metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-Isoprop­oxy(4-nitro­phenylimino)methane­thiolato-κS](tri­cyclo­hexyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 17 October 2009; accepted 17 October 2009; online 23 October 2009)

In the title compound, [Au(C10H11N2O3S)(C18H33P)], the gold(I) atom is linearly coordinated within a SP donor set. The distortion from linearity [S—Au—P = 177.54 (3)°] can be traced to an intra­molecular Au⋯O contact of 3.009 (3) Å. In the crystal, layers of mol­ecules are stabilized by a combination of C—H⋯O and C—H⋯π inter­actions.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C10H11N2O3S)(C18H33P)]

  • Mr = 716.65

  • Triclinic, [P \overline 1]

  • a = 9.0965 (3) Å

  • b = 13.1025 (4) Å

  • c = 13.2541 (5) Å

  • α = 80.030 (1)°

  • β = 75.170 (2)°

  • γ = 89.215 (1)°

  • V = 1503.26 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.05 mm−1

  • T = 223 K

  • 0.36 × 0.26 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.508, Tmax = 1

  • 10654 measured reflections

  • 6851 independent reflections

  • 6092 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.072

  • S = 1.00

  • 6851 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—P1 2.2655 (9)
Au—S1 2.3116 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O3i 0.99 2.58 3.558 (6) 169
C27—H27b⋯Cg1ii 0.98 2.81 3.778 (5) 168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z. Cg1 is the centroid of the C2–C7 ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound, (I), was determined as a part of an on-going study of the structural systematics, including luminescence properties of molecules related to the general formula R3PAu[SC(OR')\d NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008). The Au atoms in (I) exists in the expected linear geometry defined by S and P atoms (Au—S = 2.3116 (9) Å and Au—P = 2.2655 (9) Å), Fig. 1, with the deviation from the ideal 180° angle (S1—Au—P1 = 177.54 (3)°) being related to the close approach of the O1 atom, 3.009 (3) Å; this is the normally observed orientation of the carbonimidothioate anion when coordinated to phosphinegold(I) centres. The conformation about the C1N1 (1.275 (5) Å) is Z and the C1—S1 distance (1.739 (4) Å) indicates the ligand is functioning as a thiolate.

The formation of C—H···O and C—H···π interactions, Table 1, lead to supramolecular arrays in the ab plane, Fig. 2. These stack to consolidate the crystal packing.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For synthesis, see Hall et al. (1993). Cg1 is the centroid of the C2–C7 ring.

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and i-PrOC(S)N(H)C6H4NO2-4 in the presence of base (Hall et al., 1993). Yellow plates of (I) were obtained from the layering of ethanol on a dichloromethane solution of (I); m. pt. 434–436 K. Analysis for C28H44AuN2O3PS: found (calculated): C: 46.84 (46.93); H: 6.01 (6.19); N: 4.05 (3.91); S: 4.52 (4.47). IR (cm-1): ν(C—S) 1109 s, 875m; ν(C—N) 1590 s; ν(C—O) 1150m. 31P{1H} NMR: δ 56.8 p.p.m.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.33 and 1.04 e Å-3, respectively, were located 0.89 Å and 1.35 Å from the Au atom.

Structure description top

The structure of the title compound, (I), was determined as a part of an on-going study of the structural systematics, including luminescence properties of molecules related to the general formula R3PAu[SC(OR')\d NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008). The Au atoms in (I) exists in the expected linear geometry defined by S and P atoms (Au—S = 2.3116 (9) Å and Au—P = 2.2655 (9) Å), Fig. 1, with the deviation from the ideal 180° angle (S1—Au—P1 = 177.54 (3)°) being related to the close approach of the O1 atom, 3.009 (3) Å; this is the normally observed orientation of the carbonimidothioate anion when coordinated to phosphinegold(I) centres. The conformation about the C1N1 (1.275 (5) Å) is Z and the C1—S1 distance (1.739 (4) Å) indicates the ligand is functioning as a thiolate.

The formation of C—H···O and C—H···π interactions, Table 1, lead to supramolecular arrays in the ab plane, Fig. 2. These stack to consolidate the crystal packing.

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For synthesis, see Hall et al. (1993). Cg1 is the centroid of the C2–C7 ring.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular layer formation in (I) mediated by C—H···O and C—H···π contacts (orange and purple dashed lines, respectively). Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[(Z)-Isopropoxy(4-nitrophenylimino)methanethiolato- κS](tricyclohexylphosphine-κP)gold(I) top
Crystal data top
[Au(C10H11N2O3S)(C18H33P)]Z = 2
Mr = 716.65F(000) = 720
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.0965 (3) ÅCell parameters from 5138 reflections
b = 13.1025 (4) Åθ = 2.3–29.6°
c = 13.2541 (5) ŵ = 5.05 mm1
α = 80.030 (1)°T = 223 K
β = 75.170 (2)°Plate, yellow
γ = 89.215 (1)°0.36 × 0.26 × 0.05 mm
V = 1503.26 (9) Å3
Data collection top
Bruker SMART CCD
diffractometer
6851 independent reflections
Radiation source: fine-focus sealed tube6092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.508, Tmax = 1k = 1716
10654 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0212P)2]
where P = (Fo2 + 2Fc2)/3
6851 reflections(Δ/σ)max = 0.002
325 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Au(C10H11N2O3S)(C18H33P)]γ = 89.215 (1)°
Mr = 716.65V = 1503.26 (9) Å3
Triclinic, P1Z = 2
a = 9.0965 (3) ÅMo Kα radiation
b = 13.1025 (4) ŵ = 5.05 mm1
c = 13.2541 (5) ÅT = 223 K
α = 80.030 (1)°0.36 × 0.26 × 0.05 mm
β = 75.170 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6851 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
6092 reflections with I > 2σ(I)
Tmin = 0.508, Tmax = 1Rint = 0.030
10654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.00Δρmax = 1.33 e Å3
6851 reflectionsΔρmin = 1.04 e Å3
325 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.773135 (15)0.951953 (10)0.686272 (11)0.02645 (6)
S10.67339 (12)0.78988 (7)0.68902 (8)0.0338 (2)
P10.86330 (10)1.11387 (7)0.68006 (7)0.02323 (18)
O10.8219 (3)0.7604 (2)0.8343 (2)0.0354 (6)
O20.3463 (5)0.3639 (3)0.5924 (3)0.0756 (12)
O30.1780 (5)0.3537 (3)0.7411 (3)0.0799 (13)
N10.6794 (4)0.6193 (2)0.8345 (3)0.0347 (7)
N20.3021 (5)0.3830 (3)0.6818 (3)0.0503 (10)
C10.7256 (4)0.7124 (3)0.7938 (3)0.0290 (8)
C20.5837 (4)0.5653 (3)0.7926 (3)0.0282 (8)
C30.6297 (5)0.5421 (3)0.6909 (3)0.0366 (9)
H30.72370.56860.64600.044*
C40.5395 (5)0.4810 (3)0.6555 (3)0.0383 (9)
H40.57230.46430.58720.046*
C50.4013 (5)0.4446 (3)0.7205 (3)0.0333 (8)
C60.3506 (5)0.4670 (3)0.8218 (3)0.0363 (9)
H60.25480.44210.86540.044*
C70.4444 (5)0.5269 (3)0.8573 (3)0.0344 (9)
H70.41280.54170.92640.041*
C80.8622 (5)0.7039 (4)0.9279 (3)0.0417 (10)
H80.77220.66290.97480.050*
C90.9881 (7)0.6324 (5)0.8957 (5)0.0675 (15)
H9A0.95390.58150.86080.101*
H9B1.01720.59730.95800.101*
H9C1.07490.67190.84720.101*
C100.9037 (6)0.7859 (4)0.9832 (4)0.0558 (13)
H10A0.81750.82971.00170.084*
H10B0.98950.82780.93650.084*
H10C0.93080.75321.04710.084*
C110.8713 (4)1.1952 (3)0.5512 (3)0.0278 (8)
H110.94571.16340.49790.033*
C120.9286 (5)1.3074 (3)0.5386 (3)0.0376 (9)
H12A0.85851.34290.58970.045*
H12B1.02881.30770.55340.045*
C130.9401 (5)1.3650 (3)0.4259 (3)0.0462 (11)
H13A0.97081.43760.42050.055*
H13B1.01881.33400.37580.055*
C140.7909 (6)1.3610 (4)0.3959 (3)0.0499 (12)
H14A0.80481.39450.32190.060*
H14B0.71491.39910.44050.060*
C150.7342 (6)1.2499 (4)0.4098 (4)0.0522 (12)
H15A0.80501.21400.35960.063*
H15B0.63491.24960.39370.063*
C160.7194 (5)1.1922 (4)0.5219 (3)0.0421 (10)
H16A0.68711.12000.52730.050*
H16B0.64161.22400.57180.050*
C171.0588 (4)1.1123 (3)0.6950 (3)0.0273 (7)
H171.09011.18350.69830.033*
C181.0682 (5)1.0405 (4)0.7969 (4)0.0432 (10)
H18A1.00121.06480.85800.052*
H18B1.03350.97030.79590.052*
C191.2311 (5)1.0382 (4)0.8079 (4)0.0628 (17)
H19A1.26331.10750.81380.075*
H19B1.23550.99050.87270.075*
C201.3384 (6)1.0032 (5)0.7126 (5)0.077 (2)
H20A1.44301.00530.71950.092*
H20B1.31190.93150.71050.092*
C211.3287 (5)1.0722 (5)0.6107 (5)0.0682 (18)
H21A1.39431.04580.55040.082*
H21B1.36601.14230.60960.082*
C221.1665 (4)1.0770 (4)0.5990 (4)0.0429 (10)
H22A1.13271.00830.59230.052*
H22B1.16351.12550.53440.052*
C230.7423 (4)1.1798 (3)0.7827 (3)0.0289 (8)
H230.66841.21840.74850.035*
C240.6475 (5)1.1041 (4)0.8751 (4)0.0501 (12)
H24A0.71511.06030.90960.060*
H24B0.58651.05900.84860.060*
C250.5415 (6)1.1597 (4)0.9567 (4)0.0581 (14)
H25A0.46421.19540.92520.070*
H25B0.48921.10831.01800.070*
C260.6273 (7)1.2368 (4)0.9930 (4)0.0589 (14)
H26A0.69691.20041.03130.071*
H26B0.55551.27361.04180.071*
C270.7166 (5)1.3140 (3)0.9004 (4)0.0456 (11)
H27A0.77491.36140.92620.055*
H27B0.64591.35510.86650.055*
C280.8249 (4)1.2610 (3)0.8189 (3)0.0333 (8)
H28A0.87421.31320.75750.040*
H28B0.90441.22800.84990.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02825 (8)0.02106 (8)0.03289 (9)0.00194 (5)0.01194 (6)0.00612 (6)
S10.0446 (6)0.0230 (5)0.0409 (5)0.0047 (4)0.0243 (5)0.0045 (4)
P10.0221 (4)0.0206 (4)0.0284 (4)0.0012 (3)0.0088 (4)0.0046 (4)
O10.0460 (17)0.0296 (15)0.0351 (14)0.0112 (12)0.0207 (13)0.0016 (12)
O20.096 (3)0.075 (3)0.065 (2)0.028 (2)0.024 (2)0.030 (2)
O30.068 (3)0.089 (3)0.081 (3)0.049 (2)0.012 (2)0.019 (2)
N10.045 (2)0.0258 (17)0.0353 (18)0.0082 (14)0.0147 (15)0.0026 (14)
N20.058 (3)0.033 (2)0.061 (3)0.0156 (18)0.022 (2)0.0011 (19)
C10.032 (2)0.0285 (19)0.0291 (18)0.0006 (15)0.0101 (15)0.0085 (15)
C20.034 (2)0.0182 (17)0.0319 (19)0.0004 (14)0.0105 (16)0.0006 (14)
C30.031 (2)0.034 (2)0.041 (2)0.0088 (17)0.0006 (17)0.0101 (18)
C40.042 (2)0.034 (2)0.038 (2)0.0010 (18)0.0057 (18)0.0118 (18)
C50.037 (2)0.0215 (19)0.043 (2)0.0033 (16)0.0150 (18)0.0032 (16)
C60.035 (2)0.031 (2)0.038 (2)0.0079 (17)0.0078 (17)0.0016 (17)
C70.038 (2)0.033 (2)0.0283 (19)0.0026 (17)0.0027 (16)0.0038 (16)
C80.050 (3)0.049 (3)0.028 (2)0.011 (2)0.0199 (19)0.0050 (18)
C90.076 (4)0.063 (4)0.070 (4)0.017 (3)0.037 (3)0.005 (3)
C100.067 (3)0.065 (3)0.045 (3)0.012 (3)0.030 (2)0.013 (2)
C110.0291 (19)0.0265 (19)0.0289 (18)0.0001 (15)0.0096 (15)0.0042 (15)
C120.043 (2)0.030 (2)0.040 (2)0.0059 (17)0.0148 (19)0.0032 (17)
C130.051 (3)0.035 (2)0.046 (2)0.001 (2)0.009 (2)0.004 (2)
C140.062 (3)0.051 (3)0.032 (2)0.024 (2)0.009 (2)0.001 (2)
C150.052 (3)0.067 (3)0.045 (3)0.012 (2)0.028 (2)0.005 (2)
C160.041 (2)0.047 (3)0.042 (2)0.002 (2)0.021 (2)0.004 (2)
C170.0212 (17)0.0267 (18)0.038 (2)0.0028 (14)0.0116 (15)0.0118 (16)
C180.046 (3)0.040 (2)0.051 (3)0.0103 (19)0.025 (2)0.009 (2)
C190.060 (4)0.069 (4)0.084 (4)0.031 (3)0.053 (3)0.033 (3)
C200.047 (3)0.089 (4)0.128 (5)0.040 (3)0.056 (3)0.066 (4)
C210.024 (2)0.097 (5)0.100 (4)0.016 (2)0.014 (3)0.062 (4)
C220.027 (2)0.059 (3)0.049 (2)0.0071 (19)0.0097 (18)0.026 (2)
C230.0272 (19)0.0277 (19)0.0325 (19)0.0010 (15)0.0063 (15)0.0096 (15)
C240.048 (3)0.042 (3)0.049 (3)0.014 (2)0.012 (2)0.014 (2)
C250.050 (3)0.058 (3)0.052 (3)0.010 (2)0.019 (2)0.018 (2)
C260.080 (4)0.046 (3)0.041 (3)0.004 (3)0.009 (2)0.018 (2)
C270.048 (3)0.033 (2)0.055 (3)0.0039 (19)0.005 (2)0.018 (2)
C280.030 (2)0.035 (2)0.037 (2)0.0027 (16)0.0066 (16)0.0150 (17)
Geometric parameters (Å, º) top
Au—P12.2655 (9)C14—H14A0.9800
Au—S12.3116 (9)C14—H14B0.9800
S1—C11.739 (4)C15—C161.520 (6)
P1—C111.835 (4)C15—H15A0.9800
P1—C171.839 (3)C15—H15B0.9800
P1—C231.850 (4)C16—H16A0.9800
O1—C11.350 (4)C16—H16B0.9800
O1—C81.459 (5)C17—C181.527 (6)
O2—N21.219 (5)C17—C221.532 (5)
O3—N21.222 (5)C17—H170.9900
N1—C11.275 (5)C18—C191.525 (6)
N1—C21.403 (5)C18—H18A0.9800
N2—C51.459 (5)C18—H18B0.9800
C2—C71.380 (5)C19—C201.522 (7)
C2—C31.390 (5)C19—H19A0.9800
C3—C41.371 (5)C19—H19B0.9800
C3—H30.9400C20—C211.512 (9)
C4—C51.368 (6)C20—H20A0.9800
C4—H40.9400C20—H20B0.9800
C5—C61.384 (6)C21—C221.522 (6)
C6—C71.386 (5)C21—H21A0.9800
C6—H60.9400C21—H21B0.9800
C7—H70.9400C22—H22A0.9800
C8—C91.493 (7)C22—H22B0.9800
C8—C101.504 (6)C23—C241.513 (6)
C8—H80.9900C23—C281.521 (5)
C9—H9A0.9700C23—H230.9900
C9—H9B0.9700C24—C251.533 (6)
C9—H9C0.9700C24—H24A0.9800
C10—H10A0.9700C24—H24B0.9800
C10—H10B0.9700C25—C261.497 (7)
C10—H10C0.9700C25—H25A0.9800
C11—C161.531 (5)C25—H25B0.9800
C11—C121.534 (5)C26—C271.506 (7)
C11—H110.9900C26—H26A0.9800
C12—C131.531 (6)C26—H26B0.9800
C12—H12A0.9800C27—C281.521 (5)
C12—H12B0.9800C27—H27A0.9800
C13—C141.513 (6)C27—H27B0.9800
C13—H13A0.9800C28—H28A0.9800
C13—H13B0.9800C28—H28B0.9800
C14—C151.516 (7)
P1—Au—S1177.54 (3)C16—C15—H15B109.3
C1—S1—Au103.52 (12)H15A—C15—H15B107.9
C11—P1—C17106.11 (17)C15—C16—C11110.6 (4)
C11—P1—C23107.07 (17)C15—C16—H16A109.5
C17—P1—C23108.78 (16)C11—C16—H16A109.5
C11—P1—Au110.76 (12)C15—C16—H16B109.5
C17—P1—Au111.51 (12)C11—C16—H16B109.5
C23—P1—Au112.32 (12)H16A—C16—H16B108.1
C1—O1—C8117.5 (3)C18—C17—C22110.1 (3)
C1—N1—C2121.7 (3)C18—C17—P1110.8 (3)
O2—N2—O3123.4 (4)C22—C17—P1109.6 (2)
O2—N2—C5118.7 (4)C18—C17—H17108.8
O3—N2—C5117.9 (4)C22—C17—H17108.8
N1—C1—O1119.8 (3)P1—C17—H17108.8
N1—C1—S1126.3 (3)C19—C18—C17110.6 (4)
O1—C1—S1113.8 (3)C19—C18—H18A109.5
C7—C2—C3119.0 (3)C17—C18—H18A109.5
C7—C2—N1118.7 (3)C19—C18—H18B109.5
C3—C2—N1122.0 (4)C17—C18—H18B109.5
C4—C3—C2120.8 (4)H18A—C18—H18B108.1
C4—C3—H3119.6C20—C19—C18110.7 (4)
C2—C3—H3119.6C20—C19—H19A109.5
C5—C4—C3119.3 (4)C18—C19—H19A109.5
C5—C4—H4120.4C20—C19—H19B109.5
C3—C4—H4120.4C18—C19—H19B109.5
C4—C5—C6121.7 (4)H19A—C19—H19B108.1
C4—C5—N2119.6 (4)C21—C20—C19110.8 (4)
C6—C5—N2118.7 (4)C21—C20—H20A109.5
C5—C6—C7118.4 (4)C19—C20—H20A109.5
C5—C6—H6120.8C21—C20—H20B109.5
C7—C6—H6120.8C19—C20—H20B109.5
C2—C7—C6120.8 (4)H20A—C20—H20B108.1
C2—C7—H7119.6C20—C21—C22111.7 (5)
C6—C7—H7119.6C20—C21—H21A109.3
O1—C8—C9110.0 (4)C22—C21—H21A109.3
O1—C8—C10105.3 (4)C20—C21—H21B109.3
C9—C8—C10113.7 (4)C22—C21—H21B109.3
O1—C8—H8109.3H21A—C21—H21B107.9
C9—C8—H8109.3C21—C22—C17110.8 (3)
C10—C8—H8109.3C21—C22—H22A109.5
C8—C9—H9A109.5C17—C22—H22A109.5
C8—C9—H9B109.5C21—C22—H22B109.5
H9A—C9—H9B109.5C17—C22—H22B109.5
C8—C9—H9C109.5H22A—C22—H22B108.1
H9A—C9—H9C109.5C24—C23—C28112.1 (3)
H9B—C9—H9C109.5C24—C23—P1112.4 (3)
C8—C10—H10A109.5C28—C23—P1115.0 (3)
C8—C10—H10B109.5C24—C23—H23105.4
H10A—C10—H10B109.5C28—C23—H23105.4
C8—C10—H10C109.5P1—C23—H23105.4
H10A—C10—H10C109.5C23—C24—C25111.9 (4)
H10B—C10—H10C109.5C23—C24—H24A109.2
C16—C11—C12110.8 (3)C25—C24—H24A109.2
C16—C11—P1111.6 (3)C23—C24—H24B109.2
C12—C11—P1115.3 (3)C25—C24—H24B109.2
C16—C11—H11106.1H24A—C24—H24B107.9
C12—C11—H11106.1C26—C25—C24111.6 (4)
P1—C11—H11106.1C26—C25—H25A109.3
C13—C12—C11110.3 (3)C24—C25—H25A109.3
C13—C12—H12A109.6C26—C25—H25B109.3
C11—C12—H12A109.6C24—C25—H25B109.3
C13—C12—H12B109.6H25A—C25—H25B108.0
C11—C12—H12B109.6C25—C26—C27111.1 (4)
H12A—C12—H12B108.1C25—C26—H26A109.4
C14—C13—C12112.0 (4)C27—C26—H26A109.4
C14—C13—H13A109.2C25—C26—H26B109.4
C12—C13—H13A109.2C27—C26—H26B109.4
C14—C13—H13B109.2H26A—C26—H26B108.0
C12—C13—H13B109.2C26—C27—C28111.9 (4)
H13A—C13—H13B107.9C26—C27—H27A109.2
C13—C14—C15110.9 (4)C28—C27—H27A109.2
C13—C14—H14A109.5C26—C27—H27B109.2
C15—C14—H14A109.5C28—C27—H27B109.2
C13—C14—H14B109.5H27A—C27—H27B107.9
C15—C14—H14B109.5C23—C28—C27111.6 (3)
H14A—C14—H14B108.0C23—C28—H28A109.3
C14—C15—C16111.7 (4)C27—C28—H28A109.3
C14—C15—H15A109.3C23—C28—H28B109.3
C16—C15—H15A109.3C27—C28—H28B109.3
C14—C15—H15B109.3H28A—C28—H28B108.0
C2—N1—C1—O1177.7 (3)C12—C13—C14—C1555.3 (5)
C2—N1—C1—S14.0 (6)C13—C14—C15—C1655.8 (5)
C8—O1—C1—N13.2 (6)C14—C15—C16—C1156.6 (5)
C8—O1—C1—S1175.2 (3)C12—C11—C16—C1556.6 (5)
Au—S1—C1—N1170.3 (3)P1—C11—C16—C15173.5 (3)
Au—S1—C1—O18.0 (3)C11—P1—C17—C18176.2 (3)
C1—N1—C2—C7121.8 (4)C23—P1—C17—C1868.9 (3)
C1—N1—C2—C363.4 (5)Au—P1—C17—C1855.5 (3)
C7—C2—C3—C40.8 (6)C11—P1—C17—C2254.5 (3)
N1—C2—C3—C4173.9 (4)C23—P1—C17—C22169.4 (3)
C2—C3—C4—C51.4 (6)Au—P1—C17—C2266.2 (3)
C3—C4—C5—C60.6 (6)C22—C17—C18—C1957.6 (4)
C3—C4—C5—N2177.6 (4)P1—C17—C18—C19179.0 (3)
O2—N2—C5—C41.2 (6)C17—C18—C19—C2057.8 (6)
O3—N2—C5—C4178.3 (4)C18—C19—C20—C2156.5 (6)
O2—N2—C5—C6179.4 (4)C19—C20—C21—C2255.8 (6)
O3—N2—C5—C60.1 (6)C20—C21—C22—C1755.8 (6)
C4—C5—C6—C70.8 (6)C18—C17—C22—C2156.3 (5)
N2—C5—C6—C7179.0 (4)P1—C17—C22—C21178.5 (4)
C3—C2—C7—C60.6 (6)C11—P1—C23—C24144.4 (3)
N1—C2—C7—C6175.5 (4)C17—P1—C23—C24101.3 (3)
C5—C6—C7—C21.4 (6)Au—P1—C23—C2422.6 (3)
C1—O1—C8—C982.9 (5)C11—P1—C23—C2885.7 (3)
C1—O1—C8—C10154.3 (4)C17—P1—C23—C2828.6 (3)
C17—P1—C11—C16172.7 (3)Au—P1—C23—C28152.5 (3)
C23—P1—C11—C1671.2 (3)C28—C23—C24—C2551.7 (6)
Au—P1—C11—C1651.6 (3)P1—C23—C24—C25176.9 (4)
C17—P1—C11—C1259.7 (3)C23—C24—C25—C2653.9 (6)
C23—P1—C11—C1256.4 (3)C24—C25—C26—C2755.9 (6)
Au—P1—C11—C12179.1 (3)C25—C26—C27—C2856.4 (6)
C16—C11—C12—C1355.8 (5)C24—C23—C28—C2751.9 (5)
P1—C11—C12—C13176.3 (3)P1—C23—C28—C27178.1 (3)
C11—C12—C13—C1455.5 (5)C26—C27—C28—C2354.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O3i0.992.583.558 (6)169
C27—H27b···Cg1ii0.982.813.778 (5)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Au(C10H11N2O3S)(C18H33P)]
Mr716.65
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.0965 (3), 13.1025 (4), 13.2541 (5)
α, β, γ (°)80.030 (1), 75.170 (2), 89.215 (1)
V3)1503.26 (9)
Z2
Radiation typeMo Kα
µ (mm1)5.05
Crystal size (mm)0.36 × 0.26 × 0.05
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.508, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
10654, 6851, 6092
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.00
No. of reflections6851
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.04

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Au—P12.2655 (9)Au—S12.3116 (9)
P1—Au—S1177.54 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O3i0.992.583.558 (6)169
C27—H27b···Cg1ii0.982.813.778 (5)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds