metal-organic compounds
Bis(hexamethylenetetramine)bis(trichloroacetato)copper(II)
aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com
In the title compound, [Cu(C2Cl3O2)2(C6H12N4)2], the CuII ion (site symmetry 2) is coordinated by two trichloroacetate anions and two hexamethylenetetramine molecules, resulting in a distorted CuN2O2 geometry that is intermediate between tetrahedral and square planar. The Cl atoms are disordered over two sets of sites, with relative occupancies of 0.749 (7) and 0.251 (7). In the crystal, the packing is consolidated by intermolecular C—H⋯O interactions.
Related literature
For background to coordination networks, see: Chen et al. (2001). For a related structure, see: Moncol et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809043736/hb5145sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809043736/hb5145Isup2.hkl
The title compound was obtained by adding hexamethylenetetramine (2 mmol) dropwise to a solution of trichloroacetatocopper(II) (1 mmol) in ethanol (30 ml) under stirred for 1 h at room temperature. A green solution was formed and after a few days block crystals precipitated.
H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with Uiso = 1.2Ueq.
Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ionexchange,adsorption,catalytic and magnetic properties. Much of this work has been concerned (e.g. Chen et al., 2001). In order to search for new complexes of this type, we synthesized the title compound, (I), and report its
here.The title structure contains one copper(II), two N atoms of the hexamethylenetetramine ligands and two O atoms of trichloroacetate anions. The coordination sphere of the copper(II) ion is best described as a seriously distorted tetrahedral. The Cu—O and Cu—N bond lengths are in agreement with those reported recently (Moncol et al., 2007). The Cl atoms are disordered over two sites, with relatives occupancies 0.749 (7) and 0.251 (7).The crystal packing is stabilized by intra- and intermolecular C—H···O hydrogen interaction (Table 1).
For background to coordination networks, see: Chen et al. (2001). For a related structure, see: Moncol et al. (2007).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids. Atoms with suffix A are generated by the symmetry operation (–x, y, 1/2–z). |
[Cu(C2Cl3O2)2(C6H12N4)2] | F(000) = 1356 |
Mr = 668.67 | Dx = 1.666 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 23.291 (5) Å | Cell parameters from 2740 reflections |
b = 6.4759 (13) Å | θ = 3.3–27.5° |
c = 20.702 (4) Å | µ = 1.46 mm−1 |
β = 121.36 (3)° | T = 293 K |
V = 2666.3 (9) Å3 | Block, green |
Z = 4 | 0.30 × 0.20 × 0.15 mm |
Bruker SMART CCD diffractometer | 2740 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 27.5°, θmin = 3.3° |
Detector resolution: 3 pixels mm-1 | h = −30→30 |
ω scans | k = −7→8 |
12444 measured reflections | l = −26→26 |
3048 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.184 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.1275P)2 + 3.9764P] where P = (Fo2 + 2Fc2)/3 |
3048 reflections | (Δ/σ)max = 0.042 |
187 parameters | Δρmax = 1.52 e Å−3 |
78 restraints | Δρmin = −0.98 e Å−3 |
[Cu(C2Cl3O2)2(C6H12N4)2] | V = 2666.3 (9) Å3 |
Mr = 668.67 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.291 (5) Å | µ = 1.46 mm−1 |
b = 6.4759 (13) Å | T = 293 K |
c = 20.702 (4) Å | 0.30 × 0.20 × 0.15 mm |
β = 121.36 (3)° |
Bruker SMART CCD diffractometer | 2740 reflections with I > 2σ(I) |
12444 measured reflections | Rint = 0.023 |
3048 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 78 restraints |
wR(F2) = 0.184 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.52 e Å−3 |
3048 reflections | Δρmin = −0.98 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.0000 | 0.79415 (8) | 0.2500 | 0.0315 (2) | |
O1 | 0.06660 (12) | 0.7420 (4) | 0.35558 (14) | 0.0428 (6) | |
O2 | 0.01619 (16) | 0.4397 (5) | 0.33908 (17) | 0.0669 (9) | |
N1 | 0.07476 (12) | 0.8907 (4) | 0.23307 (14) | 0.0303 (5) | |
N2 | 0.15738 (18) | 1.1697 (5) | 0.2701 (2) | 0.0483 (7) | |
N3 | 0.10588 (16) | 1.0194 (5) | 0.14402 (17) | 0.0445 (7) | |
N4 | 0.18698 (16) | 0.8189 (5) | 0.2547 (2) | 0.0477 (8) | |
C1 | 0.10233 (18) | 1.0882 (5) | 0.27694 (19) | 0.0396 (7) | |
H1A | 0.0667 | 1.1900 | 0.2584 | 0.047* | |
H1B | 0.1183 | 1.0629 | 0.3299 | 0.047* | |
C2 | 0.1318 (2) | 1.2073 (6) | 0.1894 (3) | 0.0499 (9) | |
H2A | 0.0962 | 1.3096 | 0.1704 | 0.060* | |
H2B | 0.1678 | 1.2629 | 0.1840 | 0.060* | |
C3 | 0.1605 (2) | 0.8664 (7) | 0.1743 (2) | 0.0519 (9) | |
H3A | 0.1967 | 0.9186 | 0.1687 | 0.062* | |
H3B | 0.1439 | 0.7402 | 0.1449 | 0.062* | |
C4 | 0.13189 (18) | 0.7387 (5) | 0.2620 (2) | 0.0406 (7) | |
H4A | 0.1485 | 0.7085 | 0.3147 | 0.049* | |
H4B | 0.1156 | 0.6108 | 0.2337 | 0.049* | |
C5 | 0.21037 (19) | 1.0132 (7) | 0.2968 (2) | 0.0547 (10) | |
H5A | 0.2277 | 0.9861 | 0.3500 | 0.066* | |
H5B | 0.2470 | 1.0670 | 0.2924 | 0.066* | |
C6 | 0.05198 (17) | 0.9380 (6) | 0.15232 (18) | 0.0410 (7) | |
H6A | 0.0346 | 0.8129 | 0.1225 | 0.049* | |
H6B | 0.0157 | 1.0379 | 0.1328 | 0.049* | |
C7 | 0.1155 (2) | 0.5072 (6) | 0.45812 (19) | 0.0579 (10) | |
C8 | 0.05989 (16) | 0.5630 (6) | 0.37587 (17) | 0.0378 (7) | |
Cl1 | 0.1084 (2) | 0.6786 (5) | 0.51998 (15) | 0.0872 (9) | 0.749 (7) |
Cl2 | 0.1139 (3) | 0.2478 (4) | 0.48019 (19) | 0.1149 (15) | 0.749 (7) |
Cl3 | 0.19694 (13) | 0.5452 (9) | 0.47005 (18) | 0.1191 (16) | 0.749 (7) |
Cl1' | 0.1398 (7) | 0.7198 (12) | 0.5194 (5) | 0.102 (2) | 0.251 (7) |
Cl2' | 0.0839 (6) | 0.2990 (15) | 0.4873 (5) | 0.106 (2) | 0.251 (7) |
Cl3' | 0.1851 (4) | 0.430 (2) | 0.4518 (6) | 0.133 (3) | 0.251 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0256 (3) | 0.0403 (4) | 0.0277 (3) | 0.000 | 0.0133 (2) | 0.000 |
O1 | 0.0349 (12) | 0.0555 (14) | 0.0316 (12) | −0.0009 (10) | 0.0129 (10) | 0.0104 (10) |
O2 | 0.0620 (18) | 0.0575 (17) | 0.0507 (16) | −0.0134 (14) | 0.0079 (14) | 0.0011 (14) |
N1 | 0.0288 (11) | 0.0309 (12) | 0.0326 (12) | 0.0013 (9) | 0.0170 (10) | 0.0000 (10) |
N2 | 0.0535 (19) | 0.0428 (15) | 0.0538 (18) | −0.0155 (14) | 0.0316 (16) | −0.0081 (14) |
N3 | 0.0491 (17) | 0.0516 (17) | 0.0424 (15) | −0.0001 (13) | 0.0304 (13) | 0.0039 (13) |
N4 | 0.0360 (15) | 0.0541 (18) | 0.061 (2) | 0.0086 (12) | 0.0305 (15) | 0.0094 (15) |
C1 | 0.0476 (18) | 0.0345 (15) | 0.0432 (17) | −0.0034 (13) | 0.0282 (15) | −0.0068 (14) |
C2 | 0.059 (2) | 0.0409 (19) | 0.058 (2) | −0.0043 (15) | 0.037 (2) | 0.0067 (16) |
C3 | 0.059 (2) | 0.056 (2) | 0.061 (2) | 0.0055 (19) | 0.046 (2) | 0.0001 (19) |
C4 | 0.0395 (17) | 0.0361 (15) | 0.054 (2) | 0.0087 (13) | 0.0295 (16) | 0.0081 (15) |
C5 | 0.0361 (18) | 0.071 (3) | 0.053 (2) | −0.0117 (17) | 0.0208 (16) | 0.0022 (19) |
C6 | 0.0376 (16) | 0.0516 (19) | 0.0336 (15) | −0.0027 (14) | 0.0185 (13) | −0.0008 (14) |
C7 | 0.064 (2) | 0.058 (2) | 0.0289 (16) | 0.0017 (19) | 0.0086 (16) | 0.0075 (16) |
C8 | 0.0346 (15) | 0.0496 (18) | 0.0253 (13) | 0.0018 (13) | 0.0129 (12) | 0.0010 (13) |
Cl1 | 0.115 (2) | 0.0970 (16) | 0.0377 (8) | 0.0104 (14) | 0.0319 (13) | −0.0064 (9) |
Cl2 | 0.147 (3) | 0.0608 (12) | 0.0681 (13) | 0.0104 (14) | 0.0082 (17) | 0.0246 (11) |
Cl3 | 0.0462 (11) | 0.208 (5) | 0.0721 (16) | 0.0175 (17) | 0.0089 (11) | 0.030 (2) |
Cl1' | 0.131 (5) | 0.090 (3) | 0.036 (2) | 0.008 (3) | 0.010 (3) | −0.011 (2) |
Cl2' | 0.148 (5) | 0.064 (3) | 0.063 (3) | −0.009 (3) | 0.024 (3) | 0.026 (3) |
Cl3' | 0.053 (3) | 0.196 (6) | 0.092 (4) | 0.044 (4) | −0.001 (3) | 0.005 (4) |
Cu1—O1 | 1.941 (3) | C1—H1B | 0.9700 |
Cu1—O1i | 1.941 (3) | C2—H2A | 0.9700 |
Cu1—N1i | 2.045 (2) | C2—H2B | 0.9700 |
Cu1—N1 | 2.045 (2) | C3—H3A | 0.9700 |
O1—C8 | 1.270 (4) | C3—H3B | 0.9700 |
O2—C8 | 1.203 (5) | C4—H4A | 0.9700 |
N1—C6 | 1.499 (4) | C4—H4B | 0.9700 |
N1—C4 | 1.506 (4) | C5—H5A | 0.9700 |
N1—C1 | 1.505 (4) | C5—H5B | 0.9700 |
N2—C1 | 1.460 (5) | C6—H6A | 0.9700 |
N2—C5 | 1.465 (6) | C6—H6B | 0.9700 |
N2—C2 | 1.473 (6) | C7—C8 | 1.553 (5) |
N3—C6 | 1.452 (4) | C7—Cl2 | 1.747 (5) |
N3—C2 | 1.462 (5) | C7—Cl1' | 1.754 (7) |
N3—C3 | 1.470 (5) | C7—Cl3' | 1.764 (7) |
N4—C4 | 1.463 (5) | C7—Cl1 | 1.766 (5) |
N4—C5 | 1.465 (6) | C7—Cl2' | 1.786 (7) |
N4—C3 | 1.477 (5) | C7—Cl3 | 1.797 (5) |
C1—H1A | 0.9700 | ||
O1—Cu1—O1i | 159.95 (17) | N4—C4—H4A | 109.3 |
O1—Cu1—N1i | 96.49 (11) | N1—C4—H4A | 109.3 |
O1i—Cu1—N1i | 89.63 (10) | N4—C4—H4B | 109.3 |
O1—Cu1—N1 | 89.63 (10) | N1—C4—H4B | 109.3 |
O1i—Cu1—N1 | 96.49 (11) | H4A—C4—H4B | 108.0 |
N1i—Cu1—N1 | 144.38 (14) | N2—C5—N4 | 112.9 (3) |
C8—O1—Cu1 | 111.6 (2) | N2—C5—H5A | 109.0 |
C6—N1—C4 | 107.7 (2) | N4—C5—H5A | 109.0 |
C6—N1—C1 | 107.0 (3) | N2—C5—H5B | 109.0 |
C4—N1—C1 | 107.7 (3) | N4—C5—H5B | 109.0 |
C6—N1—Cu1 | 114.51 (19) | H5A—C5—H5B | 107.8 |
C4—N1—Cu1 | 112.75 (19) | N3—C6—N1 | 112.3 (3) |
C1—N1—Cu1 | 106.88 (18) | N3—C6—H6A | 109.1 |
C1—N2—C5 | 108.8 (3) | N1—C6—H6A | 109.1 |
C1—N2—C2 | 108.3 (3) | N3—C6—H6B | 109.1 |
C5—N2—C2 | 107.9 (3) | N1—C6—H6B | 109.1 |
C6—N3—C2 | 108.7 (3) | H6A—C6—H6B | 107.9 |
C6—N3—C3 | 108.3 (3) | C8—C7—Cl2 | 113.0 (3) |
C2—N3—C3 | 108.1 (3) | C8—C7—Cl1' | 112.4 (4) |
C4—N4—C5 | 108.6 (3) | Cl2—C7—Cl1' | 127.5 (4) |
C4—N4—C3 | 108.4 (3) | C8—C7—Cl3' | 105.0 (4) |
C5—N4—C3 | 107.5 (3) | Cl2—C7—Cl3' | 83.9 (5) |
N2—C1—N1 | 111.6 (3) | Cl1'—C7—Cl3' | 108.3 (5) |
N2—C1—H1A | 109.3 | C8—C7—Cl1 | 108.0 (3) |
N1—C1—H1A | 109.3 | Cl2—C7—Cl1 | 113.0 (3) |
N2—C1—H1B | 109.3 | Cl1'—C7—Cl1 | 25.7 (4) |
N1—C1—H1B | 109.3 | Cl3'—C7—Cl1 | 131.9 (4) |
H1A—C1—H1B | 108.0 | C8—C7—Cl2' | 106.9 (4) |
N3—C2—N2 | 112.3 (3) | Cl2—C7—Cl2' | 27.9 (4) |
N3—C2—H2A | 109.2 | Cl1'—C7—Cl2' | 112.5 (5) |
N2—C2—H2A | 109.2 | Cl3'—C7—Cl2' | 111.6 (5) |
N3—C2—H2B | 109.2 | Cl1—C7—Cl2' | 91.0 (4) |
N2—C2—H2B | 109.2 | C8—C7—Cl3 | 109.7 (3) |
H2A—C2—H2B | 107.9 | Cl2—C7—Cl3 | 105.1 (3) |
N3—C3—N4 | 112.4 (3) | Cl1'—C7—Cl3 | 82.7 (5) |
N3—C3—H3A | 109.1 | Cl3'—C7—Cl3 | 26.5 (4) |
N4—C3—H3A | 109.1 | Cl1—C7—Cl3 | 107.8 (3) |
N3—C3—H3B | 109.1 | Cl2'—C7—Cl3 | 130.4 (5) |
N4—C3—H3B | 109.1 | O2—C8—O1 | 127.3 (3) |
H3A—C3—H3B | 107.8 | O2—C8—C7 | 119.2 (3) |
N4—C4—N1 | 111.6 (3) | O1—C8—C7 | 113.5 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2ii | 0.97 | 2.52 | 3.416 (5) | 153 |
Symmetry code: (ii) −x, y+1, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2Cl3O2)2(C6H12N4)2] |
Mr | 668.67 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 23.291 (5), 6.4759 (13), 20.702 (4) |
β (°) | 121.36 (3) |
V (Å3) | 2666.3 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.30 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12444, 3048, 2740 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.184, 1.09 |
No. of reflections | 3048 |
No. of parameters | 187 |
No. of restraints | 78 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.52, −0.98 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 1.941 (3) | Cu1—N1 | 2.045 (2) |
O1—Cu1—O1i | 159.95 (17) | O1i—Cu1—N1 | 96.49 (11) |
O1—Cu1—N1 | 89.63 (10) | N1i—Cu1—N1 | 144.38 (14) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2ii | 0.97 | 2.52 | 3.416 (5) | 153 |
Symmetry code: (ii) −x, y+1, −z+1/2. |
Acknowledgements
The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2008B30).
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moncol, J., Maroszova, J., Peter, L., Mark, H., Marian, V., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ionexchange,adsorption,catalytic and magnetic properties. Much of this work has been concerned (e.g. Chen et al., 2001). In order to search for new complexes of this type, we synthesized the title compound, (I), and report its crystal structure here.
The title structure contains one copper(II), two N atoms of the hexamethylenetetramine ligands and two O atoms of trichloroacetate anions. The coordination sphere of the copper(II) ion is best described as a seriously distorted tetrahedral. The Cu—O and Cu—N bond lengths are in agreement with those reported recently (Moncol et al., 2007). The Cl atoms are disordered over two sites, with relatives occupancies 0.749 (7) and 0.251 (7).The crystal packing is stabilized by intra- and intermolecular C—H···O hydrogen interaction (Table 1).