organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Di­ethyl­amino-2-hy­droxy­benzyl­­idene)ammonio]-3-methyl­benzene­sulfonate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bDepartment of Chemistry, Qinghai Normal University, Xining 810008, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 17 October 2009; accepted 20 October 2009; online 23 October 2009)

In the zwitterionic title compound, C18H22N2O4S, the dihedral angle between the aromatic rings is 16.39 (11)° and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating in [[\overline{1}]01].

Related literature

For background to Schiff bases, see: Bu et al. (2001[Bu, X. H., Gao, Y. X., Chen, W. & Zhang, R. H. (2001). J. Rare Earth, 19, 70-75.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O4S

  • Mr = 362.44

  • Monoclinic, P 21 /n

  • a = 8.230 (9) Å

  • b = 12.143 (14) Å

  • c = 18.96 (2) Å

  • β = 96.848 (19)°

  • V = 1882 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 273 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 9430 measured reflections

  • 3337 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 1.05

  • 3337 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.99 2.668 (4) 135
O4—H4⋯O3i 0.82 1.84 2.623 (4) 160
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases play an important role in the field of bioinorganic chemistry because they have remarkable wide biological and pharmacological activities, such as antitumor, antidiabetic, antitubercular activities [Ranford, et al., 1998; Bu, et al., 2001]. In this paper, we report on the synthesis and crystal structure of the title compound, (I), (Scheme I).

The dihedral angle between the aromatic ring planes is 16.4, showing that the whole compound is not a plane molecule. The bond distances of C8—N1(1.335 (3)), S1—O1 (1.461 (3)) and S1—O2 (1.464 (2)) are consistent with the carbon-nitrogen and sulfur-oxygen double-bond lengths, respectively. In the crystal packing, the molecules form a one-dimensional chain structure by hydrogen bonds.

Related literature top

For background to Schiff bases, see: Bu et al. (2001); Ranford et al. (1998).

Experimental top

A solution of 1.0 mmol 4-(Diethylamino)salicylaldehyde was added to a solution of 1.0 mmol 3-methyl-benzenesulfonic acid in 5 ml ethanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Brown blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Structure description top

Schiff bases play an important role in the field of bioinorganic chemistry because they have remarkable wide biological and pharmacological activities, such as antitumor, antidiabetic, antitubercular activities [Ranford, et al., 1998; Bu, et al., 2001]. In this paper, we report on the synthesis and crystal structure of the title compound, (I), (Scheme I).

The dihedral angle between the aromatic ring planes is 16.4, showing that the whole compound is not a plane molecule. The bond distances of C8—N1(1.335 (3)), S1—O1 (1.461 (3)) and S1—O2 (1.464 (2)) are consistent with the carbon-nitrogen and sulfur-oxygen double-bond lengths, respectively. In the crystal packing, the molecules form a one-dimensional chain structure by hydrogen bonds.

For background to Schiff bases, see: Bu et al. (2001); Ranford et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids.
4-[(4-Diethylamino-2-hydroxybenzylidene)ammonio]-3-methylbenzenesulfonate top
Crystal data top
C18H22N2O4SF(000) = 768
Mr = 362.44Dx = 1.279 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3420 reflections
a = 8.230 (9) Åθ = 2.6–27.8°
b = 12.143 (14) ŵ = 0.20 mm1
c = 18.96 (2) ÅT = 273 K
β = 96.848 (19)°Block, brown
V = 1882 (4) Å30.18 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2737 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω scansh = 99
9430 measured reflectionsk = 1314
3337 independent reflectionsl = 1922
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.8828P]
where P = (Fo2 + 2Fc2)/3
3337 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H22N2O4SV = 1882 (4) Å3
Mr = 362.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.230 (9) ŵ = 0.20 mm1
b = 12.143 (14) ÅT = 273 K
c = 18.96 (2) Å0.18 × 0.16 × 0.12 mm
β = 96.848 (19)°
Data collection top
Bruker SMART CCD
diffractometer
2737 reflections with I > 2σ(I)
9430 measured reflectionsRint = 0.028
3337 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
3337 reflectionsΔρmin = 0.24 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24693 (7)0.19093 (5)0.55953 (3)0.0423 (2)
O10.2152 (3)0.30892 (16)0.56444 (12)0.0792 (7)
O20.1087 (2)0.12620 (16)0.52607 (9)0.0582 (5)
O30.3181 (2)0.14533 (16)0.62907 (8)0.0561 (5)
O40.8678 (2)0.22390 (14)0.23964 (8)0.0496 (4)
H40.86460.25360.20060.074*
N10.7742 (2)0.15936 (16)0.36312 (9)0.0394 (4)
H10.75990.20260.32700.047*
N21.3356 (2)0.04143 (18)0.15486 (10)0.0513 (5)
C10.4078 (3)0.17934 (17)0.50261 (11)0.0359 (5)
C20.3808 (3)0.22288 (18)0.43351 (11)0.0396 (5)
H20.28080.25580.41830.047*
C30.5015 (3)0.21780 (18)0.38679 (11)0.0373 (5)
C40.6527 (3)0.16570 (17)0.41184 (11)0.0349 (5)
C50.6818 (3)0.1232 (2)0.48125 (11)0.0447 (6)
H50.78210.09110.49710.054*
C60.5588 (3)0.1295 (2)0.52658 (11)0.0437 (6)
H60.57710.10080.57230.052*
C70.4692 (3)0.2677 (2)0.31182 (13)0.0572 (7)
H7A0.35450.28280.30080.086*
H7B0.50300.21650.27780.086*
H7C0.53000.33490.31010.086*
C80.9062 (3)0.09465 (19)0.36714 (11)0.0394 (5)
H80.92910.05100.40740.047*
C91.0147 (3)0.08791 (19)0.31374 (11)0.0381 (5)
C100.9949 (3)0.15006 (18)0.24798 (11)0.0368 (5)
C111.0999 (3)0.13405 (19)0.19596 (11)0.0410 (5)
H111.08300.17390.15390.049*
C121.2333 (3)0.05717 (19)0.20639 (11)0.0408 (5)
C131.2563 (3)0.0028 (2)0.27321 (12)0.0456 (6)
H131.34340.05160.28230.055*
C141.1492 (3)0.0123 (2)0.32326 (12)0.0452 (6)
H141.16510.02850.36500.054*
C151.3247 (3)0.1109 (2)0.08923 (13)0.0555 (7)
H15A1.43170.11490.07280.067*
H15B1.29240.18500.10060.067*
C161.2015 (5)0.0648 (3)0.02963 (16)0.0824 (10)
H16A1.22870.01020.02040.124*
H16B1.20510.10790.01260.124*
H16C1.09340.06800.04380.124*
C171.4625 (3)0.0487 (2)0.15911 (15)0.0596 (7)
H17A1.47280.07540.11160.072*
H17B1.42680.10960.18650.072*
C181.6273 (4)0.0090 (3)0.1931 (2)0.0841 (10)
H18A1.65860.05540.16870.126*
H18B1.70730.06590.19020.126*
H18C1.62090.00860.24200.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0342 (3)0.0489 (4)0.0459 (3)0.0009 (2)0.0136 (2)0.0093 (2)
O10.0831 (15)0.0529 (12)0.1121 (17)0.0114 (10)0.0548 (13)0.0103 (11)
O20.0361 (9)0.0829 (13)0.0558 (10)0.0121 (9)0.0062 (8)0.0059 (9)
O30.0521 (11)0.0770 (12)0.0408 (9)0.0002 (9)0.0121 (8)0.0073 (8)
O40.0489 (10)0.0619 (10)0.0405 (9)0.0212 (8)0.0156 (7)0.0156 (8)
N10.0357 (10)0.0501 (11)0.0333 (9)0.0066 (8)0.0074 (7)0.0048 (8)
N20.0420 (11)0.0646 (13)0.0501 (12)0.0110 (10)0.0170 (9)0.0091 (10)
C10.0314 (11)0.0381 (11)0.0391 (11)0.0000 (9)0.0082 (9)0.0078 (9)
C20.0312 (11)0.0421 (12)0.0448 (12)0.0058 (9)0.0022 (9)0.0017 (10)
C30.0343 (11)0.0395 (11)0.0374 (11)0.0018 (9)0.0012 (9)0.0011 (9)
C40.0328 (11)0.0401 (12)0.0325 (11)0.0004 (9)0.0065 (8)0.0028 (9)
C50.0344 (12)0.0636 (15)0.0364 (12)0.0158 (11)0.0057 (9)0.0036 (10)
C60.0406 (13)0.0595 (15)0.0315 (11)0.0107 (11)0.0059 (9)0.0037 (10)
C70.0469 (15)0.0750 (18)0.0496 (14)0.0103 (13)0.0048 (11)0.0190 (13)
C80.0358 (12)0.0511 (13)0.0309 (11)0.0024 (10)0.0026 (9)0.0037 (9)
C90.0336 (11)0.0486 (13)0.0320 (11)0.0029 (10)0.0038 (9)0.0018 (9)
C100.0321 (11)0.0426 (12)0.0357 (11)0.0030 (9)0.0041 (9)0.0018 (9)
C110.0381 (12)0.0505 (13)0.0352 (11)0.0037 (10)0.0077 (9)0.0067 (10)
C120.0323 (11)0.0508 (13)0.0403 (12)0.0019 (10)0.0082 (9)0.0007 (10)
C130.0349 (12)0.0543 (14)0.0480 (13)0.0110 (11)0.0063 (10)0.0074 (11)
C140.0402 (13)0.0569 (14)0.0387 (12)0.0088 (11)0.0054 (10)0.0118 (10)
C150.0516 (15)0.0636 (16)0.0552 (15)0.0077 (13)0.0231 (12)0.0119 (12)
C160.104 (3)0.084 (2)0.0573 (18)0.019 (2)0.0021 (17)0.0009 (16)
C170.0518 (16)0.0632 (17)0.0674 (17)0.0093 (13)0.0218 (13)0.0080 (13)
C180.0546 (18)0.076 (2)0.122 (3)0.0037 (16)0.0109 (18)0.021 (2)
Geometric parameters (Å, º) top
S1—O11.461 (3)C7—H7C0.9600
S1—O21.464 (2)C8—C91.430 (3)
S1—O31.485 (2)C8—H80.9300
S1—C11.811 (3)C9—C141.433 (3)
O4—C101.372 (3)C9—C101.450 (3)
O4—H40.8200C10—C111.401 (3)
N1—C81.335 (3)C11—C121.437 (3)
N1—C41.442 (3)C11—H110.9300
N1—H10.8600C12—C131.454 (3)
N2—C121.377 (3)C13—C141.383 (3)
N2—C151.497 (3)C13—H130.9300
N2—C171.508 (3)C14—H140.9300
C1—C21.406 (3)C15—C161.531 (4)
C1—C61.408 (3)C15—H15A0.9700
C2—C31.409 (3)C15—H15B0.9700
C2—H20.9300C16—H16A0.9600
C3—C41.426 (3)C16—H16B0.9600
C3—C71.539 (3)C16—H16C0.9600
C4—C51.407 (3)C17—C181.509 (4)
C5—C61.406 (3)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C6—H60.9300C18—H18A0.9600
C7—H7A0.9600C18—H18B0.9600
C7—H7B0.9600C18—H18C0.9600
O1—S1—O2114.73 (14)C8—C9—C10124.3 (2)
O1—S1—O3111.33 (13)C14—C9—C10116.60 (19)
O2—S1—O3112.88 (12)O4—C10—C11122.38 (19)
O1—S1—C1105.25 (11)O4—C10—C9116.42 (18)
O2—S1—C1106.60 (12)C11—C10—C9121.2 (2)
O3—S1—C1105.14 (12)C10—C11—C12121.3 (2)
C10—O4—H4109.5C10—C11—H11119.4
C8—N1—C4128.05 (19)C12—C11—H11119.4
C8—N1—H1116.0N2—C12—C11121.0 (2)
C4—N1—H1116.0N2—C12—C13121.4 (2)
C12—N2—C15122.0 (2)C11—C12—C13117.61 (19)
C12—N2—C17122.8 (2)C14—C13—C12120.3 (2)
C15—N2—C17115.20 (19)C14—C13—H13119.9
C2—C1—C6119.88 (19)C12—C13—H13119.9
C2—C1—S1118.72 (17)C13—C14—C9123.0 (2)
C6—C1—S1121.39 (18)C13—C14—H14118.5
C1—C2—C3121.6 (2)C9—C14—H14118.5
C1—C2—H2119.2N2—C15—C16112.1 (2)
C3—C2—H2119.2N2—C15—H15A109.2
C2—C3—C4117.6 (2)C16—C15—H15A109.2
C2—C3—C7120.4 (2)N2—C15—H15B109.2
C4—C3—C7122.0 (2)C16—C15—H15B109.2
C5—C4—C3121.26 (19)H15A—C15—H15B107.9
C5—C4—N1121.70 (19)C15—C16—H16A109.5
C3—C4—N1117.04 (19)C15—C16—H16B109.5
C6—C5—C4119.8 (2)H16A—C16—H16B109.5
C6—C5—H5120.1C15—C16—H16C109.5
C4—C5—H5120.1H16A—C16—H16C109.5
C5—C6—C1119.9 (2)H16B—C16—H16C109.5
C5—C6—H6120.1N2—C17—C18111.9 (3)
C1—C6—H6120.1N2—C17—H17A109.2
C3—C7—H7A109.5C18—C17—H17A109.2
C3—C7—H7B109.5N2—C17—H17B109.2
H7A—C7—H7B109.5C18—C17—H17B109.2
C3—C7—H7C109.5H17A—C17—H17B107.9
H7A—C7—H7C109.5C17—C18—H18A109.5
H7B—C7—H7C109.5C17—C18—H18B109.5
N1—C8—C9124.4 (2)H18A—C18—H18B109.5
N1—C8—H8117.8C17—C18—H18C109.5
C9—C8—H8117.8H18A—C18—H18C109.5
C8—C9—C14119.0 (2)H18B—C18—H18C109.5
O1—S1—C1—C258.2 (2)N1—C8—C9—C100.4 (4)
O2—S1—C1—C264.0 (2)C8—C9—C10—O43.7 (3)
O3—S1—C1—C2175.90 (17)C14—C9—C10—O4178.8 (2)
O1—S1—C1—C6120.8 (2)C8—C9—C10—C11175.8 (2)
O2—S1—C1—C6117.0 (2)C14—C9—C10—C111.7 (3)
O3—S1—C1—C63.1 (2)O4—C10—C11—C12179.2 (2)
C6—C1—C2—C30.2 (3)C9—C10—C11—C121.3 (3)
S1—C1—C2—C3179.24 (17)C15—N2—C12—C116.4 (4)
C1—C2—C3—C40.6 (3)C17—N2—C12—C11171.6 (2)
C1—C2—C3—C7179.1 (2)C15—N2—C12—C13173.4 (2)
C2—C3—C4—C51.5 (3)C17—N2—C12—C138.6 (4)
C7—C3—C4—C5178.2 (2)C10—C11—C12—N2179.7 (2)
C2—C3—C4—N1178.98 (19)C10—C11—C12—C130.5 (3)
C7—C3—C4—N11.3 (3)N2—C12—C13—C14178.2 (2)
C8—N1—C4—C517.3 (3)C11—C12—C13—C141.9 (3)
C8—N1—C4—C3163.2 (2)C12—C13—C14—C91.6 (4)
C3—C4—C5—C61.5 (3)C8—C9—C14—C13177.4 (2)
N1—C4—C5—C6178.9 (2)C10—C9—C14—C130.3 (3)
C4—C5—C6—C10.7 (4)C12—N2—C15—C1687.6 (3)
C2—C1—C6—C50.2 (3)C17—N2—C15—C1690.5 (3)
S1—C1—C6—C5179.17 (18)C12—N2—C17—C1893.3 (3)
C4—N1—C8—C9175.3 (2)C15—N2—C17—C1888.5 (3)
N1—C8—C9—C14177.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.992.668 (4)135
O4—H4···O3i0.821.842.623 (4)160
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H22N2O4S
Mr362.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.230 (9), 12.143 (14), 18.96 (2)
β (°) 96.848 (19)
V3)1882 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9430, 3337, 2737
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.05
No. of reflections3337
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.992.668 (4)135
O4—H4···O3i0.821.842.623 (4)160
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60) and Science Foundation of Weifang University.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. H., Gao, Y. X., Chen, W. & Zhang, R. H. (2001). J. Rare Earth, 19, 70–75.  Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds