 (5)
Geometric parameters (Å, º) top
S1—O31.423 (4)C10—C111.357 (10)
S1—O41.420 (4)C11—C121.382 (10)
S1—N11.626 (5)C12—C131.368 (10)
S1—C91.744 (5)C12—C151.506 (10)
O1—C81.334 (8)C13—C141.391 (10)
O2—C81.213 (7)C1—H10.9300
O1—HO10.8200C2—H20.9300
N1—C71.461 (7)C3—H30.9300
N1—HN10.85 (5)C4—H40.9300
C1—C61.382 (9)C5—H50.9300
C1—C21.366 (10)C7—H70.9800
C2—C31.371 (10)C10—H100.9300
C3—C41.364 (10)C11—H110.9300
C4—C51.375 (10)C13—H130.9300
C5—C61.375 (8)C14—H140.9300
C6—C71.523 (7)C15—H15A0.9600
C7—C81.497 (7)C15—H15B0.9600
C9—C141.386 (8)C15—H15C0.9600
C9—C101.368 (8)
O3—S1—O4120.2 (3)C13—C12—C15121.1 (6)
O3—S1—N1105.1 (2)C12—C13—C14121.8 (6)
O3—S1—C9107.9 (2)C9—C14—C13119.0 (6)
O4—S1—N1107.1 (2)C2—C1—H1120.00
O4—S1—C9108.2 (3)C6—C1—H1120.00
N1—S1—C9107.7 (3)C1—C2—H2120.00
C8—O1—HO1109.00C3—C2—H2120.00
S1—N1—C7119.4 (3)C2—C3—H3120.00
S1—N1—HN1113 (4)C4—C3—H3120.00
C7—N1—HN1111 (4)C3—C4—H4120.00
C2—C1—C6120.1 (6)C5—C4—H4120.00
C1—C2—C3120.3 (7)C4—C5—H5120.00
C2—C3—C4120.3 (7)C6—C5—H5120.00
C3—C4—C5119.7 (6)N1—C7—H7108.00
C4—C5—C6120.5 (6)C6—C7—H7108.00
C1—C6—C5119.2 (5)C8—C7—H7108.00
C1—C6—C7120.4 (5)C9—C10—H10119.00
C5—C6—C7120.4 (5)C11—C10—H10119.00
N1—C7—C6111.8 (4)C10—C11—H11120.00
C6—C7—C8109.2 (4)C12—C11—H11119.00
N1—C7—C8111.2 (4)C12—C13—H13119.00
O2—C8—C7123.7 (5)C14—C13—H13119.00
O1—C8—C7112.7 (5)C9—C14—H14121.00
O1—C8—O2123.5 (5)C13—C14—H14120.00
S1—C9—C10121.4 (4)C12—C15—H15A109.00
S1—C9—C14119.7 (4)C12—C15—H15B109.00
C10—C9—C14118.8 (5)C12—C15—H15C110.00
C9—C10—C11121.5 (6)H15A—C15—H15B109.00
C10—C11—C12121.1 (6)H15A—C15—H15C109.00
C11—C12—C15121.2 (6)H15B—C15—H15C109.00
C11—C12—C13117.8 (6)
O3—S1—N1—C7179.2 (4)C1—C6—C7—N145.4 (7)
O4—S1—N1—C751.8 (4)C1—C6—C7—C878.1 (7)
C9—S1—N1—C764.3 (4)C5—C6—C7—N1136.5 (5)
O3—S1—C9—C1036.7 (6)C5—C6—C7—C8100.0 (6)
O3—S1—C9—C14146.9 (5)N1—C7—C8—O1164.1 (4)
O4—S1—C9—C10168.2 (5)N1—C7—C8—O218.5 (7)
O4—S1—C9—C1415.4 (5)C6—C7—C8—O172.0 (6)
N1—S1—C9—C1076.3 (5)C6—C7—C8—O2105.3 (6)
N1—S1—C9—C14100.1 (5)S1—C9—C10—C11176.5 (5)
S1—N1—C7—C6143.9 (4)C14—C9—C10—C110.0 (9)
S1—N1—C7—C893.8 (5)S1—C9—C14—C13176.2 (5)
C6—C1—C2—C31.6 (11)C10—C9—C14—C130.4 (8)
C2—C1—C6—C51.2 (10)C9—C10—C11—C120.2 (10)
C2—C1—C6—C7179.4 (6)C10—C11—C12—C130.0 (10)
C1—C2—C3—C41.6 (11)C10—C11—C12—C15179.4 (7)
C2—C3—C4—C51.3 (11)C11—C12—C13—C140.3 (10)
C3—C4—C5—C60.9 (10)C15—C12—C13—C14179.8 (6)
C4—C5—C6—C10.9 (9)C12—C13—C14—C90.5 (9)
C4—C5—C6—C7179.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O2i0.821.852.655 (6)168
N1—HN1···O1ii0.85 (5)2.47 (5)3.251 (6)154 (5)
N1—HN1···O20.85 (5)2.43 (5)2.748 (6)103 (4)
C7—H7···O3iii0.982.433.343 (7)155
Symmetry codes: (i) x+1/2, y1/2, z+2; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H15NO4S
Mr305.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.6592 (12), 11.208 (2), 23.342 (4)
V3)1480.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.22 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
Tmin, Tmax0.923, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
3753, 3753, 1502
Rint0.000
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.192, 0.94
No. of reflections3753
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.38
Absolute structureFlack (1983), 1550 Freidel pairs
Absolute structure parameter0.11 (19)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···O2i0.821.852.655 (6)168
N1—HN1···O1ii0.85 (5)2.47 (5)3.251 (6)154 (5)
N1—HN1···O20.85 (5)2.43 (5)2.748 (6)103 (4)
C7—H7···O3iii0.982.433.343 (7)155
Symmetry codes: (i) x+1/2, y1/2, z+2; (ii) x1, y, z; (iii) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds