metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(hexa­methyl­ene­tetra­mine)bis­­(tri­chloro­acetato)copper(II)

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 16 October 2009; accepted 22 October 2009; online 31 October 2009)

In the title compound, [Cu(C2Cl3O2)2(C6H12N4)2], the CuII ion (site symmetry 2) is coordinated by two trichloro­acetate anions and two hexa­methyl­enetetra­mine mol­ecules, resulting in a distorted CuN2O2 geometry that is inter­mediate between tetra­hedral and square planar. The Cl atoms are disordered over two sets of sites, with relative occupancies of 0.749 (7) and 0.251 (7). In the crystal, the packing is consolidated by inter­molecular C—H⋯O inter­actions.

Related literature

For background to coordination networks, see: Chen et al. (2001[Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021-1023.]). For a related structure, see: Moncol et al. (2007[Moncol, J., Maroszova, J., Peter, L., Mark, H., Marian, V., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213-3225.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2Cl3O2)2(C6H12N4)2]

  • Mr = 668.67

  • Monoclinic, C 2/c

  • a = 23.291 (5) Å

  • b = 6.4759 (13) Å

  • c = 20.702 (4) Å

  • β = 121.36 (3)°

  • V = 2666.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 12444 measured reflections

  • 3048 independent reflections

  • 2740 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.184

  • S = 1.09

  • 3048 reflections

  • 187 parameters

  • 78 restraints

  • H-atom parameters constrained

  • Δρmax = 1.52 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.941 (3)
Cu1—N1 2.045 (2)
O1—Cu1—O1i 159.95 (17)
O1—Cu1—N1 89.63 (10)
O1i—Cu1—N1 96.49 (11)
N1i—Cu1—N1 144.38 (14)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2ii 0.97 2.52 3.416 (5) 153
Symmetry code: (ii) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ionexchange,adsorption,catalytic and magnetic properties. Much of this work has been concerned (e.g. Chen et al., 2001). In order to search for new complexes of this type, we synthesized the title compound, (I), and report its crystal structure here.

The title structure contains one copper(II), two N atoms of the hexamethylenetetramine ligands and two O atoms of trichloroacetate anions. The coordination sphere of the copper(II) ion is best described as a seriously distorted tetrahedral. The Cu—O and Cu—N bond lengths are in agreement with those reported recently (Moncol et al., 2007). The Cl atoms are disordered over two sites, with relatives occupancies 0.749 (7) and 0.251 (7).The crystal packing is stabilized by intra- and intermolecular C—H···O hydrogen interaction (Table 1).

Related literature top

For background to coordination networks, see: Chen et al. (2001). For a related structure, see: Moncol et al. (2007).

Experimental top

The title compound was obtained by adding hexamethylenetetramine (2 mmol) dropwise to a solution of trichloroacetatocopper(II) (1 mmol) in ethanol (30 ml) under stirred for 1 h at room temperature. A green solution was formed and after a few days block crystals precipitated.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso = 1.2Ueq.

Structure description top

Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ionexchange,adsorption,catalytic and magnetic properties. Much of this work has been concerned (e.g. Chen et al., 2001). In order to search for new complexes of this type, we synthesized the title compound, (I), and report its crystal structure here.

The title structure contains one copper(II), two N atoms of the hexamethylenetetramine ligands and two O atoms of trichloroacetate anions. The coordination sphere of the copper(II) ion is best described as a seriously distorted tetrahedral. The Cu—O and Cu—N bond lengths are in agreement with those reported recently (Moncol et al., 2007). The Cl atoms are disordered over two sites, with relatives occupancies 0.749 (7) and 0.251 (7).The crystal packing is stabilized by intra- and intermolecular C—H···O hydrogen interaction (Table 1).

For background to coordination networks, see: Chen et al. (2001). For a related structure, see: Moncol et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids. Atoms with suffix A are generated by the symmetry operation (–x, y, 1/2–z).
Bis(hexamethylenetetramine)bis(trichloroacetato)copper(II) top
Crystal data top
[Cu(C2Cl3O2)2(C6H12N4)2]F(000) = 1356
Mr = 668.67Dx = 1.666 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.291 (5) ÅCell parameters from 2740 reflections
b = 6.4759 (13) Åθ = 3.3–27.5°
c = 20.702 (4) ŵ = 1.46 mm1
β = 121.36 (3)°T = 293 K
V = 2666.3 (9) Å3Block, green
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2740 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 3 pixels mm-1h = 3030
ω scansk = 78
12444 measured reflectionsl = 2626
3048 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1275P)2 + 3.9764P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max = 0.042
187 parametersΔρmax = 1.52 e Å3
78 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Cu(C2Cl3O2)2(C6H12N4)2]V = 2666.3 (9) Å3
Mr = 668.67Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.291 (5) ŵ = 1.46 mm1
b = 6.4759 (13) ÅT = 293 K
c = 20.702 (4) Å0.30 × 0.20 × 0.15 mm
β = 121.36 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2740 reflections with I > 2σ(I)
12444 measured reflectionsRint = 0.023
3048 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05778 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.09Δρmax = 1.52 e Å3
3048 reflectionsΔρmin = 0.98 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.79415 (8)0.25000.0315 (2)
O10.06660 (12)0.7420 (4)0.35558 (14)0.0428 (6)
O20.01619 (16)0.4397 (5)0.33908 (17)0.0669 (9)
N10.07476 (12)0.8907 (4)0.23307 (14)0.0303 (5)
N20.15738 (18)1.1697 (5)0.2701 (2)0.0483 (7)
N30.10588 (16)1.0194 (5)0.14402 (17)0.0445 (7)
N40.18698 (16)0.8189 (5)0.2547 (2)0.0477 (8)
C10.10233 (18)1.0882 (5)0.27694 (19)0.0396 (7)
H1A0.06671.19000.25840.047*
H1B0.11831.06290.32990.047*
C20.1318 (2)1.2073 (6)0.1894 (3)0.0499 (9)
H2A0.09621.30960.17040.060*
H2B0.16781.26290.18400.060*
C30.1605 (2)0.8664 (7)0.1743 (2)0.0519 (9)
H3A0.19670.91860.16870.062*
H3B0.14390.74020.14490.062*
C40.13189 (18)0.7387 (5)0.2620 (2)0.0406 (7)
H4A0.14850.70850.31470.049*
H4B0.11560.61080.23370.049*
C50.21037 (19)1.0132 (7)0.2968 (2)0.0547 (10)
H5A0.22770.98610.35000.066*
H5B0.24701.06700.29240.066*
C60.05198 (17)0.9380 (6)0.15232 (18)0.0410 (7)
H6A0.03460.81290.12250.049*
H6B0.01571.03790.13280.049*
C70.1155 (2)0.5072 (6)0.45812 (19)0.0579 (10)
C80.05989 (16)0.5630 (6)0.37587 (17)0.0378 (7)
Cl10.1084 (2)0.6786 (5)0.51998 (15)0.0872 (9)0.749 (7)
Cl20.1139 (3)0.2478 (4)0.48019 (19)0.1149 (15)0.749 (7)
Cl30.19694 (13)0.5452 (9)0.47005 (18)0.1191 (16)0.749 (7)
Cl1'0.1398 (7)0.7198 (12)0.5194 (5)0.102 (2)0.251 (7)
Cl2'0.0839 (6)0.2990 (15)0.4873 (5)0.106 (2)0.251 (7)
Cl3'0.1851 (4)0.430 (2)0.4518 (6)0.133 (3)0.251 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0256 (3)0.0403 (4)0.0277 (3)0.0000.0133 (2)0.000
O10.0349 (12)0.0555 (14)0.0316 (12)0.0009 (10)0.0129 (10)0.0104 (10)
O20.0620 (18)0.0575 (17)0.0507 (16)0.0134 (14)0.0079 (14)0.0011 (14)
N10.0288 (11)0.0309 (12)0.0326 (12)0.0013 (9)0.0170 (10)0.0000 (10)
N20.0535 (19)0.0428 (15)0.0538 (18)0.0155 (14)0.0316 (16)0.0081 (14)
N30.0491 (17)0.0516 (17)0.0424 (15)0.0001 (13)0.0304 (13)0.0039 (13)
N40.0360 (15)0.0541 (18)0.061 (2)0.0086 (12)0.0305 (15)0.0094 (15)
C10.0476 (18)0.0345 (15)0.0432 (17)0.0034 (13)0.0282 (15)0.0068 (14)
C20.059 (2)0.0409 (19)0.058 (2)0.0043 (15)0.037 (2)0.0067 (16)
C30.059 (2)0.056 (2)0.061 (2)0.0055 (19)0.046 (2)0.0001 (19)
C40.0395 (17)0.0361 (15)0.054 (2)0.0087 (13)0.0295 (16)0.0081 (15)
C50.0361 (18)0.071 (3)0.053 (2)0.0117 (17)0.0208 (16)0.0022 (19)
C60.0376 (16)0.0516 (19)0.0336 (15)0.0027 (14)0.0185 (13)0.0008 (14)
C70.064 (2)0.058 (2)0.0289 (16)0.0017 (19)0.0086 (16)0.0075 (16)
C80.0346 (15)0.0496 (18)0.0253 (13)0.0018 (13)0.0129 (12)0.0010 (13)
Cl10.115 (2)0.0970 (16)0.0377 (8)0.0104 (14)0.0319 (13)0.0064 (9)
Cl20.147 (3)0.0608 (12)0.0681 (13)0.0104 (14)0.0082 (17)0.0246 (11)
Cl30.0462 (11)0.208 (5)0.0721 (16)0.0175 (17)0.0089 (11)0.030 (2)
Cl1'0.131 (5)0.090 (3)0.036 (2)0.008 (3)0.010 (3)0.011 (2)
Cl2'0.148 (5)0.064 (3)0.063 (3)0.009 (3)0.024 (3)0.026 (3)
Cl3'0.053 (3)0.196 (6)0.092 (4)0.044 (4)0.001 (3)0.005 (4)
Geometric parameters (Å, º) top
Cu1—O11.941 (3)C1—H1B0.9700
Cu1—O1i1.941 (3)C2—H2A0.9700
Cu1—N1i2.045 (2)C2—H2B0.9700
Cu1—N12.045 (2)C3—H3A0.9700
O1—C81.270 (4)C3—H3B0.9700
O2—C81.203 (5)C4—H4A0.9700
N1—C61.499 (4)C4—H4B0.9700
N1—C41.506 (4)C5—H5A0.9700
N1—C11.505 (4)C5—H5B0.9700
N2—C11.460 (5)C6—H6A0.9700
N2—C51.465 (6)C6—H6B0.9700
N2—C21.473 (6)C7—C81.553 (5)
N3—C61.452 (4)C7—Cl21.747 (5)
N3—C21.462 (5)C7—Cl1'1.754 (7)
N3—C31.470 (5)C7—Cl3'1.764 (7)
N4—C41.463 (5)C7—Cl11.766 (5)
N4—C51.465 (6)C7—Cl2'1.786 (7)
N4—C31.477 (5)C7—Cl31.797 (5)
C1—H1A0.9700
O1—Cu1—O1i159.95 (17)N4—C4—H4A109.3
O1—Cu1—N1i96.49 (11)N1—C4—H4A109.3
O1i—Cu1—N1i89.63 (10)N4—C4—H4B109.3
O1—Cu1—N189.63 (10)N1—C4—H4B109.3
O1i—Cu1—N196.49 (11)H4A—C4—H4B108.0
N1i—Cu1—N1144.38 (14)N2—C5—N4112.9 (3)
C8—O1—Cu1111.6 (2)N2—C5—H5A109.0
C6—N1—C4107.7 (2)N4—C5—H5A109.0
C6—N1—C1107.0 (3)N2—C5—H5B109.0
C4—N1—C1107.7 (3)N4—C5—H5B109.0
C6—N1—Cu1114.51 (19)H5A—C5—H5B107.8
C4—N1—Cu1112.75 (19)N3—C6—N1112.3 (3)
C1—N1—Cu1106.88 (18)N3—C6—H6A109.1
C1—N2—C5108.8 (3)N1—C6—H6A109.1
C1—N2—C2108.3 (3)N3—C6—H6B109.1
C5—N2—C2107.9 (3)N1—C6—H6B109.1
C6—N3—C2108.7 (3)H6A—C6—H6B107.9
C6—N3—C3108.3 (3)C8—C7—Cl2113.0 (3)
C2—N3—C3108.1 (3)C8—C7—Cl1'112.4 (4)
C4—N4—C5108.6 (3)Cl2—C7—Cl1'127.5 (4)
C4—N4—C3108.4 (3)C8—C7—Cl3'105.0 (4)
C5—N4—C3107.5 (3)Cl2—C7—Cl3'83.9 (5)
N2—C1—N1111.6 (3)Cl1'—C7—Cl3'108.3 (5)
N2—C1—H1A109.3C8—C7—Cl1108.0 (3)
N1—C1—H1A109.3Cl2—C7—Cl1113.0 (3)
N2—C1—H1B109.3Cl1'—C7—Cl125.7 (4)
N1—C1—H1B109.3Cl3'—C7—Cl1131.9 (4)
H1A—C1—H1B108.0C8—C7—Cl2'106.9 (4)
N3—C2—N2112.3 (3)Cl2—C7—Cl2'27.9 (4)
N3—C2—H2A109.2Cl1'—C7—Cl2'112.5 (5)
N2—C2—H2A109.2Cl3'—C7—Cl2'111.6 (5)
N3—C2—H2B109.2Cl1—C7—Cl2'91.0 (4)
N2—C2—H2B109.2C8—C7—Cl3109.7 (3)
H2A—C2—H2B107.9Cl2—C7—Cl3105.1 (3)
N3—C3—N4112.4 (3)Cl1'—C7—Cl382.7 (5)
N3—C3—H3A109.1Cl3'—C7—Cl326.5 (4)
N4—C3—H3A109.1Cl1—C7—Cl3107.8 (3)
N3—C3—H3B109.1Cl2'—C7—Cl3130.4 (5)
N4—C3—H3B109.1O2—C8—O1127.3 (3)
H3A—C3—H3B107.8O2—C8—C7119.2 (3)
N4—C4—N1111.6 (3)O1—C8—C7113.5 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2ii0.972.523.416 (5)153
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2Cl3O2)2(C6H12N4)2]
Mr668.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.291 (5), 6.4759 (13), 20.702 (4)
β (°) 121.36 (3)
V3)2666.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12444, 3048, 2740
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.184, 1.09
No. of reflections3048
No. of parameters187
No. of restraints78
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.52, 0.98

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.941 (3)Cu1—N12.045 (2)
O1—Cu1—O1i159.95 (17)O1i—Cu1—N196.49 (11)
O1—Cu1—N189.63 (10)N1i—Cu1—N1144.38 (14)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2ii0.972.523.416 (5)153
Symmetry code: (ii) x, y+1, z+1/2.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2008B30).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoncol, J., Maroszova, J., Peter, L., Mark, H., Marian, V., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds